JPH08311420A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH08311420A
JPH08311420A JP15094195A JP15094195A JPH08311420A JP H08311420 A JPH08311420 A JP H08311420A JP 15094195 A JP15094195 A JP 15094195A JP 15094195 A JP15094195 A JP 15094195A JP H08311420 A JPH08311420 A JP H08311420A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
resin
conductive particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15094195A
Other languages
Japanese (ja)
Inventor
Yutaka Takamizawa
裕 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15094195A priority Critical patent/JPH08311420A/en
Publication of JPH08311420A publication Critical patent/JPH08311420A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To obtain an anisotropic conductive film which provides a sufficient adhesion between a substrate board and a connecting terminal even when the board is warped or twisted and which can be used in a fine circuit pattern by forming the film from a resin, a solvent, and specific conductive particles. CONSTITUTION: This film is formed from a resin, a solvent, and conductive particles 10 each of which is enclosed in a microcapsule 11 which is made from an insulating resin and is pref. breakable under pressure. Pref. the microcapsule is formed from a polyamide resin and/or a polyurea resin, and the pressure necessary for breaking it is adjusted by varying the degree of polymn. of those resins. For instance, an IC bare chip 3 is placed on a printed circuit board 1 through an anisotropic conductive film 13 sandwiched between them and they are thermally pressed to each other to connect a metal bump 4 to an electrode pattern 2 through conductive particles 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図4) 発明が解決しようとする課題(図4) 課題を解決するための手段(図1〜図3) 作用(図1〜図3) 実施例(図1〜図3) 発明の効果[Table of Contents] The present invention will be described in the following order. Field of Industrial Application Conventional Technology (FIG. 4) Problem to be Solved by the Invention (FIG. 4) Means for Solving the Problem (FIGS. 1 to 3) Action (FIGS. 1 to 3) Example (FIG. 1) ~ Fig. 3) Effect of the invention

【0002】[0002]

【産業上の利用分野】本発明は異方性導電膜に関し、例
えば電子部品(ICチツプ等)を基板に接続する際に使
用する端子接続用の異方性導電膜に適用して好適なもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film, which is preferably applied to an anisotropic conductive film for connecting terminals, which is used, for example, when connecting electronic parts (IC chips, etc.) to a substrate. Is.

【0003】[0003]

【従来の技術】従来、異方性導電膜として、図4(A)
に示すように、所定の割合で微細な導電粒子6が混入さ
れたエポキシ樹脂等の樹脂及び溶剤でなる異方性導電接
着剤7を例えばドクタブレード法によりフイルム状に形
成した異方性導電膜5が用いられている。
2. Description of the Related Art Conventionally, as an anisotropic conductive film, FIG.
As shown in FIG. 5, an anisotropic conductive film in which a film of an anisotropic conductive adhesive 7 made of a resin such as an epoxy resin in which fine conductive particles 6 are mixed in a predetermined ratio and a solvent is formed by, for example, a doctor blade method. 5 is used.

【0004】この異方性導電膜5を用いてプリント配線
基板1上にICベアチツプ3を実装する場合、まず予め
ガラスエポキシ基板でなるプリント配線基板1上には所
定の電極パターン2が配列されており、ICベアチツプ
3の下側面には金属バンプ4が電極パターン2と同一の
ピツチで溶着されている。このICベアチツプ3をプリ
ント配線基板1と位置合わせした状態で当該ICベアチ
ツプ3及びプリント配線基板1間に異方性導電膜5を挟
み込む。この状態において、図4(B)に示すように、
ICベアチツプ3を異方性導電膜5を介してプリント配
線基板1上にマウントした後、異方性導電膜5を熱圧着
することにより、金属バンプ4を導電粒子6を介して電
極パターン2に接合させる。
When the IC bare chip 3 is mounted on the printed wiring board 1 by using the anisotropic conductive film 5, first, a predetermined electrode pattern 2 is arranged on the printed wiring board 1 made of a glass epoxy substrate in advance. The metal bumps 4 are welded to the lower surface of the IC bare chip 3 with the same pitch as the electrode pattern 2. An anisotropic conductive film 5 is sandwiched between the IC bare chip 3 and the printed wiring board 1 with the IC bare chip 3 aligned with the printed wiring board 1. In this state, as shown in FIG.
After mounting the IC bare chip 3 on the printed wiring board 1 via the anisotropic conductive film 5, the anisotropic conductive film 5 is thermocompression-bonded to the metal bumps 4 on the electrode pattern 2 via the conductive particles 6. Join.

【0005】[0005]

【発明が解決しようとする課題】ところで、プリント配
線基板1は予めリフロー工程等によつて生じた熱応力に
基づいて反りやねじりが生じ易く、この場合、ICベア
チツプ3の金属バンプ4とプリント配線基板1の電極パ
ターン2との間で導電粒子6を介して十分な接合が得ら
れなくなる問題があつた(図4(B))。
By the way, the printed wiring board 1 is liable to be warped or twisted due to the thermal stress generated in advance by the reflow process or the like. In this case, the metal bumps 4 of the IC bare chip 3 and the printed wiring board are easily deformed. There is a problem in that sufficient bonding cannot be obtained between the substrate 1 and the electrode pattern 2 through the conductive particles 6 (FIG. 4B).

【0006】また異方性導電膜5を熱圧着する際には、
150〜 160〔℃〕、40〔kg/cm2〕及び20〜30〔秒〕のよ
うに、高温、高圧及び長時間という条件下で処理する必
要があり、またこれらの熱圧着時の接合条件の管理にも
細心の注意が必要であつた。一方、異方性導電膜5を構
成する樹脂の選択によつては、異方性導電膜5を用いて
接続する際に比較的低温及び短時間で接合し得るが、接
続の信頼性に欠けるという問題があつた。
When the anisotropic conductive film 5 is thermocompression bonded,
It is necessary to process under conditions of high temperature, high pressure and long time, such as 150 to 160 [℃], 40 [kg / cm 2 ] and 20 to 30 [seconds], and the joining conditions during thermocompression bonding. It was necessary to pay close attention to the management of. On the other hand, depending on the selection of the resin forming the anisotropic conductive film 5, the connection can be made at a relatively low temperature and in a short time when connecting using the anisotropic conductive film 5, but the connection reliability is poor. There was a problem.

【0007】また、近年、電子部品の小型化及び高密度
化に伴つて基板上に形成される回路パターンが微細化し
てきており、このため異方性導電接続するに際して必要
となる異方性導電膜も微細な回路パターンに対応し得る
ものが求められている。実際上このような異方性導電膜
を形成する方法としては、異方性導電膜に混入される導
電粒子を微細化する方法が考えられる。しかしながら、
導電粒子が微細化すると酸化し易く、このため一般的に
は導電粒子として高価な金めつき樹脂粒子が用いられ、
コストアツプの要因となる問題があつた。
Further, in recent years, circuit patterns formed on a substrate have been miniaturized with the miniaturization and high density of electronic parts. Therefore, anisotropic conductive required for anisotropic conductive connection is required. There is a demand for a film that can correspond to a fine circuit pattern. As a practical method of forming such an anisotropic conductive film, a method of miniaturizing conductive particles mixed in the anisotropic conductive film can be considered. However,
When the conductive particles are miniaturized, they are easily oxidized, and therefore expensive gold-plated resin particles are generally used as the conductive particles.
There was a problem that caused cost-up.

【0008】さらに異方性導電膜の被接続対象の平坦度
も厳密に要求されるため、用途もLCDパネルへのドラ
イバIC実装に限定されており、この実装機も高額かつ
煩雑なものになるという問題があつた。
Further, since the flatness of the connected object of the anisotropic conductive film is strictly required, the application is limited to the mounting of the driver IC on the LCD panel, and this mounting machine also becomes expensive and complicated. There was a problem.

【0009】本発明は以上の点を考慮してなされたもの
で、微細な回路パターンに対応し得ると共に熱圧着時の
接合条件を緩和し得る異方性導電膜を提案しようとする
ものである。
The present invention has been made in consideration of the above points, and it is an object of the present invention to propose an anisotropic conductive film which can deal with a fine circuit pattern and can relax the bonding conditions during thermocompression bonding. .

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、異方性導電膜を、樹脂及び溶剤
と、樹脂及び溶剤内に混入された微細な導電粒子と、導
電粒子の表面を包み込む絶縁性の樹脂でなるマイクロカ
プセルとで形成するようにした。
In order to solve such a problem, in the present invention, an anisotropic conductive film is formed by using a resin and a solvent, fine conductive particles mixed in the resin and the solvent, and the surface of the conductive particle. And microcapsules made of an insulating resin.

【0011】[0011]

【作用】樹脂及び溶剤内に混入する導電粒子の表面を絶
縁性の樹脂でなるマイクロカプセルで包み込むようにし
たことにより、異方性導電膜内における導電粒子の密度
を格段と高くすることができ、かくして基板に反りやね
じりが生じている場合であつても、基板及び電子部品の
接続端子間で十分な接合を得ることができる。
Function: By enclosing the surface of the conductive particles mixed in the resin and the solvent with microcapsules made of an insulating resin, the density of the conductive particles in the anisotropic conductive film can be significantly increased. Thus, even when the substrate is warped or twisted, sufficient bonding can be obtained between the substrate and the connection terminals of the electronic component.

【0012】[0012]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】図1(A)〜(C)に、本発明による異方
性導電膜を製造する過程を示す。まず所定数の微細な導
電粒子10がそれぞれ表面がマイクロカプセル11によ
つて包み込まれており(図1(A))、当該マイクロカ
プセル11によつて包み込まれた導電粒子10を所定の
割合でエポキシ樹脂を主成分とする樹脂及び溶剤でなる
異方性導電接着剤12に混入する(図1(B))。続い
て異方性導電接着剤12を例えばドクタブレード法によ
りフイルム状に形成することにより異方性導電膜13が
得られる(図1(C))。
1A to 1C show a process of manufacturing an anisotropic conductive film according to the present invention. First, the surface of a predetermined number of fine conductive particles 10 is encapsulated by microcapsules 11 (FIG. 1 (A)), and the conductive particles 10 encapsulated by the microcapsules 11 are epoxy at a predetermined ratio. It is mixed in the anisotropic conductive adhesive 12 composed of a resin containing resin as a main component and a solvent (FIG. 1 (B)). Subsequently, the anisotropic conductive adhesive 12 is formed into a film by, for example, a doctor blade method to obtain the anisotropic conductive film 13 (FIG. 1C).

【0014】因に図2において、従来の異方性導電膜5
を構成する導電粒子6(図4)と、本発明による異方性
導電膜13を構成する導電粒子10とを比較する。すな
わち図2(A)及び(B)は共に所定の容器14内には
分散安定剤を溶融させた水よりなる分散媒15が満たさ
れており、図2(A)では分散媒15中に所定の割合で
微細な導電粒子6が混入されており、一方図2(B)で
は分散媒15中に所定の割合でマイクロカプセル11に
よつて包み込まれた微細な導電粒子10が混入されてい
る。
Incidentally, in FIG. 2, the conventional anisotropic conductive film 5 is used.
The conductive particles 6 (see FIG. 4) constituting the above are compared with the conductive particles 10 constituting the anisotropic conductive film 13 according to the present invention. That is, in both of FIGS. 2A and 2B, a predetermined container 14 is filled with a dispersion medium 15 made of water in which a dispersion stabilizer is melted, and in FIG. 2B, the fine conductive particles 10 encased by the microcapsules 11 are mixed in the dispersion medium 15 at a predetermined ratio.

【0015】この実施例の場合、異方性導電膜13に配
合する導電粒子10は、ニツケル、はんだ等の金属粉末
を用いており、当該導電粒子10の表面をマイクロカプ
セル11で包み込むようにしたことにより、導電粒子1
0相互間での接触によつて接続端子間にブリツジが発生
することを防止し得、従つて導電粒子10の粒径を通常
用いている粒径の10分の1の数〔μm〕のものまで適用
し得るようになされている。従つて異方性導電膜13内
における導電粒子の密度を通常よりも格段と高くするこ
とができる。
In the case of this embodiment, the conductive particles 10 mixed in the anisotropic conductive film 13 are made of metal powder such as nickel and solder, and the surface of the conductive particles 10 is covered with microcapsules 11. Therefore, the conductive particles 1
It is possible to prevent the occurrence of bridging between the connection terminals due to the contact between 0, and accordingly, the particle size of the conductive particles 10 is one tenth of the normally used particle size [μm]. It is adapted to apply. Therefore, the density of the conductive particles in the anisotropic conductive film 13 can be made much higher than usual.

【0016】マイクロカプセル11は、通常のマイクロ
カプセルの材料であるポリアミド樹脂及びポリウレア樹
脂の混合物を用いて形成されている。ここでポリアミド
樹脂は、酸クロライドとアミンとの重縮合反応によつて
得ることができる。この場合の酸クロライドとしては、
アジボイルクロライド、セバコイルクロライド、フタロ
イルクロライド、1,4−シクロヘキサンジカルボニル
クロライド、4,4′−スルホニルジベンゾイルクロラ
イド等のジ酸ハロゲン化物や、トリメソイルクロライド
等の3官能酸クロライドとの混合物を適用できる。
The microcapsules 11 are formed by using a mixture of polyamide resin and polyurea resin, which are materials for ordinary microcapsules. Here, the polyamide resin can be obtained by a polycondensation reaction between an acid chloride and an amine. As the acid chloride in this case,
Mixtures of diacid halides such as adiboyl chloride, sebacyl chloride, phthaloyl chloride, 1,4-cyclohexanedicarbonyl chloride and 4,4'-sulfonyldibenzoyl chloride, and trifunctional acid chlorides such as trimesoyl chloride Can be applied.

【0017】またアミンとして2種類以上のアミンの混
合物を用いる場合には、2官能性アミンと3官能性アミ
ンの混合物を適用できる。この場合2官能性アミンとし
ては、エチレンジアミン、ヘキサメチレンジアミン、
4,4′−ジアミノジフエニルメタン、4,4′−ジア
ミノジフエニルエーテル及びこれらのナトリウム塩など
を適用することができ、また3官能基以上のアミンとし
ては、ジエチレントリアミン、トリエチレンテトラミ
ン、テトラエチレンペンタミンなどを適用することがで
きる。
When a mixture of two or more amines is used as the amine, a mixture of a bifunctional amine and a trifunctional amine can be applied. In this case, as the bifunctional amine, ethylenediamine, hexamethylenediamine,
4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether and sodium salts thereof can be applied, and as the amine having three or more functional groups, diethylenetriamine, triethylenetetramine, tetraethylene Pentamine or the like can be applied.

【0018】これらポリアミド樹脂を得るための酸クロ
ライドとのアミンの混合比は、1:1〜50当量程度であ
り、好ましくは1:1.1 〜40当量である。一方ポリウレ
ア樹脂は、イソシアネートとアミンの重付加反応により
得ることができる。この場合イソシアネートとアミンと
の少なくともいずれか一方又は両方がそれぞれ2種類以
上の混合物であつても良い。この場合、そのうちの1種
類は2官能性イソシアネートであり、他は3官能性以上
の他官能性イソシアネートである。
The mixing ratio of amine with acid chloride to obtain these polyamide resins is about 1: 1 to 50 equivalents, preferably 1: 1.1 to 40 equivalents. On the other hand, the polyurea resin can be obtained by a polyaddition reaction of isocyanate and amine. In this case, at least one or both of the isocyanate and the amine may be a mixture of two or more kinds. In this case, one of them is a difunctional isocyanate, and the other is a trifunctional or higher functional isocyanate.

【0019】2官能性イソシアネートとしては、ヘキサ
メチレンジイソシアネート、メタフエニレンジイソシア
ネートなどが適用でき、また3官能性イソシアネートと
しては、ヘキサメチレンジイソシアネート付加物や、ト
ルイレンジイソシアネートとトリメチロールプロパンと
の反応生成物などを適用することができる。
As the bifunctional isocyanate, hexamethylene diisocyanate, metaphenylene diisocyanate, etc. can be applied, and as the trifunctional isocyanate, a hexamethylene diisocyanate adduct or a reaction product of toluylene diisocyanate and trimethylolpropane is used. Etc. can be applied.

【0020】実際上この微細な導電粒子10は以下の手
順でマイクロカプセル化されている。すなわちまず微細
な金属粒子を50部と、酸クロライドを6部と、イソシア
ネートを1.4 部とを攪拌することにより混合物(以下、
これを第1の混合物と呼ぶ)を形成し、続いてこの第1
の混合物を適当な分散安定剤を含有せしめた水よりなる
分散媒中に投じた後、かくして得られた混合物(以下、
これを第2の混合物と呼ぶ)を攪拌機により分散懸濁さ
せる
In practice, the fine conductive particles 10 are microencapsulated by the following procedure. That is, first, 50 parts of fine metal particles, 6 parts of acid chloride and 1.4 parts of isocyanate were stirred to obtain a mixture (hereinafter,
This is called the first mixture) and subsequently this first
The mixture thus obtained was poured into a dispersion medium composed of water containing an appropriate dispersion stabilizer, and the mixture thus obtained (hereinafter,
This is referred to as the second mixture) is dispersed and suspended by a stirrer.

【0021】この工程までを室温以下で行い、続いて攪
拌された第2の混合物の温度を上げて反応温度に保持し
た状態でこれら混合物中に水溶性モノマでなるアミンを
添加した後、アミンと第2混合物中の酸クロライド及び
イソシアネードとの反応が終了するまで攪拌を縦続す
る。
Up to this step is carried out at room temperature or lower, and then, while the temperature of the stirred second mixture is kept at the reaction temperature, an amine which is a water-soluble monomer is added to these mixtures, and then the mixture is treated with the amine. Continue stirring until the reaction with the acid chloride and isocyanide in the second mixture is complete.

【0022】この後得られた固型物を濾別し、乾燥させ
ることによりマイクロカプセル化された導電粒子10を
得、この後このマイクロカプセル化された導電粒子10
とエポキシ樹脂を主成分とする樹脂及び溶剤を攪拌して
混合させることにより異方性導電接着剤12を得る。次
にこの異方性導電接着剤12をドクタブレード法により
フイルム状に形成することにより図1のような異方性導
電膜13を得ることができる。
After that, the solid product thus obtained is filtered and dried to obtain microcapsulated conductive particles 10. After that, the microcapsulated conductive particles 10 are obtained.
The anisotropic conductive adhesive 12 is obtained by stirring and mixing a resin containing epoxy resin as a main component and a solvent. Next, the anisotropic conductive adhesive 12 is formed into a film by the doctor blade method, whereby the anisotropic conductive film 13 as shown in FIG. 1 can be obtained.

【0023】実際上この異方性導電接着剤12は、エポ
キシ樹脂を50部とフエノキシ樹脂を50部と潜在性硬化剤
を2部とを混合して得られる樹脂と、トルエンを70部と
酢酸エチルを70部とを混合して得られる溶剤とを攪拌し
て得られる。また異方性導電膜13は、この異方性導電
接着剤12にマイクロカプセル11で包み込まれた導電
粒子10を 100〜200 部を投じて攪拌させた後、続いて
ドクタブレード法によつてフイルム状に形成して得られ
る。
Practically, this anisotropic conductive adhesive 12 is a resin obtained by mixing 50 parts of an epoxy resin, 50 parts of a phenoxy resin and 2 parts of a latent curing agent, 70 parts of toluene and acetic acid. It is obtained by stirring with a solvent obtained by mixing 70 parts of ethyl. The anisotropic conductive film 13 is prepared by throwing 100 to 200 parts of the conductive particles 10 encapsulated in the microcapsules 11 into the anisotropic conductive adhesive 12 and stirring the mixture, and then using a doctor blade method. It is obtained by forming into a shape.

【0024】図4(A)〜(C)との対応部分に同一符
号を付して示す図3(A)〜(C)において、この異方
性導電膜13を用いた電子部品実装プロセスの一例を示
す。プリント配線基板1上に異方性導電膜13を介して
ICベアチツプ3を実装する場合、ICベアチツプ3を
プリント配線基板1と位置合わせした状態で当該ICベ
アチツプ3及びプリント配線基板1間に異方性導電膜1
3を挟み込む(図4(A))。
In FIGS. 3A to 3C in which parts corresponding to those in FIGS. 4A to 4C are denoted by the same reference numerals, an electronic component mounting process using the anisotropic conductive film 13 is performed. An example is shown. When the IC bare chip 3 is mounted on the printed wiring board 1 via the anisotropic conductive film 13, the IC bare chip 3 and the printed wiring board 1 are anisotropically arranged with the IC bare chip 3 aligned with the printed wiring board 1. Conductive film 1
3 is sandwiched (FIG. 4 (A)).

【0025】この状態において、ICベアチツプ3を異
方性導電膜13を介してプリント配線基板1上にマウン
トした後、異方性導電膜13を熱圧着することにより、
金属バンプ4を所定数の導電粒子10を介して電極パタ
ーン2に接合させる。このとき異方性導電膜13は、金
属バンプ4及び電極パターン2間において所定数の導電
粒子10が当該金属バンプ4及び電極パターン2と連続
的につながつており、これらの導電粒子10の表面を包
み込んでいる各マイクロカプセル11がそれぞれ熱圧着
時の加圧により破壊されている。これにより異方性導電
膜13内の金属バンプ4及び電極パターン2間以外にお
ける空間では、導電粒子はマイクロカプセル化された状
態のまま存在し、通常用いている導電粒子の2倍以上の
数で導電粒子を配合してあるにもかかわらず、金属バン
プ4及び電極パターン2間で短絡することがない。
In this state, the IC chip 3 is mounted on the printed wiring board 1 with the anisotropic conductive film 13 interposed therebetween, and the anisotropic conductive film 13 is thermocompression-bonded.
The metal bumps 4 are bonded to the electrode pattern 2 via a predetermined number of conductive particles 10. At this time, in the anisotropic conductive film 13, a predetermined number of conductive particles 10 are continuously connected to the metal bumps 4 and the electrode patterns 2 between the metal bumps 4 and the electrode patterns 2, and the surfaces of these conductive particles 10 are connected. Each encapsulating microcapsule 11 is destroyed by the pressure applied during thermocompression bonding. As a result, in the space other than between the metal bumps 4 and the electrode patterns 2 in the anisotropic conductive film 13, the conductive particles remain in the microencapsulated state, and the conductive particles are twice or more the number of the conductive particles normally used. Although the conductive particles are blended, there is no short circuit between the metal bump 4 and the electrode pattern 2.

【0026】実際上実験によれば、従来の異方性導電膜
5では、 160〔℃〕、40〔kg/cm2〕の熱圧着条件でも各
端子間の導通抵抗が 200〜 500〔mΩ〕とばらつきがあ
り、これらの中には十分な接続ができない端子も存在し
たのに対し、本発明による異方性導電膜13では、温度
120〔℃〕、20〔kg/cm2〕という比較的緩やかな条件
で、導通抵抗が 200〔mΩ〕以下でも接続できることが
確認できた。
According to actual experiments, in the conventional anisotropic conductive film 5, the conduction resistance between the terminals is 200 to 500 [mΩ] even under thermocompression bonding conditions of 160 [° C.] and 40 [kg / cm 2 ]. However, in the anisotropic conductive film 13 according to the present invention, the
It was confirmed that connection was possible even with a conduction resistance of 200 [mΩ] or less under relatively mild conditions of 120 [° C] and 20 [kg / cm 2 ].

【0027】因に、導電粒子としてはんだ粒子を用いて
形成した異方性導電膜の場合には、はんだの溶融温度よ
り若干低めの約 170〔℃〕の温度で接続を行なうと導電
粒子が互いに粒子の形状を保つたまま半溶融し、単なる
接触による接続抵抗から更に低い 100〔mΩ〕以下の接
続抵抗を示す。
Incidentally, in the case of an anisotropic conductive film formed by using solder particles as the conductive particles, if the connection is performed at a temperature of about 170 [° C.], which is slightly lower than the melting temperature of the solder, the conductive particles will be separated from each other. It semi-melts while maintaining the shape of the particles, and shows a connection resistance of 100 [mΩ] or less, which is lower than the connection resistance due to simple contact.

【0028】以上の構成において、プリント配線基板1
上に異方性導電膜13を介してICベアチツプ3を実装
する場合、異方性導電膜13を熱圧着した際にプリント
配線基板1及びICベアチツプ3の接続端子間における
異方性導電膜13内では、所定数の導電粒子10の表面
を包み込んでいる各マイクロカプセル11が加圧により
破壊される。この結果、異方性導電膜13内の接続端子
間以外の空間に存在する導電粒子10は全てマイクロカ
プセル10で包み込まれた状態のままであり、このため
異方性導電膜13内で導電粒子10同士が隣接すること
を防止し得、かくして接続端子が相互間で短絡すること
を防止し得る。従つて、異方性導電膜13内における導
電粒子の密度を格段と高くすることができる。
In the above structure, the printed wiring board 1
When mounting the IC bare chip 3 via the anisotropic conductive film 13, the anisotropic conductive film 13 between the connection terminals of the printed wiring board 1 and the IC bare chip 3 when the anisotropic conductive film 13 is thermocompression bonded. Inside, each microcapsule 11 enclosing the surface of a predetermined number of conductive particles 10 is destroyed by pressure. As a result, all the conductive particles 10 existing in the space other than the space between the connection terminals in the anisotropic conductive film 13 remain in the state of being encapsulated in the microcapsules 10. It is possible to prevent the 10s from being adjacent to each other, and thus prevent the connecting terminals from being short-circuited to each other. Therefore, the density of the conductive particles in the anisotropic conductive film 13 can be significantly increased.

【0029】従つて異方性導電膜13では、プリント配
線基板1及びICベアチツプ3の接続端子間において所
定数の導電粒子10を当該各接続端子と連続的につなが
るように介在させることができる。この結果、プリント
配線基板1に反りやねじりが生じている場合であつて
も、ICベアチツプ3の金属バンプ4とプリント配線基
板1の電極パターン2との間で導電粒子10を介して十
分な接合が得ることができる。
Therefore, in the anisotropic conductive film 13, a predetermined number of conductive particles 10 can be interposed between the connecting terminals of the printed wiring board 1 and the IC bare chip 3 so as to be continuously connected to the connecting terminals. As a result, even when the printed wiring board 1 is warped or twisted, the metal bumps 4 of the IC bare chip 3 and the electrode patterns 2 of the printed wiring board 1 are sufficiently bonded via the conductive particles 10. Can be obtained.

【0030】さらにこの異方性導電膜13を用いること
によつて、微細な回路パターンに対応し得ることから、
有機材料でなるプリント配線基板1へのICベアチツプ
3のフリツプチツプ実装のみならず、液晶パネルに対す
るTAB実装及びCOG(チツプオングラス)実装、ま
たセラミツク及びシリコン基板に対するフリツプチツプ
実装に対しても、従来通りに実装プロセスで実装し得る
と共に、安定的かつ高信頼性で接続することができる。
Further, since the anisotropic conductive film 13 can be used to deal with a fine circuit pattern,
Not only the flip chip mounting of the IC bare chip 3 on the printed wiring board 1 made of an organic material, but also the TAB mounting and COG (chip on glass) mounting on the liquid crystal panel, and the flip chip mounting on the ceramic and the silicon substrate are performed as usual. It can be mounted in the mounting process and can be connected stably and with high reliability.

【0031】またマイクロカプセル11を構成している
樹脂の重合度は、酸クロライド及びイソシアネートの配
合比、種類、反応時間及び温度等によつて自由に調整さ
せることができるため、熱圧着によりマイクロカプセル
11を破壊する圧力も自由に調整させることができ、か
くして異方性導電膜を所望の条件を有するように形成す
ることができる。
The degree of polymerization of the resin constituting the microcapsules 11 can be freely adjusted by adjusting the compounding ratio of acid chloride and isocyanate, the type, the reaction time and the temperature. The pressure at which 11 is destroyed can also be adjusted freely, and thus the anisotropic conductive film can be formed to have desired conditions.

【0032】以上の構成によれば、この異方性導電膜1
3内に配合される各導電粒子10の表面をそれぞれマイ
クロフイルム11で包み込むようにしたことにより、異
方性導電膜13内における導電粒子の密度を格段と高く
することができ、かくしてプリント配線基板1に反りや
ねじりが生じている場合であつても、プリント配線基板
1及びICベアチツプ3の接続端子間で十分な接合を得
ることができ、かくして微細な回路パターンに対応し得
ると共に熱圧着時の接合条件を緩和し得る異方性導電膜
を実現できる。
According to the above constitution, this anisotropic conductive film 1
By enclosing the surface of each conductive particle 10 mixed in 3 with the microfilm 11, the density of the conductive particles in the anisotropic conductive film 13 can be significantly increased, and thus the printed wiring board can be obtained. Even when 1 is warped or twisted, sufficient connection can be obtained between the printed wiring board 1 and the connection terminals of the IC bare chip 3, and thus it is possible to cope with a fine circuit pattern and at the time of thermocompression bonding. It is possible to realize an anisotropic conductive film that can relax the bonding conditions of.

【0033】なお上述の実施例においては、マイクロカ
プセル11の材質としてポリアミド樹脂とポリウレア樹
脂との混合物を用いるようにした場合について述べた
が、本発明はこれに限らず、この他種々の材料を適用す
ることができる。
In the above embodiments, the case where the mixture of the polyamide resin and the polyurea resin is used as the material of the microcapsule 11 is described, but the present invention is not limited to this, and various other materials may be used. Can be applied.

【0034】また上述の実施例においては、導電粒子1
0としてニツケル、はんだ等の金属粉末を用いた場合に
ついて述べたが、本発明はこれに限らず、例えばニツケ
ルを用いた場合には不定形の粒子となるが、はんだを用
いた場合には球状の粒子でも不定形の粒子でも良く、ま
たこれらを混合して用いても良い。
In the above embodiment, the conductive particles 1
Although the case of using a metal powder such as nickel and solder has been described as 0, the present invention is not limited to this. For example, when nickel is used, an amorphous particle is formed, but when solder is used, it is spherical. Particles or amorphous particles may be used, or these particles may be mixed and used.

【0035】[0035]

【発明の効果】上述のように本発明によれば、異方性導
電膜を、樹脂及び溶剤と、樹脂及び溶剤内に混入された
微細な導電粒子と、導電粒子の表面を包み込む絶縁性の
樹脂でなるマイクロカプセルとで形成するようにしたこ
とにより、異方性導電膜内における導電粒子の密度を格
段と高くすることができ、かくして基板に反りやねじり
が生じている場合であつても、基板及び電子部品の接続
端子間で十分な接合を得ることができ、かくして微細な
回路パターンに対応し得ると共に熱圧着時の接合条件を
緩和し得る異方性導電膜を実現できる。
As described above, according to the present invention, the anisotropic conductive film is provided with the resin and the solvent, the fine conductive particles mixed in the resin and the solvent, and the insulating film that encloses the surface of the conductive particle. By forming the microcapsules made of a resin, the density of the conductive particles in the anisotropic conductive film can be significantly increased, and thus even when the substrate is warped or twisted. As a result, sufficient bonding can be obtained between the substrate and the connection terminals of the electronic component, and thus it is possible to realize an anisotropic conductive film which can correspond to a fine circuit pattern and can relax the bonding conditions during thermocompression bonding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による異方性導電膜を製造する過程の説
明に供する略線図である。
FIG. 1 is a schematic diagram for explaining a process of manufacturing an anisotropic conductive film according to the present invention.

【図2】従来及び本発明における異方性導電膜を構成す
る導電粒子を示す略線図である。
FIG. 2 is a schematic diagram showing conductive particles forming an anisotropic conductive film according to the related art and the present invention.

【図3】図1の異方性導電膜を用いた電子部品実装プロ
セスの一例を示す略線図である。
FIG. 3 is a schematic diagram showing an example of an electronic component mounting process using the anisotropic conductive film of FIG.

【図4】従来の異方性導電膜を用いた電子部品実装プロ
セスを示す略線図である。
FIG. 4 is a schematic diagram showing a conventional electronic component mounting process using an anisotropic conductive film.

【符号の説明】[Explanation of symbols]

1……プリント配線基板、2……電極パターン、3……
ICベアチツプ、4……金属バンプ、5、13……異方
性導電膜、6、10……導電粒子、7、12……異方性
導電接着剤、11……マイクロカプセル。
1 ... Printed wiring board, 2 ... Electrode pattern, 3 ...
IC bare chip, 4 ... Metal bumps, 5, 13 ... Anisotropic conductive film, 6, 10 ... Conductive particles, 7, 12 ... Anisotropic conductive adhesive, 11 ... Microcapsule.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】樹脂及び溶剤と、 上記樹脂及び溶剤内に混入された微細な導電粒子と、 上記導電粒子の表面を包み込む絶縁性の樹脂でなるマイ
クロカプセルとを具えることを特徴とする異方性導電
膜。
1. A method comprising: a resin and a solvent; fine conductive particles mixed in the resin and the solvent; and microcapsules made of an insulating resin that wraps the surfaces of the conductive particles. Isotropic conductive film.
【請求項2】上記マイクロカプセルは、加圧によつて破
壊されることを特徴とする請求項1に記載の異方性導電
膜。
2. The anisotropic conductive film according to claim 1, wherein the microcapsules are destroyed by pressurization.
【請求項3】上記マイクロカプセルは、 ポリアミド樹脂、ポリウレア樹脂又は上記ポリアミド樹
脂と上記ポリウレア樹脂との混合物でなり、 上記ポリアミド樹脂、ポリウレア樹脂又は上記ポリアミ
ド樹脂と上記ポリウレア樹脂との混合物の重合度を変化
させることにより、上記マイクロカプセルが破壊される
圧力を調整することを特徴とする請求項1に記載の異方
性導電膜。
3. The microcapsules are made of a polyamide resin, a polyurea resin, or a mixture of the polyamide resin and the polyurea resin, and have a degree of polymerization of the polyamide resin, the polyurea resin or the mixture of the polyamide resin and the polyurea resin. The anisotropic conductive film according to claim 1, wherein the pressure at which the microcapsules are broken is adjusted by changing the pressure.
JP15094195A 1995-05-24 1995-05-24 Anisotropic conductive film Pending JPH08311420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15094195A JPH08311420A (en) 1995-05-24 1995-05-24 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15094195A JPH08311420A (en) 1995-05-24 1995-05-24 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
JPH08311420A true JPH08311420A (en) 1996-11-26

Family

ID=15507769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15094195A Pending JPH08311420A (en) 1995-05-24 1995-05-24 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JPH08311420A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893484A3 (en) * 1997-07-24 1999-07-21 Sony Chemicals Corporation Multilayer anisotropic electroconductive adhesive and method for manufacturing same
JPH11293133A (en) * 1998-04-14 1999-10-26 Nippon Zeon Co Ltd Resin composition
EP0996321A2 (en) * 1998-10-22 2000-04-26 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
KR100435034B1 (en) * 2001-11-08 2004-06-09 엘지전선 주식회사 Anisotropic conductive film
KR100597391B1 (en) * 2004-05-12 2006-07-06 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
KR100828238B1 (en) * 2006-12-08 2008-05-07 엘에스전선 주식회사 Anisotropic conductive film
US9831211B2 (en) 2015-08-31 2017-11-28 Samsung Electronics Co., Ltd. Anisotropic conductive material, electronic device including anisotropic conductive material, and method of manufacturing electronic device
US10699056B1 (en) * 2019-01-21 2020-06-30 Samsung Electronics Co., Ltd. Computer-implemented method, processor-implemented system, and non-transitory computer-readable storage medium storing instructions for simulation of printed circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893484A3 (en) * 1997-07-24 1999-07-21 Sony Chemicals Corporation Multilayer anisotropic electroconductive adhesive and method for manufacturing same
US6020059A (en) * 1997-07-24 2000-02-01 Sony Chemicals Corporation Multilayer anisotropic electroconductive adhesive and method for manufacturing same
JPH11293133A (en) * 1998-04-14 1999-10-26 Nippon Zeon Co Ltd Resin composition
EP0996321A2 (en) * 1998-10-22 2000-04-26 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
EP0996321A3 (en) * 1998-10-22 2003-02-12 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
KR100435034B1 (en) * 2001-11-08 2004-06-09 엘지전선 주식회사 Anisotropic conductive film
KR100597391B1 (en) * 2004-05-12 2006-07-06 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
KR100828238B1 (en) * 2006-12-08 2008-05-07 엘에스전선 주식회사 Anisotropic conductive film
US9831211B2 (en) 2015-08-31 2017-11-28 Samsung Electronics Co., Ltd. Anisotropic conductive material, electronic device including anisotropic conductive material, and method of manufacturing electronic device
US10699056B1 (en) * 2019-01-21 2020-06-30 Samsung Electronics Co., Ltd. Computer-implemented method, processor-implemented system, and non-transitory computer-readable storage medium storing instructions for simulation of printed circuit board

Similar Documents

Publication Publication Date Title
US8273457B2 (en) Adhesive for bonding circuit members, circuit board and process for its production
TWI290257B (en) Liquid crystal display device and the manufacturing method thereof
US6646355B2 (en) Structure comprising beam leads bonded with electrically conductive adhesive
KR100456064B1 (en) Anisotropic conductive film for ultra-fine pitch COG application
US20030080437A1 (en) Electronic assembly with filled no-flow underfill and methods of manufacture
JPH04332404A (en) Anisotropic conductive material and connection of integrated circuit element using it
JPH08186156A (en) Connecting method of electronic component
JP2000113919A (en) Electrical connection device and electrically connecting method
JPH08311420A (en) Anisotropic conductive film
KR100701133B1 (en) Electric connecting method and apparatus
US6255138B1 (en) Process for producing microencapsulated electroconductive filler
JP2906612B2 (en) Microcapsule type conductive adhesive and bonding method
JP2001176924A (en) Semiconductor device, bonding method, electronic equipment and bonding material
JPH08335407A (en) Anisotropic conductive material for electric connection
JP3162068B2 (en) Semiconductor chip mounting method
JP2000011760A (en) Anisotropic conductive composition and manufacture of anisotropic conductive member using it
EP0539211B1 (en) Method for production of microcapsule type conductive filler
JP2001093925A (en) Lsi package assembly method
JPH11219982A (en) Conductive particle and anisotropic conductive adhesive agent provided therewith
JP2003152022A (en) Bonding member, semiconductor device and method for manufacturing the same, circuit board, and electronic equipment
JPH06136333A (en) Microencapsulate conductive adhesive and its production
JPH079906B2 (en) Semiconductor device
JP2000100865A (en) Semiconductor device and manufacture thereof
JP2000124262A (en) Semiconductor device
JPH112830A (en) Liquid crystal device and its manufacture