JPH08309110A - Compression treatment of aluminum dross - Google Patents

Compression treatment of aluminum dross

Info

Publication number
JPH08309110A
JPH08309110A JP14415295A JP14415295A JPH08309110A JP H08309110 A JPH08309110 A JP H08309110A JP 14415295 A JP14415295 A JP 14415295A JP 14415295 A JP14415295 A JP 14415295A JP H08309110 A JPH08309110 A JP H08309110A
Authority
JP
Japan
Prior art keywords
pressure
dross
aluminum
column
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14415295A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
寛 渡辺
Masatoshi Nanba
正敏 南波
Kunio Hayashi
邦雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYA KOKI KK
Nippon Light Metal Co Ltd
Hokko KK
Original Assignee
OKAYA KOKI KK
Nippon Light Metal Co Ltd
Hokko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYA KOKI KK, Nippon Light Metal Co Ltd, Hokko KK filed Critical OKAYA KOKI KK
Priority to JP14415295A priority Critical patent/JPH08309110A/en
Publication of JPH08309110A publication Critical patent/JPH08309110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE: To perform treatment for reducing oxidation loss of aluminum in the condition free from generation of noise by repeatedly performing operation for bringing a pressure column into contact with a pressure plate at a low velocity free from generation of impulsive sound and thereafter raising pressure to the prescribed pressure loading in the case of pressurization, and for rapidly releasing the pressure column in the case of eliminating pressure. CONSTITUTION: High-temperature dross 2 scraped out of a furnace is held in a vessel 1 which is made of iron and formed into a cylinder having about 900mmϕ and height of about 400mm and provided with a perforated plate 3 having slitlike opening parts 3a in the bottom. After a push plate 4 is placed thereon, a compression device 15 is brought into contact with the push plate 4 at velocity of about 10mm/sec. A pressure column 6 is lowered until pressure loading reaches about 2MPa. After pressure loading reachs about 2MPa in such a way, the pressure column 6 is rapidly released at a speed of about 200 mm/sec. Thereafter, similar pressurization and pressure eliminating operation are repeated and performed at about 30 times until settling and displacement of the push plate 4 are substantially eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウムドロス圧搾
処理法に係り、アルミニウムドロスから金属アルミニウ
ムを圧搾回収するに当り、ドロス中における空隙の減少
および圧搾後における空気のドロス内進入を有効に防止
して空気による酸化を適切に低減しアルミニウムの酸化
ロスを縮減した処理を騒音発生のない条件下で的確に実
施できる方法を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum dross squeezing treatment method, and when squeezing and recovering metallic aluminum from an aluminum dross, it effectively reduces voids in the dross and effectively prevents air from entering the dross after squeezing. Therefore, it is intended to provide a method capable of appropriately carrying out a treatment in which the oxidation by air is appropriately reduced and the oxidation loss of aluminum is reduced under the condition that noise is not generated.

【0002】[0002]

【従来の技術】アルミニウムの溶解精錬設備から掻出さ
れたアルミニウムドロスにはかなりの量の金属アルミニ
ウムが付着残留しており、このようなアルミニウムドロ
スからの金属アルミニウムの分離回収については従来か
ら種々の手法が採用されている。即ちこのような方法と
しては従来一般的に容器へ受入れたアルミニウムドロス
にフラックスを加え、アルミニウムを酸化発熱させ酸化
皮膜を弱くするとともに溶融金属アルミニウムの流動性
と分離性を高め、このドロスを機械的に攪拌することに
より酸化皮膜を破り、メタルどうしを結合させ大きくな
ったアルミニウム液滴を容器下方に沈降させて分離する
方式がある。
2. Description of the Related Art A considerable amount of metallic aluminum adheres and remains on aluminum dross scraped from an aluminum melting and refining facility, and various conventional methods have been used to separate and recover metallic aluminum from such aluminum dross. The method has been adopted. That is, as such a method, a flux is conventionally added to an aluminum dross that is generally received in a container to weaken the oxide film by causing aluminum to oxidize and generate heat, and enhance the fluidity and separability of molten metal aluminum, thereby mechanically removing the dross. There is a method in which the oxide film is broken by agitating, and the aluminum droplets that grow by combining metals are settled below the container and separated.

【0003】また上記のようにフラックスを加える方法
は特別なフラックスを必要とすると共に酸化発熱のため
に折角の金属アルミニウムが酸化消耗せしめられること
から、それらの不利のない方法として容器内に収容され
たドロスに圧搾力を加え、またこれに上下方向からの振
動等を付与することによって付着している溶融金属アル
ミニウムを搾り出す方式がある。
In addition, the method of adding the flux as described above requires a special flux, and since the metallic aluminum in the corner is consumed by oxidation due to the heat of oxidation, it is housed in the container as a method without these disadvantages. There is a method of squeezing molten metal aluminum adhering to the dross by applying a pressing force to the dross and applying vibration or the like from the vertical direction to the dross.

【0004】[0004]

【発明が解決しようとする課題】上記したような従来技
術によるものは成程金属メタルを分離回収することがで
きるとしても、この分離回収後のドロスにはなお相当の
メタル分が残留付着しており、このように残留付着した
メタル分は酸化消耗するにまかされていて、充分な回収
効率を得難い。
Even though the above-mentioned conventional technique can separate and recover metallic metal in the process, a considerable amount of metal remains still attached to the dross after the separation and recovery. However, the residual metal thus deposited is left to be consumed by oxidation, and it is difficult to obtain sufficient recovery efficiency.

【0005】一方上記のようなドロスに関しては種々の
用途があり、そのような用途からすれば斯うした場合の
ドロスの価値は含まれるアルミニウム金属の量によって
大きく異なる。即ち酸化が進行しドロス中のメタル分が
なくなった場合、その用途は非常に限定されたものとな
り商品価値も低く一般的には単なる産業廃棄物となり投
棄自体にも費用を必要とする。それゆえ完全にメタルを
搾りきれない場合、メタルを搾り終ったドロス中に含ま
れるメタル分は酸化消耗等させることなくドロス中にで
きるだけ未酸化状態であるメタルのまま残すことがドロ
スを再資源化し活用することを有利にし、しかも酸化に
より処理ドロスの重量が増すこともないため資源保護、
環境保護の面からも大きな意味があることになる。
On the other hand, there are various uses for the dross as described above. From such uses, the value of the dross in such a case greatly varies depending on the amount of aluminum metal contained. That is, when the oxidation progresses and the metal content in the dross disappears, its use is very limited, the commercial value is low, and it is generally mere industrial waste, and the disposal itself requires a cost. Therefore, if you can not squeeze the metal completely, the metal content contained in the dross that has squeezed the metal can be left as unoxidized metal in the dross as much as possible without being consumed by oxidation to recycle the dross. Resource conservation because it is advantageous to use, and the weight of treated dross does not increase due to oxidation,
It also has a great meaning in terms of environmental protection.

【0006】上記のようにドロスにフラックスを加え、
ドロス中の金属アルミニウムを燃焼させて高温状態を
得、メタルの流動性を上げ、攪拌して金属メタル粒子を
結合させ、分離流出させる方法では上記のように燃料と
して金属アルミニウムが使用されることによってメタル
分が酸化消耗することとなり、かつ急激酸化による危険
性や環境破壊などがあり、また攪拌、フラックスの投入
等により回収作業時には多量の粉塵を発生せしめ除塵装
置の設置が不可避となる。即ち、作業者は劣悪な環境下
におかれ、環境汚染の可能性があると共に搾り終ったド
ロス中に搾りきれないで残留しているメタル分も高温で
攪拌されることによって空気との接触機会が大きいため
酸化消耗が激しい。これを冷却するため灰の投入等もお
こなわれるがこれ等も粉塵発生につながり、しかもメタ
ル回収は高温下での攪拌によるため器機能の損耗も激し
い。
Flux is added to the dross as described above,
In the method of burning the metallic aluminum in the dross to obtain a high temperature state, increasing the fluidity of the metal, stirring and binding the metallic metal particles, and separating and flowing out, the metallic aluminum is used as fuel as described above. The metal content will be consumed by oxidation, and there will be dangers and environmental damage due to rapid oxidation, and a large amount of dust will be generated during collection work due to stirring, introduction of flux, etc., and installation of a dust removal device will be unavoidable. That is, the worker is placed in a bad environment, there is a possibility of environmental pollution, and the metal content that remains unsqueezed in the dross that has been squeezed is agitated at high temperature, so that there is a chance of contact with air. Is large, resulting in severe oxidation consumption. Ash is put in to cool this, but this also leads to the generation of dust, and metal collection is agitated at high temperatures, so the function of the vessel is greatly worn.

【0007】容器に収納したドロスに圧力を加えメタル
分等の流動体を搾り出す方法はフラックスの使用を避
け、メタル分の燃焼消耗をなくし、急激な酸化による危
険を防止するために提案されたものであるが圧搾時に容
器側壁からの抗力を受け、とくに容器の深さが深い場
合、加えられた圧力は分散されて弱くなるため、加えら
れた圧力が、ドロス内部にまで効率よく伝達されず、ド
ロス中の固体質が充分に充填されず収容されたドロスの
固体部間に間隙がのこり、そこに溶融メタルや空気等の
流動成分が残留することになる。またこれによってメタ
ル分の排出、回収が不十分になり、同時に残された空気
や、これら間隙から侵入する空気によって圧搾後もメタ
ルの酸化が進行し、残留するメタル濃度は低下し、酸化
による圧搾後のドロスの重量増がおこる。
The method of applying pressure to the dross contained in the container and squeezing out the fluid such as the metal component was proposed in order to avoid the use of flux, to eliminate the burning and consumption of the metal component, and to prevent the risk of rapid oxidation. However, when pressed, it receives a drag force from the side wall of the container, and when the depth of the container is deep, the applied pressure is dispersed and weakens, so the applied pressure is not efficiently transmitted to the inside of the dross. However, the solid matter in the dross is not sufficiently filled, and a gap is left between the solid portions of the dross accommodated therein, and fluid components such as molten metal and air remain there. In addition, this results in insufficient discharge and recovery of the metal component, and at the same time, the air left behind and the air entering through these gaps promote the oxidation of the metal even after the compression, and the concentration of the remaining metal decreases and the compression due to the oxidation occurs. The weight of the dross increases later.

【0008】上記したようなドロス中のメタル分などを
効率的に搾り出すためには衝撃的圧搾力を与えることが
該圧搾力を的確にドロス内部に作用させて効率的搾り出
しを図る上において不可欠的且つ枢要と言えるが、上記
したような衝撃的圧搾力はその衝撃が騒音発生原因とな
ることは明かで周辺生活環境を損い、近時においては公
害原因となる。従って防音装置を必要とし、また衝撃に
耐える強固な圧搾装置などを必要とする。
In order to efficiently squeeze out the metal components in the dross as described above, it is indispensable to give an impact squeezing force to the squeeze force so that the squeezing force can be accurately applied to the inside of the dross. Although it can be said that the shocking squeezing force as described above is the cause of noise, it is obvious that the shock causes noise generation, which impairs the surrounding living environment and causes pollution recently. Therefore, a soundproofing device is required, and a strong squeezing device that withstands impact is required.

【0009】[0009]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解消することについて検討を重
ね、前述したようなアルミニウムドロスに圧力を加えた
後にその印加圧力を急激に解放すると、ドロスに対する
加圧で圧搾したときに生じたドロス中粉体粒子のアーチ
が崩壊し、この崩壊状態で次に加圧した際にはドロスが
一層圧密化されてドロス中アルミニウムおよび空気など
の流動体を効率よく排除でき、しかも騒音発生が殆んど
ないという新しい知見を得て完成されたものであって、
以下の如くである。
Means for Solving the Problems The present invention has been studied to solve the problems in the prior art as described above, and when the applied pressure is rapidly released after applying the pressure to the aluminum dross as described above, The arch of the powder particles in the dross generated when compressed by pressing against the dross collapses, and the next time the pressure is applied in this collapsed state, the dross is further consolidated and fluid such as aluminum and air in the dross It was completed with the new knowledge that it can efficiently eliminate
It is as follows.

【0010】(1) アルミニウムの融点以上に保持され
たドロスを底面に網状ないしスリット状などの流動分通
過のための開口部を形成した容器内に収容し加圧板を介
して加圧コラムにより加圧・除圧してドロス中溶融アル
ミニウムや空気等の流動分を圧搾分離する処理をなすに
当り、前記加圧に際し前記加圧コラムを上記加圧板に対
し実質的に衝撃音の発生しない緩速度で接触させてから
所定加圧力まで昇圧し、除圧に際しては前記加圧コラム
を急速に離脱させる操作を繰返して行うことを特徴とす
るアルミニウムドロス圧搾処理法。
(1) A dross retained above the melting point of aluminum is housed in a container having an opening for passing a flow component such as a mesh or a slit on the bottom, and the dross is applied by a pressure column via a pressure plate. In performing the process of compressing and depressurizing the flow components such as molten aluminum and air in the dross, the pressurizing column is pressed against the pressurizing plate at the time of pressurizing at a slow speed at which substantially no impact noise is generated. An aluminum dross squeezing treatment method, characterized in that the pressure is raised to a predetermined pressure after being brought into contact with each other, and when depressurizing, the operation of rapidly releasing the pressure column is repeated.

【0011】(2) 加圧に際しドロスに印加する加圧コ
ラムが加圧板に接触する際の速度が160mm/sec 以下
であり、除圧に際して加圧コラムの戻り速度が160mm
/sec 以上であることを特徴とする前記(1)のアルミ
ニウムドロス圧搾処理法。
(2) The speed at which the pressure column applied to the dross at the time of pressure contact with the pressure plate is 160 mm / sec or less, and the return speed of the pressure column at the time of depressurization is 160 mm.
/ Sec or more, the aluminum dross squeezing method according to (1) above.

【0012】(3) アルミニウムの融点以上に保持され
たドロスを底面に網状ないしスリット状などの流動分通
過のための開口部を形成した容器内に収容し、該ドロス
を加圧板を介して加圧コラムで加圧・除圧し前記ドロス
中の溶融アルミニウムや空気等の流動分を圧搾分離する
処理をなすに当り、前記加圧コラムを実質的に上記加圧
板に接触させたままの条件下で加圧と急速な除圧を繰返
して処理することを特徴とするアルミニウムドロス圧搾
処理法。
(3) The dross retained above the melting point of aluminum is housed in a container having a mesh-shaped or slit-shaped opening for passing a flow component on the bottom surface, and the dross is applied through a pressure plate. In performing the process of pressurizing and depressurizing with a pressure column to squeeze and separate the fluid components such as molten aluminum and air in the dross, under the condition that the pressure column is substantially in contact with the pressure plate. An aluminum dross squeezing treatment method characterized by repeatedly performing pressurization and rapid depressurization.

【0013】(4) 加圧コラムを実質的に加圧板に接触
させたままの条件下における加圧が3秒以内であり、除
圧が1秒以下であることを特徴とする前記(3)のアル
ミニウムドロス圧搾処理法。
(4) The pressurizing under the condition that the pressurizing column is substantially in contact with the pressurizing plate is within 3 seconds and the depressurizing is within 1 second. Aluminum dross pressing method.

【0014】(5) 加圧板に対し下部シリンダーと上部
シリンダーをシリーズとした加圧コラムを用い、上部シ
リンダーにより常時加圧した条件下で下部シリンダーに
より加圧、除圧を繰返すことを特徴とした(1)乃至
(4)の何れか1つのアルミニウムドロス圧搾処理法。
(5) The present invention is characterized in that a pressure column having a series of a lower cylinder and an upper cylinder is used for a pressure plate, and pressure and depressurization are repeated by the lower cylinder under the condition that the upper cylinder is always pressurized. The aluminum dross pressing method according to any one of (1) to (4).

【0015】[0015]

【作用】アルミニウムの融点以上に保持されたドロスを
底面に網状ないしスリット状などの流動分通過のための
開口部を形成した容器内に収容し押板を介して加圧コラ
ムにより加圧・除圧してドロス中溶融アルミニウムや空
気等の流動分を圧搾分離する処理をなすに当り、前記加
圧に際し加圧コラムを上記押板に対し実質的に衝撃音の
発生しない緩速度で接触させてから所定加圧力まで昇圧
することにより衝撃騒音の発生しない条件下においてド
ロスに対する圧搾をなし、アルミニウムメタルおよび空
気のような流動成分の分離を行わしめる。
[Function] The dross retained above the melting point of aluminum is housed in a container having an opening for passing a flow component such as a mesh or a slit on the bottom surface, and is pressurized / removed by a pressure column via a pressure plate. In performing the process of compressing and separating the fluid component such as molten aluminum and air in the dross by pressing, the pressing column is brought into contact with the pressing plate at a slow speed at which substantially no impact noise is generated during the pressing. By increasing the pressure to a predetermined pressure, dross is squeezed under the condition that impact noise is not generated, and fluid components such as aluminum metal and air are separated.

【0016】上記圧搾後の除圧に際しては前記加圧コラ
ムを急速に離脱させる操作をなすことにより圧搾時に印
加した圧力が急激に解放され、ドロス圧搾時に生じたド
ロス中のアーチを崩壊し、次の加圧時におけるドロスの
圧密化とドロス中アルミニウムおよび空気などの流動成
分に対する効率的分離を図らしめる。
In depressurizing after the pressing, the pressure column is rapidly released so that the pressure applied during pressing is rapidly released, and the arch in the dross generated during dross pressing collapses. It is intended to consolidate the dross during pressurization and efficiently separate fluid components such as aluminum and air in the dross.

【0017】即ち上記のような昇圧と除圧を繰返して行
うことによりアルミニウムおよび空気の好ましい分離を
達成しアルミニウムの回収を向上し、しかもドロス中に
おけるアルミニウムの酸化を適切に抑制してアルミニウ
ム含有率の高いドロスを衝撃騒音の少い条件下で円滑に
行わしめる。
That is, by repeating the pressurization and depressurization as described above, a preferable separation of aluminum and air is achieved, the recovery of aluminum is improved, and further, the oxidation of aluminum in the dross is appropriately suppressed, and the aluminum content rate is increased. High dross can be performed smoothly under the condition of low impact noise.

【0018】加圧に際しドロスに印加する加圧コラムが
押板に接触する際の速度が160mm/sec 以下であり、
除圧に際して加圧コラムの戻り速度が160mm/sec 以
上であることよって上記したような有利なアルミニウム
ドロスの圧搾処理を円滑に行わしめる。より好ましい押
板接触時の速度は140mm/sec 以下で、加圧コラムの
戻り速度は200mm/sec 以上である。
The speed at which the pressurizing column applied to the dross when pressurizing contacts the press plate is 160 mm / sec or less,
Since the return speed of the pressure column is 160 mm / sec or more during depressurization, the above-described advantageous aluminum dross squeezing process can be smoothly performed. The more preferable speed at the time of contact with the pressing plate is 140 mm / sec or less, and the return speed of the pressure column is 200 mm / sec or more.

【0019】アルミニウムの融点以上に保持されたドロ
スを底面に網状ないしスリット状開口部を形成した容器
内に収容し、該ドロスを押板を介して加圧コラムで加
圧、除圧し前記ドロス中の溶融アルミニウムや空気等の
流動分を圧搾分離する処理をなすに当り、前記加圧コラ
ムを実質的に押板に接触させたままの条件下で加圧と急
速な除圧を繰返して処理することによって無騒音条件下
におけるアルミニウムドロスの能率的圧搾処理を的確に
実施せしめる。
The dross retained above the melting point of aluminum is housed in a container having a net-like or slit-shaped opening formed on the bottom surface, and the dross is pressurized and depressurized by a pressure column via a pressing plate. In the process of squeezing and separating a fluid component such as molten aluminum or air, the pressure column and the rapid depressurization are repeatedly performed under the condition that the pressure column is substantially in contact with the pressing plate. This allows the aluminum dross to be efficiently squeezed under noiseless conditions.

【0020】加圧コラムを実質的に押板に接触させたま
まの条件下における加圧が3秒以内であり、該加圧後の
除圧が1秒以内に行われることにより高温溶融状態のド
ロスに対する圧搾分離処理を有効且つ的確に実施し、ア
ルミニウムの回収およびドロス中アルミニウム含有率の
向上を適切に図る。
The pressurization under the condition that the pressurizing column is substantially in contact with the pressing plate is within 3 seconds, and the depressurization after the pressurization is performed within 1 second, so that the high temperature molten state is maintained. Effectively and appropriately carry out the press separation process for dross, and appropriately aim to recover aluminum and improve the aluminum content in dross.

【0021】加圧板に対し下部シリンダーと上部シリン
ダーをシリーズとした加圧コラムを用い、上部シリンダ
ーにより常時加圧した条件下で下部シリンダーにより加
圧、除圧を繰返すことによりエネルギーロスを縮減し、
除圧時における加圧力の回復を容易とすると共にバンピ
ング回数を大とする。
A pressure column in which a lower cylinder and an upper cylinder are used in series for a pressure plate, and energy loss is reduced by repeating pressure and depressurization by the lower cylinder under the condition that the upper cylinder is always pressurized.
It facilitates recovery of the applied pressure during depressurization and increases the number of bumps.

【0022】[0022]

【実施例】上記したような本発明の実施態様について更
に説明すると、本発明はアルミニウムドロスの圧搾処理
において高圧や衝撃を付加することなく溶融アルミニウ
ム液体をドロスから分離し、同時に空気等の流動体を排
除することによって搾りきれずに残されるアルミニウム
金属の酸化防止をも図らしめる処理を無騒音条件下で達
成せしめるものである。即ち炉から掻き出された高温の
ドロスは主として酸化アルミニウムからなる固体と溶融
液体アルミニウムや掻き出し時に巻込まれた空気等の流
動体の混合物であり、これを高圧で圧搾すれば流動体と
固体の分離は可能であるが、容器にドロスを受入れて圧
搾を行うと固体は固体どうしの摩擦や、容器側壁との摩
擦によってアーチングを起し、このアーチの中に閉じ込
められた溶融アルミニウムおよび空気のような流動体は
該圧搾では排除できないこととなる。このように閉じ込
められた流動体を排除するには上記アーチが破壊される
ような高圧による圧搾をなすが、アーチ崩壊を図るため
に圧搾方向の異った作用力を加えることが必要であっ
て、これは容器を振動させ、あるいは容器壁を移動させ
ることによって可能となる。
EXAMPLES The embodiments of the present invention as described above will be further explained. In the present invention, the molten aluminum liquid is separated from the dross without applying high pressure or shock in the aluminum dross squeezing treatment, and at the same time, a fluid such as air is used. By eliminating the above, it is possible to achieve a treatment for preventing the oxidation of the aluminum metal left unsqueezed under noiseless conditions. That is, the high-temperature dross scraped out of the furnace is a mixture of solids mainly consisting of aluminum oxide and a fluid such as molten liquid aluminum and air entrained at the time of scraping, and if this is squeezed under high pressure, the fluid and solids are separated. However, when dross is received in the container and squeezed, solids cause arching due to friction between solids and friction with the side wall of the container, such as molten aluminum and air trapped in this arch. The fluid cannot be eliminated by the pressing. In order to remove the fluid confined in this way, compression is performed by high pressure so that the arch is destroyed, but it is necessary to apply different acting forces in the direction of compression in order to achieve arch collapse. This is possible by vibrating the container or moving the container wall.

【0023】然し本発明においてはこのようなアーチン
グの破壊を行うための方法について検討した結果、アー
チの変形後における弾性作用によるスプリングバックを
利用してアーチを破壊することが可能であり、それによ
ってドロスを圧密し流動体が排除回収可能であることを
確認し、しかもこのような方法によるならば騒音の発生
なしにアーチングを破壊し得ることを知った。即ちアー
チングを起したドロスに圧力を加えてアーチを弾性変形
させ、その後圧力を急速に解除すると弾性変形したアー
チは元に戻ろうとし、このときの圧発作用によってアー
チが部分的に崩壊する。
However, in the present invention, as a result of studying a method for performing such arching destruction, as a result, it is possible to utilize the springback due to the elastic action after the arch is deformed to destroy the arch. It was confirmed that the dross was compacted and the fluid could be removed and recovered, and that it was possible to destroy the arching without making noise by this method. That is, when pressure is applied to the dross that causes arching to elastically deform the arch, and then the pressure is rapidly released, the elastically deformed arch tries to return to its original state, and the arching partly collapses due to the pressing action at this time.

【0024】上記除圧の際、加圧手段である加圧コラム
と、この加圧コラムによる圧力をドロスに伝達するため
の押板は離れてもよいが接触したままであっても同様の
アーチ崩壊を来し、この除圧を急激に行うことによりア
ーチ崩壊と共にアーチ下部に形成された間隙に残留する
液体金属アルミニウム、空気等の流動体は排除、回収さ
れる。これによって金属アルミニウムのドロスからの回
収と、空気が排除されることになり、搾りきれずに残さ
れたアルミニウムの酸化防止が同時に可能となる。上記
したような加圧は油圧、水圧等の液圧手段、電磁力等の
何れかによって騒音を発することなく実施することが可
能であり、液圧手段の除圧は油圧、水圧を単に弁の切替
えによる解放程度の操作によって円滑に実施できる。ま
た電磁力の加圧、除圧は電流値の増減操作によって円滑
に実施できる。
At the time of depressurizing, the pressurizing column as the pressurizing means and the push plate for transmitting the pressure by the pressurizing column to the dross may be separated, but even if they are in contact with each other, a similar arch is produced. By collapsing and rapidly depressurizing, the fluid such as liquid metal aluminum and air remaining in the gap formed in the lower part of the arch is removed and recovered as the arch collapses. As a result, metal aluminum can be recovered from the dross and air can be removed, and at the same time, it is possible to prevent oxidation of the aluminum left unsqueezed. The above-described pressurization can be performed without generating noise by any one of hydraulic means such as hydraulic pressure and water pressure, electromagnetic force, etc. It can be carried out smoothly by the operation of releasing by switching. Further, pressurization and depressurization of electromagnetic force can be smoothly performed by increasing / decreasing the current value.

【0025】具体的な実施例1として、図1に示すよう
に900mmφで高さが400mmの円筒形をなし、且つそ
の底部に図示のようなスリット状の開口部3aをもった
多孔板3を有する鉄製容器1に対し炉から掻き出された
高温のドロス2を収容し、これに押板4を載せた後、圧
搾装置15を該押板4にに10mm/sec の速度接触させ
た、次に加圧力が2MPa になるまで加圧コラム6を降下
させ、斯うして加圧力が2MPa に達した後、加圧コラム
6を200mm/sec の速度で急速に離脱させた。その
後、同様の加圧、除圧操作を繰返し、押板4の沈下変位
が実質的になくなるまで30回宛実施した。
As a specific example 1, as shown in FIG. 1, a perforated plate 3 having a cylindrical shape of 900 mmφ and a height of 400 mm and having a slit-shaped opening 3a at the bottom thereof is shown. A high temperature dross 2 scraped out from the furnace was housed in an iron container 1 of the iron container 1, a pressing plate 4 was placed on the dross 2, and the pressing device 15 was brought into contact with the pressing plate 4 at a speed of 10 mm / sec. Then, the pressure column 6 was lowered until the pressure became 2 MPa, and after the pressure reached 2 MPa, the pressure column 6 was rapidly released at a speed of 200 mm / sec. After that, the same pressurization and depressurization operations were repeated, and the pressing plate 4 was repeated 30 times until the subsidence displacement was substantially eliminated.

【0026】また、上記したところと同様に実施例2と
して前述の容器に対し同様に高温のドロスを収容し、圧
搾装置15を10mm/sec で接触させた後、加圧力が2
MPaになるまで加圧コラムを降下させた。その後加圧コ
ラムにかかる油圧のリリースバルブを瞬時に解放(0.1
sec)して加圧力を加圧コラムの重量のみとした。この操
作を押板4の沈下変位がなくなるまで30回宛実施し
た。
In the same manner as described above, as the second embodiment, the same high temperature dross was housed in the above-mentioned container and the pressing device 15 was contacted at 10 mm / sec.
The pressure column was lowered until it reached MPa. Then, the hydraulic release valve on the pressurizing column is instantly released (0.1
sec) and the applied pressure was only the weight of the pressurizing column. This operation was carried out 30 times until the subsidence displacement of the push plate 4 disappeared.

【0027】即ち、このような本発明による処理過程を
段階的に示しているのが図1の(A)〜(F)であっ
て、容器1内へのドロス収容状態は同図(A)の如くで
あり、このものに対する第1段の加圧は同図(B)の如
くである。またこのような加圧後の除圧は図1(C)の
如くであって押板4に対する圧力のみが除去されるが、
該押板4はドロス2に接触したままの状態を維持し、し
かも圧力が除去されたことによってドロス2の嵩はわず
かに多い状態に復元する。
That is, FIGS. 1 (A) to 1 (F) show the processing steps according to the present invention stepwise, and the dross accommodation state in the container 1 is shown in FIG. 1 (A). The first-stage pressurization for this is as shown in FIG. Further, the depressurization after such pressurization is as shown in FIG. 1C, and only the pressure on the pressing plate 4 is removed.
The push plate 4 maintains the state in which it remains in contact with the dross 2, and the bulk of the dross 2 is restored to a slightly large state by removing the pressure.

【0028】上記した図1の(C)のような除圧後に同
図(D)のように再加圧されるが、この加圧によってド
ロスの見掛け量は同図(B)の加圧状態より相当に少い
ものとなり、有効な圧密化が行われたことが理解され
る。更にこのような加圧による図1(D)の状態から除
圧されると同図(E)のように押し板4などが接触した
ままで再びドロスの嵩を復元することとなり、その後更
に加圧すると図1の(F)のように容器1内のドロス2
は充分に圧縮され、容器1底部のメタル量は相当に多い
ものとなる。このような加圧と除圧が繰返されることに
より、後述するような本発明の好ましい結果を的確に得
しめることができる。
After depressurizing as shown in FIG. 1 (C), the pressure is re-pressurized as shown in FIG. 1 (D). The apparent amount of dross is increased by this pressurization as shown in FIG. 1 (B). It is understood that there was much less and effective consolidation. Further, when the pressure is released from the state of FIG. 1D by such pressurization, the bulk of the dross is restored again with the pressing plate 4 and the like being in contact as shown in FIG. When pressed, the dross 2 in the container 1 as shown in FIG.
Is sufficiently compressed, and the amount of metal at the bottom of the container 1 becomes considerably large. By repeating such pressurization and depressurization, the preferable results of the present invention, which will be described later, can be accurately obtained.

【0029】なお上記したような本発明による加圧ない
し除圧の繰返しは単一シリンダーによって行ってもよい
が、好ましい態様としては別に図2として示したように
油圧配管13を有する上部シリンダー11と配管14を
有する下部シリンダー12とを用いた機構とすることが
シリンダー径が大きく、しかもストロークの長い場合に
おいて有利である。即ちバンピング専用の短かいストロ
ークのシリンダー12をシリーズとして採用したもの
で、エネルギーロス、除圧時における加圧力の回復およ
びバンピング回数の何れにおいても有利な操業をなすこ
とができる。
The above-described pressurization or depressurization according to the present invention may be repeated by a single cylinder, but in a preferred embodiment, an upper cylinder 11 having a hydraulic pipe 13 is separately provided as shown in FIG. A mechanism using the lower cylinder 12 having the pipe 14 is advantageous when the cylinder diameter is large and the stroke is long. That is, the cylinder 12 having a short stroke dedicated to bumping is adopted as a series, and it is possible to perform an advantageous operation in any of energy loss, recovery of the pressing force at the time of depressurization, and the number of times of bumping.

【0030】この図2のものの作動方法は上部シリンダ
ー11によって常時加圧し、または加圧しながら定位置
を保持し、下部シリンダー12によって押しつけ、開放
の繰返しをなすもので、繰返しスピードを0.5Hzとし、
電磁弁は大油量タイプとし、ON切替時間を0.7sec 、
加圧時間0.6sec 、OFF切替時間を0.7sec (切替0.
7sec の内最初の0.2〜0.3sec で減圧完了)のような
能率的な条件で円滑に操作することができ、減圧したと
きの瞬時におけるスピードが振動的作用の枢要条件とな
り、300トンの上部シリンダー11を常時加圧してい
ても遅れが発生し、振動的作用力を有効に得しめること
ができることを確認した。
The operating method of the one shown in FIG. 2 is such that the upper cylinder 11 constantly pressurizes or maintains a fixed position while pressurizing and presses it by the lower cylinder 12 to repeatedly open it, and the repeating speed is 0.5 Hz. ,
The solenoid valve is a large oil quantity type and the ON switching time is 0.7 sec.
Pressurization time is 0.6sec, OFF switching time is 0.7sec.
It is possible to operate smoothly under efficient conditions such as decompression in the first 0.2-0.3 sec of 7 sec), and the instantaneous speed when decompressing becomes the key condition for vibrational action, 300 tons. It was confirmed that even if the upper cylinder 11 was constantly pressurized, a delay occurred, and the vibrating action force could be effectively obtained.

【0031】然して上記したような本発明による実施例
に対し比較例として、上記したところと同様の容器1に
対し、同様のドロス2を収容し加圧力が2MPa になるま
で加圧し、3分静圧状態とした。また同じく別の比較例
として、同様の容器1に同じくドロス2を収容し、加圧
力が2MPa になるまで加圧し、そのままその位置で加圧
コラム6をロックして3秒保持した後、再度加圧するこ
とを30回繰返した(休止加圧繰返し)。
As a comparative example to the above-described embodiment of the present invention, however, the same dross 2 is housed in the same container 1 as described above, and the pressure is increased to 2 MPa, and the static pressure is maintained for 3 minutes. The pressure was set. Also, as another comparative example, the same dross 2 was housed in the same container 1, pressurized until the pressure became 2 MPa, the pressure column 6 was locked at that position for 3 seconds, and then the pressure was applied again. The pressing was repeated 30 times (resting press repeat).

【0032】上記したような本発明よる加圧と除圧を繰
返した実施例および単に加圧したもの、加圧後除圧する
ことなく休止し加圧を繰返した各比較例によって得られ
た処理前ドロスの状態および回収メタルと残された処理
後ドロスの結果を要約して示すと次の表1に示す如くで
ある。
Pretreatments obtained by the above-mentioned examples of repeated pressurization and depressurization according to the present invention, those of simply pressurizing, and the comparative examples in which pressurization and resting without pressurization were repeated after pressurization. Table 1 below summarizes the state of the dross, the recovered metal, and the results of the remaining dross after the treatment.

【0033】[0033]

【表1】 [Table 1]

【0034】即ち比較例のように単純に加圧したドロ
ス、および加圧と休止の繰返しによるものでは処理後ド
ロスの嵩比重が2g/cm3 より相当に低いもので、圧密
が充分に行われておらず、また固化後のドロス酸化(ド
ロス中アルミニウムの酸化)が進行してこの処理後ドロ
ス重量が69〜77kgと70kgレベル以上に増加してい
る。このような現象はドロスの圧密が充分に行われない
ため固化ドロス中に残留する空気や微細間隙を通過する
空気による酸化で金属アルミニウムが燃焼を継続するた
めであり、そのような燃焼ロスにより固化後ドロスの重
量増加は11〜16%と10%を超え、またこの固化後
ドロスにおける金属アルミニウム%も25〜36%と相
当に低い。このような比較例のものに対して本発明によ
る実施例のものは加圧除圧を繰返して圧搾したもので固
化したドロスは充分に圧密化されて嵩比重が2g/cm3
以上と高く、酸化の程度も少くてAl%は51%と相当に
高く、ドロスの重量増加は4%と僅かであって、利用価
値の高いものであることが確認された。
That is, in the case of the dross simply pressed as in the comparative example, and the repetition of pressurization and rest, the bulk specific gravity of the dross after the treatment was considerably lower than 2 g / cm 3 , and the consolidation was sufficiently performed. Moreover, the dross oxidation after solidification (oxidation of aluminum in the dross) progressed, and the dross weight after this treatment increased to 69 to 77 kg, which was above the 70 kg level. This phenomenon is because the dross is not sufficiently consolidated, and the metal aluminum continues to burn due to oxidation by the air remaining in the solidified dross or the air passing through the fine gaps. The weight increase of the post-dross is 11 to 16%, which exceeds 10%, and the metal aluminum% in the post-solidification dross is considerably low, 25 to 36%. In contrast to the comparative example, the example according to the present invention was squeezed by repeating pressure decompression, and the solidified dross was sufficiently consolidated to have a bulk specific gravity of 2 g / cm 3.
It was confirmed that the utility value was high because the degree of oxidation was low, the degree of oxidation was small, Al% was 51%, and the weight increase of dross was 4%.

【0035】[0035]

【発明の効果】以上説明したような本発明によるときは
簡易な容器内収容ドロスに対する特定の圧搾操作によっ
てAl回収量およびAl回収率を適切に維持した条件下でメ
タル回収後のドロスの品質、性状を良好とし、その利用
を有利に図らしめることができると共に騒音発生の少い
環境的に好ましい作業条件下において的確な処理を実施
し得るものであるから工業的にその効果の大きい発明で
ある。
According to the present invention as described above, the quality of the dross after metal recovery under the condition that the Al recovery amount and the Al recovery rate are appropriately maintained by a specific pressing operation for a simple container dross, It is an invention that has a great effect industrially because it has good properties and can be advantageously used, and it can perform appropriate treatment under environmentally favorable working conditions with less noise generation. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による圧搾処理過程を段階的に示した説
明図である。
FIG. 1 is an explanatory view showing stepwise a pressing process according to the present invention.

【図2】本発明による圧搾処理機構の好ましい態様を示
した説明図である。
FIG. 2 is an explanatory view showing a preferred embodiment of the compression processing mechanism according to the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 ドロス 3 多孔板 3a 多孔板の開口部 4 押板 6 加圧コラム 11 上部シリンダー 12 下部シリンダー 13 油圧配管 14 油圧配管 15 圧搾装置 1 Container 2 Dross 3 Perforated Plate 3a Perforated Plate Opening 4 Push Plate 6 Pressurizing Column 11 Upper Cylinder 12 Lower Cylinder 13 Hydraulic Piping 14 Hydraulic Piping 15 Compressor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南波 正敏 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 (72)発明者 林 邦雄 富山県高岡市江尻351番地 北興株式会社 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Nanba 3-13-12 Mita, Minato-ku, Tokyo Within Japan Light Metal Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムの融点以上に保持されたド
ロスを底面に網状ないしスリット状などの流動分通過の
ための開口部を形成した容器内に収容し加圧板を介して
加圧コラムにより加圧・除圧してドロス中溶融アルミニ
ウムや空気等の流動分を圧搾分離する処理をなすに当
り、前記加圧に際し前記加圧コラムを上記加圧板に対し
実質的に衝撃音の発生しない緩速度で接触させてから所
定加圧力まで昇圧し、除圧に際しては前記加圧コラムを
急速に離脱させる操作を繰返して行うことを特徴とする
アルミニウムドロス圧搾処理法。
1. A dross held at a temperature equal to or higher than the melting point of aluminum is housed in a container having a mesh-shaped or slit-shaped opening for passage of a flow component on the bottom, and is pressurized by a pressure column via a pressure plate.・ When performing depressurization to squeeze and separate the fluid components such as molten aluminum and air in the dross, the pressurizing column is brought into contact with the pressurizing plate at a slow speed at which substantially no impact noise is generated during the pressurizing. An aluminum dross squeezing treatment method, characterized in that the pressure is increased to a predetermined pressure after the pressure is applied, and the depressurization column is rapidly released during repeated depressurization.
【請求項2】 加圧に際しドロスに印加する加圧コラム
が加圧板に接触する際の速度が160mm/sec 以下であ
り、除圧に際して加圧コラムの戻り速度が160mm/se
c 以上であることを特徴とする請求項1に記載のアルミ
ニウムドロス圧搾処理法。
2. The speed at which the pressure column applied to the dross at the time of pressure contact with the pressure plate is 160 mm / sec or less, and the return speed of the pressure column at the time of depressurization is 160 mm / se.
The aluminum dross pressing method according to claim 1, wherein the aluminum dross pressing method is not less than c.
【請求項3】 アルミニウムの融点以上に保持されたド
ロスを底面に網状ないしスリット状などの流動分通過の
ための開口部を形成した容器内に収容し、該ドロスを加
圧板を介して加圧コラムで加圧・除圧し前記ドロス中の
溶融アルミニウムや空気等の流動分を圧搾分離する処理
をなすに当り、前記加圧コラムを実質的に上記加圧板に
接触させたままの条件下で加圧と急速な除圧を繰返して
処理することを特徴とするアルミニウムドロス圧搾処理
法。
3. A dross held at a temperature equal to or higher than the melting point of aluminum is housed in a container having a mesh-shaped or slit-shaped opening for passing a flow component on the bottom surface, and the dross is pressed through a pressure plate. In performing the process of pressurizing and depressurizing with a column to squeeze and separate the fluid components such as molten aluminum and air in the dross, the pressurizing column is applied under the condition of being substantially in contact with the pressurizing plate. An aluminum dross squeezing treatment method characterized by repeatedly treating pressure and rapid depressurization.
【請求項4】 加圧コラムを実質的に加圧板に接触させ
たままの条件下における加圧が3秒以内であり、除圧が
1秒以下であることを特徴とする請求項3に記載のアル
ミニウムドロス圧搾処理法。
4. The pressurization under the condition that the pressurizing column is substantially in contact with the pressurizing plate is within 3 seconds, and the depressurizing is within 1 second or less. Aluminum dross pressing method.
【請求項5】 加圧板に対し下部シリンダーと上部シリ
ンダーをシリーズとした加圧コラムを用い、上部シリン
ダーにより常時加圧した条件下で下部シリンダーにより
加圧、除圧を繰返すことを特徴とした請求項1乃至4の
何れか1つに記載のアルミニウムドロス圧搾処理法。
5. A pressure column comprising a series of a lower cylinder and an upper cylinder for a pressure plate, wherein the lower cylinder repeatedly pressurizes and depressurizes under the condition that the upper cylinder constantly pressurizes. Item 5. The aluminum dross pressing method according to any one of Items 1 to 4.
JP14415295A 1995-05-19 1995-05-19 Compression treatment of aluminum dross Pending JPH08309110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14415295A JPH08309110A (en) 1995-05-19 1995-05-19 Compression treatment of aluminum dross

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14415295A JPH08309110A (en) 1995-05-19 1995-05-19 Compression treatment of aluminum dross

Publications (1)

Publication Number Publication Date
JPH08309110A true JPH08309110A (en) 1996-11-26

Family

ID=15355428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14415295A Pending JPH08309110A (en) 1995-05-19 1995-05-19 Compression treatment of aluminum dross

Country Status (1)

Country Link
JP (1) JPH08309110A (en)

Similar Documents

Publication Publication Date Title
US4057232A (en) Press for separating molten metal from dross
KR100624295B1 (en) Briquette as material for steel making and method for production thereof
CA2579528A1 (en) Method for hydrocracking of petroleum heavy oil
JPH08309110A (en) Compression treatment of aluminum dross
JP2004337972A (en) Method for solidifying grinding or polishing waste and grinding or polishing waste briquette, and solidifying apparatus
JP3009123B2 (en) Aluminum dross recovery processing method and apparatus, and aluminum dross lump or steel processing agent
JP5417933B2 (en) Method for processing oil-containing granular materials
JP3001080B2 (en) Aluminum dross recovery processing method and apparatus, and aluminum dross lump
JP3058310B2 (en) Aluminum dross squeezing method
US20130220946A1 (en) Foam drive system and method for dewatering filter cake
JP5144354B2 (en) Ultrasonic cleaning equipment for incineration ash
US5347069A (en) Treating oily wastes
US4159907A (en) Method for melting aluminum scraps
CA2821953A1 (en) Method and apparatus for de-oiling magnetic solid waste
CN214276268U (en) Fine sand cooling equipment
US4775387A (en) Sulfur removal and comminution of carbonaceous material
NL9201725A (en) Method for the separation of household and similar waste
US20050087040A1 (en) Method for recycling metals from swarf
US3414408A (en) Briquetting process
UA81795C2 (en) Method of extraction of aluminum by pressing of hot slag
Blumenschein et al. Walnut shell filtration for oil and solids removal from steel mill recycle systems
JP3259002B2 (en) Aluminum dross processing method and apparatus and additive for steelmaking
JPH0833998A (en) Impact imparting device and aluminum dross recovering and treating device
CN213950923U (en) Preliminary separation device for fluidized oil sludge
JPS5950996A (en) Treatment of metallic scrap