JPH08307009A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH08307009A
JPH08307009A JP8145796A JP8145796A JPH08307009A JP H08307009 A JPH08307009 A JP H08307009A JP 8145796 A JP8145796 A JP 8145796A JP 8145796 A JP8145796 A JP 8145796A JP H08307009 A JPH08307009 A JP H08307009A
Authority
JP
Japan
Prior art keywords
layer
face
resonator
gaas
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8145796A
Other languages
Japanese (ja)
Other versions
JP3075512B2 (en
Inventor
Shusuke Kasai
秀典 河西
Hiroshi Hayashi
寛 林
Taiji Morimoto
泰司 森本
Shinji Kaneiwa
進治 兼岩
Masahiro Yamaguchi
雅広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP08081457A priority Critical patent/JP3075512B2/en
Publication of JPH08307009A publication Critical patent/JPH08307009A/en
Application granted granted Critical
Publication of JP3075512B2 publication Critical patent/JP3075512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To prevent temperature elevation at a laser end face caused by light absorption at both channel ends near a resonator end face, by so providing a gap width of a through gap as stripe light guide passages based on effective refraction index differences to be made on an active layer and by enlarging the gap width near the portion of at least one end face of the resonator. CONSTITUTION: After an n-GaAs electric current blocking layer 12 is pile on a p-GaAs substrate 11 by the liquid phase epitaxial growth method, a gap with a width W2 =10μm near an end face and W1 =4μm at the center of a resonator is formed by a prior art photo-lithographic technique and an etching one. After that a p-AlGsAs clad layer 13, a p- or n-AlGaAs active layer 14, a p-AlGsAs clad layer 15 and an n-GaAs contact layer 16 are all made to be grown by the liquid phase epitaxial growth method. After that, full-face resistance electrodes are attached to both sides of a wafer alloyed, and cleaved at the portion with a wide stripe width, so that a resonator is prepared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光ディス
クなどの情報映像分野における光源等として利用される
もので、高出力で安定な半導体レーザ素子の新しい構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of a high-power and stable semiconductor laser device which is used as a light source or the like in the field of information video such as optical communication and optical discs.

【0002】[0002]

【従来の技術】光ディスク装置等の光源として半導体レ
ーザは幅広く使用されてきているが、書き込みの可能な
追記型ディスクや消去も可能な書き換え可能型光ディス
クの光源として用いるためには20〜40mWという高
い光出力が必要とされる。現在比較的高出力の半導体レ
ーザが実用化されているが半導体レーザの信頼性を同一
構造の素子で比較した場合光出力の4乗に反比例するこ
とが報告されており、高出力化は極めて難しいと考えら
れる。
2. Description of the Related Art Semiconductor lasers have been widely used as a light source for optical disk devices and the like, but are as high as 20 to 40 mW for use as a light source for a writable write-once disk or an erasable rewritable optical disk. Light output is required. Currently, relatively high-power semiconductor lasers have been put to practical use, but it has been reported that the reliability of semiconductor lasers is inversely proportional to the fourth power of the optical output when compared with elements having the same structure, and it is extremely difficult to achieve high output. it is conceivable that.

【0003】高出力半導体レーザの劣化の要因の1つに
光出射端面の劣化があることはよく知られている。図9
に従来の半導体レーザの構造図の一例を示す。
It is well known that one of the causes of deterioration of high-power semiconductor lasers is deterioration of the light emitting end face. Figure 9
An example of the structure of a conventional semiconductor laser is shown in FIG.

【0004】この構造はVSIS(V-channeled Substr
ate Inner Stripe)レーザと呼ばれるものである。
This structure is called VSIS (V-channeled Substr
ate Inner Stripe) is called a laser.

【0005】この従来の構造では、p−GaAs基板1
1上に電流を遮断するためのn−GaAs電流ブロッキ
ング層12が堆積された後、GaAs基板に到達するV
型溝が形成される。その上にp−GaAlAsクラッド
層13、GaAs又はGaAlAs活性層14、n−G
aAlAsクラッド層15、n−GaAsキャップ層1
6が順次堆積されている。この場合レーザ発振のための
電流はn−GaAs層12によって閉じ込められ幅W1
のチャネル部のみに流れる。活性層14は平坦に形成さ
れているが、チャネル両側でのn−GaAs層12への
光吸収により実効屈折率が下がるため光導波路が形成さ
れ、基本横モード発振が安定して得られている。即ち、
損失導波機構の要素を有している。
In this conventional structure, the p-GaAs substrate 1 is used.
V which reaches the GaAs substrate after the n-GaAs current blocking layer 12 for blocking the current is deposited on the substrate 1.
A mold groove is formed. P-GaAlAs clad layer 13, GaAs or GaAlAs active layer 14, n-G
aAlAs clad layer 15, n-GaAs cap layer 1
6 are sequentially deposited. In this case, the current for laser oscillation is confined by the n-GaAs layer 12 and has a width W 1
Flows only in the channel part of. Although the active layer 14 is formed flat, an optical waveguide is formed because the effective refractive index is lowered by the absorption of light into the n-GaAs layer 12 on both sides of the channel, and a fundamental transverse mode oscillation is stably obtained. . That is,
It has an element of a loss guiding mechanism.

【0006】上記VSISレーザは、安定した基本横モ
ード発振が得られ低光出力レベルでは高い信頼性を有す
るが高出力レベルになると信頼性は大きく低下し長時間
の使用に耐えないという欠点があった。
[0006] The VSIS laser has a drawback that stable fundamental transverse mode oscillation is obtained and has high reliability at a low optical output level, but at a high output level, the reliability is greatly deteriorated and it cannot be used for a long time. It was

【0007】[0007]

【発明が解決しようとする課題】上述の劣化原因を詳し
く調べてみると、素子の劣化は端面V溝肩部の劣化に起
因しており、V溝肩部のn−GaAs層12の光吸収に
よる発熱が大きな原因であることが明らかになった。
When the cause of the above deterioration is examined in detail, the deterioration of the device is caused by the deterioration of the end surface V-groove shoulder portion, and the light absorption of the n-GaAs layer 12 in the V groove shoulder portion. It became clear that the fever caused by is a major cause.

【0008】即ち、従来の損失導波機構の要素を有する
半導体レーザ素子においては、特に共振器端面部近傍の
チャネル両側での光吸収によりレーザ端面部の温度が上
昇し高出力状態では、この温度上昇が端面劣化を引き起
こすことになり、高出力状態での信頼性を低下させてい
た。
That is, in the conventional semiconductor laser device having the element of the loss guiding mechanism, the temperature of the laser end face portion rises due to the light absorption on both sides of the channel in the vicinity of the end face portion of the resonator, and this temperature is increased in the high output state. The rise causes deterioration of the end face, which lowers the reliability in the high output state.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、基板上方に積層された、均一な厚さを有する平板状
の活性層と、ストライプ状の貫通溝を有する光吸収層
と、を有し、該光吸収層による光吸収により該活性層に
実効屈折率差に基づくストライプ状の光導波路が形成さ
れるように該貫通溝の溝幅が設定され、かつ、該溝幅が
共振器の少なくとも一方の端面近傍部分で拡大されてい
ることを特徴とするものである。
According to a first aspect of the present invention, there is provided a flat plate-shaped active layer having a uniform thickness, which is laminated above a substrate, and a light absorption layer having stripe-shaped through grooves. And the groove width of the through groove is set so that a stripe-shaped optical waveguide based on the effective refractive index difference is formed in the active layer by light absorption by the light absorption layer, and the groove width resonates. It is characterized in that it is enlarged in a portion near at least one end face of the container.

【0010】以上の本発明の半導体素子は、少なくとも
一方のレーザ共振器端面部近傍において、チャネル幅を
中央に比べて広く形成することにより、端面での光の吸
収を抑え、発熱を可及的に抑制させるように構成されて
いる。それゆえに、本発明の主たる目的は半導体レーザ
端面での劣化を抑え、高出力状態でも安定に動作する半
導体レーザ素子を提供することにある。
In the above semiconductor device of the present invention, by forming the channel width in the vicinity of at least one of the end faces of the laser resonator to be wider than that in the center, absorption of light at the end face is suppressed and heat is generated as much as possible. Is configured to be suppressed. Therefore, a main object of the present invention is to provide a semiconductor laser device which suppresses deterioration at the end face of the semiconductor laser and operates stably even in a high output state.

【0011】本発明に係る半導体レーザ素子はレーザの
共振器端面部の構造を従来のものと変えることによって
端面部の温度上昇が小さくなり、そのため劣化が抑制さ
れ、高出力状態でも高い信頼性を有し、かつ安定な基本
横モード発振が得られる。
In the semiconductor laser device according to the present invention, by changing the structure of the end facet of the laser cavity from the conventional one, the temperature rise at the end facet is reduced, so that deterioration is suppressed and high reliability is maintained even in a high output state. A fundamental transverse mode oscillation having and stable is obtained.

【0012】[0012]

【発明の実施の形態】図1は本発明の1実施例を示す半
導体レーザ素子を模式的に分解して示す斜視図であり、
共振方向に沿って配置される端面部A,Cと中央部Bか
ら構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view schematically showing an exploded semiconductor laser device according to an embodiment of the present invention.
It is composed of end face portions A and C and a central portion B arranged along the resonance direction.

【0013】図2は本実施例のチャネル形成状態を模式
的に示したものである。
FIG. 2 schematically shows the channel formation state of this embodiment.

【0014】以下、本実施例の作製手順について詳細に
延べる。
The manufacturing procedure of this embodiment will be described in detail below.

【0015】まず、p−GaAs基板11上に液相エピ
タキシャル成長法によりn−GaAs電流ブロッキング
層12を約0.7μm厚に堆積させた後、通常のホトリ
ソグラフィー技術とエッチング技術により図1に示すよ
うな端面近傍で幅W2=10μm共振器中央部で幅W1
4μm、深さ1μmの溝を形成する。n−GaAs電流
ブロッキング層12の成長方法としては他に気相成長法
等を用いてもよい。
First, an n-GaAs current blocking layer 12 is deposited to a thickness of about 0.7 μm on a p-GaAs substrate 11 by a liquid phase epitaxial growth method, and then as shown in FIG. 1 by a normal photolithography technique and an etching technique. Near the end face W 2 = 10 μm Width at the center of the resonator W 1 =
A groove having a depth of 4 μm and a depth of 1 μm is formed. As a method for growing the n-GaAs current blocking layer 12, a vapor phase growth method or the like may be used.

【0016】その後、液相エピタキシャル成長法を用い
て、図1に示すようなp−Al0.42Ga0.58Asクラッ
ド層13を溝外側部で0.15μm厚にpまたはn−A
0.14Ga0.86As活性層14を0.08μm厚に、さ
らにn−Al0.42Ga0.58Asクラッド層15を0.8
μm厚にn−GaAs−コンタクト層16を1.5μm
厚にそれぞれ成長させる。液相エピタキシャル成長法に
おいては陥没部を平坦化するように成長が行われるため
p−Al0.42Ga0.58Asクラッド層13の成長後は成
長表面は平坦であり続いて成長されるAl0.14Ga0.86
As活性層14も全面で平坦かつ均一な厚さに成長させ
ることができる。
Thereafter, a p-Al 0.42 Ga 0.58 As clad layer 13 as shown in FIG. 1 is formed on the outer side of the groove to a p- or n-A thickness of 0.15 μm by liquid phase epitaxial growth.
l 0.14 Ga 0.86 As active layer 14 having a thickness of 0.08 μm, and n-Al 0.42 Ga 0.58 As clad layer 15 having a thickness of 0.8
n-GaAs-contact layer 16 is 1.5 μm thick
Grow each thick. In the liquid phase epitaxial growth method, since the growth is performed so as to flatten the depressed portion, the growth surface is flat after the growth of the p-Al 0.42 Ga 0.58 As clad layer 13 and Al 0.14 Ga 0.86 which is subsequently grown.
The As active layer 14 can also be grown over the entire surface to have a flat and uniform thickness.

【0017】その後、ウェハの両面に抵抗性全面電極を
つけ、合金化処理を行った後、ストライプ幅が広い領域
で劈開を行い共振器を形成する。本実施例においてはレ
ーザ共振器長は250μm、ストライプ幅が広い領域は
両端面に各々10μmとしている。
After that, resistive full-surface electrodes are attached to both surfaces of the wafer, alloying treatment is performed, and then cleavage is performed in a region where the stripe width is wide to form a resonator. In this embodiment, the laser cavity length is 250 μm, and the regions with wide stripe widths are 10 μm on both end faces.

【0018】従って、半導体レーザの両端面のn−Ga
As電流ブロッキング層12による光吸収がなく、端面
の温度上昇が抑えられ、高い信頼性を示し、出射側端面
4%裏面側97%の反射率のコーティングを施したとこ
ろ80mWの高光出力状態でも殆ど無劣化の特性を示し
た。
Therefore, n-Ga on both end faces of the semiconductor laser is
There is no light absorption by the As current blocking layer 12, the temperature rise of the end face is suppressed, and high reliability is exhibited. When a coating with a reflectance of 4% on the emission side end face and 97% on the back side is applied, even at a high light output state of 80 mW It showed no deterioration characteristics.

【0019】本実施例においては幅広チャネル部の長さ
を両端に10μmとしたが、この長さが30μm以内で
あると、共振器中央部で導波されてきた光は幅広チャネ
ル部で完全にはモード変形されず、安定な横モード特性
を示す。また幅広チャネル部を出射側端面部のみに形成
した場合でも効果は発揮される。
In the present embodiment, the length of the wide channel portion was set to 10 μm at both ends, but if the length is within 30 μm, the light guided in the central portion of the resonator will be completely in the wide channel portion. Does not undergo mode deformation and exhibits stable transverse mode characteristics. Further, the effect is exhibited even when the wide channel portion is formed only on the emitting side end face portion.

【0020】図3は、本発明の他の実施例を示す半導体
レーザ素子を模式的に分解した斜視図である。本実施例
共振器端面近傍のチャネル幅が基板の側壁面まで広げた
1実施例である。
FIG. 3 is a schematic exploded perspective view of a semiconductor laser device showing another embodiment of the present invention. This example is one example in which the channel width in the vicinity of the end face of the resonator is widened to the side wall face of the substrate.

【0021】以下にこの実施例の作製手順について図4
に沿って説明する。
The manufacturing procedure of this embodiment will be described below with reference to FIG.
It is explained along.

【0022】まず、p−GaAs基板11上にn−Ga
As電流ブロッキング層12を図4(a)のように約
0.7μm厚に堆積させる。その後、スパッタ法により
0.3μm厚のSiO2膜31を形成し、それをマスク
としてレーザ共振器の両端面となる部分の長さを10μ
mにわたり0.8μmの深さの溝を形成する。これが図
4(b)の状態である。その後、前記SiO2膜をその
ままマスクとして用いて有機金属熱分解法(MOCVD
法)を用いてp−Al0.42Ga0.58As層32を0.8
μm厚に、さらに後の成長を円滑にするためのアンドー
プGaAsエッチバック層33を0.05μm厚に堆積
させる(図4(c))。この状態でn−GaAs電流ブ
ロッキング層12とp−Al0.42Ga0.58As層32の
表面の高さは整って一致している。次にSiO2膜31
をエッチングにより除去した後、図4(e)に示すよう
なp−GaAs基板11に達するV型溝を幅W1=4μ
m、深さ1μmに形成する。その後、従来のVSISレ
ーザの成長方法と同じように液相成長を用いてp−Al
0.42Ga0.58Asクラッド層13を溝外側部で0.15
μm厚に、p又はn−Al0.14Ga0.86As活性層14
を0.08μm厚に、n−Al0.42Ga0.58Asクラッ
ド層15を0.8μm厚に、n−GaAsコンタクト層
16を1.5μm厚にそれぞれ成長させる。液相エピタ
キシャル成長法においては陥没部を平坦化するように成
長が行われるため、p−Al0.42Ga0.58Asクラッド
層13の成長後は成長表面は平坦であり、続いて成長さ
れるAl0.14Ga0.86As活性層14も全面で平坦かつ
均一に成長させることができる。
First, n-Ga is formed on the p-GaAs substrate 11.
The As current blocking layer 12 is deposited to a thickness of about 0.7 μm as shown in FIG. After that, a SiO 2 film 31 having a thickness of 0.3 μm is formed by a sputtering method, and using this as a mask, the length of the both end faces of the laser resonator is 10 μm.
A groove having a depth of 0.8 μm is formed over m. This is the state shown in FIG. Then, using the SiO 2 film as a mask as it is, a metal organic thermal decomposition method (MOCVD method) is used.
Method) is used to set the p-Al 0.42 Ga 0.58 As layer 32 to 0.8
An undoped GaAs etch-back layer 33 is deposited to a thickness of .mu.m and a thickness of 0.05 .mu.m for smoothing the subsequent growth (FIG. 4C). In this state, the heights of the surfaces of the n-GaAs current blocking layer 12 and the p-Al 0.42 Ga 0.58 As layer 32 are arranged and matched. Next, the SiO 2 film 31
Of the V-shaped groove reaching the p-GaAs substrate 11 as shown in FIG. 4 (e) with a width W 1 = 4 μm.
m and the depth is 1 μm. After that, p-Al is formed by liquid phase epitaxy as in the conventional VSIS laser growth method.
0.42 Ga 0.58 As Cladding layer 13 is formed on the outside of the groove by 0.15
p or n-Al 0.14 Ga 0.86 As active layer 14 with a thickness of μm
To a thickness of 0.08 μm, an n-Al 0.42 Ga 0.58 As clad layer 15 to a thickness of 0.8 μm, and an n-GaAs contact layer 16 to a thickness of 1.5 μm. In the liquid phase epitaxial growth method, since the growth is performed so as to flatten the depressed portion, the growth surface is flat after the growth of the p-Al 0.42 Ga 0.58 As cladding layer 13, and Al 0.14 Ga 0.86 which is subsequently grown. The As active layer 14 can also be grown flat and even over the entire surface.

【0023】また、アンドープGaAsエッチバック層
33はp−Al0.42Ga0.58As層32の酸化を有効に
防ぎ、液相成長時にはエッチバックにより消失するため
共振器端面部はp−クラッド層が0.95μm厚に一様
に形成されたことになり、この部分での光の吸収は存在
しない。その後ウェハの両面に抵抗性全面電極をつけ、
合金化処理を行った後、n−GaAs電流ブロッキング
層12の存在しない部分で劈開を行い共振器を形成す
る。
Further, the undoped GaAs etch-back layer 33 effectively prevents the oxidation of the p-Al 0.42 Ga 0.58 As layer 32, and disappears by etchback during liquid phase growth. This means that the film is uniformly formed to have a thickness of 95 μm, and there is no light absorption at this portion. Then attach resistive full-scale electrodes on both sides of the wafer,
After the alloying process is performed, cleavage is performed at a portion where the n-GaAs current blocking layer 12 does not exist to form a resonator.

【0024】このレーザは両端面部での光吸収がなく端
面の温度上昇が抑えられ高い信頼性を示し出射側端面4
%裏面側97%の反射率のコーティングを施したところ
80mWの高出力状態でも殆ど無劣化の特性を示した。
This laser does not absorb light on both end faces and suppresses the temperature rise of the end faces, thus showing high reliability and showing the emission side end face 4
When a coating having a reflectance of 97% on the rear surface side was applied, almost no deterioration was exhibited even in a high output state of 80 mW.

【0025】本実施例では端面のn−GaAs電流ブロ
ッキング層12の存在しない部分の長さを共振器両端に
10μmずつとしたが、この長さが30μm以内であれ
ば共振器中央部で導波されてきた光は端面部においても
モード変形されず、安定な横モード特性を示す。また、
このn−GaAs電流ブロッキング層12の存在しない
部分を出射側端面部のみに形成した場合でも効果は発揮
される。
In the present embodiment, the length of the end face where the n-GaAs current blocking layer 12 does not exist is 10 μm at both ends of the resonator. If this length is within 30 μm, the waveguide is guided at the center of the resonator. The emitted light does not undergo mode deformation even in the end face portion, and exhibits stable transverse mode characteristics. Also,
The effect is exhibited even when the portion where the n-GaAs current blocking layer 12 does not exist is formed only on the emitting side end face portion.

【0026】上記実施例においてはVSIS型の半導体
レーザに適用した場合を示したが、次に他の構造に適用
した場合について示す。他の構造の一つにCPSレーザ
(Transverse Mode Stabilized AlxGa1-xAs Injection
Lasers with Channeled-Planar Structure;IEEE JOURNA
L OF QUANTUM ELECTRONICS,vol,QE-14,No.2,February19
87,p89)がある。図5は本発明をCSPレーザに適用し
た実施例を示している。本実施例ではn−GaAs基板
11にチャネルを形成するが、その際、中央部のチャネ
ル幅W1より端面部のチャネル幅W2が大きくなるように
する。その後、n−AlxGa1-xAsクラッド層42、
GaAs活性層43、p−AlxGa1-xAsクラッド層
44、n−GaAs層45を形成した後Znの拡散領域
48を形成して電流通路を作成する。この場合も、チャ
ネルの外部では、n−GaAs基板の光吸収があり、チ
ャネル肩部の発熱がおこるが端面でチャネル幅を広げる
ことによりこの発熱は緩和され、信頼性が向上する。こ
の場合も端面部で全面にわたりチャネルと同じ深さに基
板をエッチングしてもよいし、このような構造を片方の
端面のみに形成しても両側に形成しても効果は発揮され
る。
In the above embodiment, the case where the invention is applied to the VSIS type semiconductor laser is shown. Next, the case where the invention is applied to other structures is shown. One of the other structures is a CPS laser (Transverse Mode Stabilized Al x Ga 1-x As Injection).
Lasers with Channeled-Planar Structure; IEEE JOURNA
L OF QUANTUM ELECTRONICS, vol, QE-14, No.2, February19
87, p89). FIG. 5 shows an embodiment in which the present invention is applied to a CSP laser. In this embodiment, a channel is formed on the n-GaAs substrate 11, and at this time, the channel width W 2 at the end face portion is made larger than the channel width W 1 at the central portion. After that, the n-Al x Ga 1-x As cladding layer 42,
Creating a current path by forming a GaAs active layer 43, p-Al x Ga 1 -x As cladding layer 44, the diffusion region 48 of the Zn after the formation of the n-GaAs layer 45. Also in this case, outside the channel, light is absorbed by the n-GaAs substrate and heat is generated in the channel shoulder, but this heat generation is mitigated by widening the channel width at the end face, and reliability is improved. Also in this case, the substrate may be etched to the same depth as the channel over the entire surface of the end face, and the effect is exhibited even if such a structure is formed only on one end face or on both sides.

【0027】また、上記実施例においてはダブルヘテロ
接合構造の半導体レーザについて説明したが他の構造、
たとえばLOC(Large Optical Cavity)構造、SCH
(Separate Confinement Heterostructure)構造量子井
戸構造等他の構造を用いた場合についても適用可能であ
る。
Further, although the semiconductor laser having the double heterojunction structure has been described in the above embodiment, other structures,
For example, LOC (Large Optical Cavity) structure, SCH
(Separate Confinement Heterostructure) Structure It is also applicable to the case where another structure such as a quantum well structure is used.

【0028】例えば、図6は本発明をLOC構造に適用
したもので、活性層14に隣接して光導波層18が積層
されているが、上記実施例と同様の効果が認められる。
また、図7は量子井戸構造に本発明を適用した場合の1
実施例であるGRIN−SCH−SQW(Graded Index
-Separate Confinement Hetetostructure-Single Quant
um Well)構造を示す構成図であり、上記実施例と同様
の効果が認められる。図8には図7の実施例の活性層の
混晶比の分布を示している。
For example, FIG. 6 shows the case where the present invention is applied to the LOC structure, and the optical waveguide layer 18 is laminated adjacent to the active layer 14, but the same effect as that of the above-mentioned embodiment can be recognized.
Further, FIG. 7 shows a case where the present invention is applied to a quantum well structure.
GRIN-SCH-SQW (Graded Index)
-Separate Confinement Hetetostructure-Single Quant
(um well) structure, showing the same effect as the above embodiment. FIG. 8 shows the distribution of the mixed crystal ratio of the active layer of the embodiment of FIG.

【0029】[0029]

【発明の効果】本発明によれば端面部のチャネル幅を広
げることにより出射端面の光吸収による温度上昇を防ぐ
ことができ、高出力状態においても高い信頼性を有する
半導体レーザ素子が得られる。
According to the present invention, by widening the channel width of the end face portion, it is possible to prevent the temperature rise due to the absorption of light at the emitting end facet, and it is possible to obtain a semiconductor laser device having high reliability even in a high output state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す半導体レーザ素子の分
解構成図である。
FIG. 1 is an exploded configuration diagram of a semiconductor laser device showing one embodiment of the present invention.

【図2】チャネル形成後の構造斜視図である。FIG. 2 is a structural perspective view after forming a channel.

【図3】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。
FIG. 3 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.

【図4】素子の作製工程を模式的に示した断面図であ
る。
FIG. 4 is a cross-sectional view schematically showing a manufacturing process of an element.

【図5】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。
FIG. 5 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。
FIG. 6 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。
FIG. 7 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.

【図8】図7に示す半導体レーザ素子の活性層の構造を
模式的に示した説明図である。
FIG. 8 is an explanatory view schematically showing the structure of an active layer of the semiconductor laser device shown in FIG.

【図9】従来の半導体レーザ素子の構造図である。FIG. 9 is a structural diagram of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

11 p−GaAs基板 12 n−GaAs電流ブロッキング層 13 p−Al0.42Ga0.58Asクラッド層 14 pまたはn−Al0.14Ga0.86As活性層 15 n−Al0.42Ga0.58Asクラッド層 16 n−GaAsコンタクト層 17 p−Al0.4Ga0.6Asクラッド層 18 p−Al0.3Ga0.7Asガイド層 19 n−Al0.7Ga0.3Asクラッド層 21、22 抵抗性電極 31 SiO2膜 32 p−Al0.42Ga0.58As層 33 アンドープGaAsエッチバック層 41 n−GaAs基板 42 n−AlxGa1-xAsクラッド層 43 GaAs活性層 44 p−AlxGa1-xAsクラッド層 45 n−GaAs層 46、47 抵抗性電極 48 Zn拡散領域 51 p−Al0.7Ga0.3Asクラッド層 52 GRIN−SCH−SQW活性層 53 n−Al0.7Ga0.3Asクラッド層11 p-GaAs substrate 12 n-GaAs current blocking layer 13 p-Al 0.42 Ga 0.58 As clad layer 14 p or n-Al 0.14 Ga 0.86 As active layer 15 n-Al 0.42 Ga 0.58 As clad layer 16 n-GaAs contact layer 17 p-Al 0.4 Ga 0.6 As clad layer 18 p-Al 0.3 Ga 0.7 As guide layer 19 n-Al 0.7 Ga 0.3 As clad layer 21, 22 Resistive electrode 31 SiO 2 film 32 p-Al 0.42 Ga 0.58 As layer 33 Undoped GaAs etch back layer 41 n-GaAs substrate 42 n-Al x Ga 1-x As clad layer 43 GaAs active layer 44 p-Al x Ga 1-x As clad layer 45 n-GaAs layer 46, 47 Resistive electrode 48 Zn diffusion region 51 p-Al 0.7 Ga 0.3 As cladding layer 52 GRIN-SCH-SQW active Layer 53 n-Al 0.7 Ga 0.3 As cladding layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼岩 進治 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山口 雅広 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Kaneiwa 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Masahiro Yamaguchi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上方に積層された、均一な厚さを有
する平板状の活性層と、ストライプ状の貫通溝を有する
光吸収層と、を有し、 該光吸収層による光吸収により該活性層に実効屈折率差
に基づくストライプ状の光導波路が形成されるように該
貫通溝の溝幅が設定され、かつ、該溝幅が共振器の少な
くとも一方の端面近傍部分で拡大されていることを特徴
とする半導体レーザ素子。
1. A flat plate-shaped active layer having a uniform thickness and a light absorption layer having stripe-shaped through-grooves, which are stacked above the substrate, and which are absorbed by light by the light absorption layer. The groove width of the through groove is set so that a stripe-shaped optical waveguide based on the effective refractive index difference is formed in the active layer, and the groove width is enlarged in the vicinity of at least one end face of the resonator. A semiconductor laser device characterized by the above.
JP08081457A 1987-08-04 1996-04-03 Semiconductor laser device Expired - Fee Related JP3075512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08081457A JP3075512B2 (en) 1987-08-04 1996-04-03 Semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-195722 1987-08-04
JP19572287 1987-08-04
JP08081457A JP3075512B2 (en) 1987-08-04 1996-04-03 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62333967A Division JPH0671122B2 (en) 1987-08-04 1987-12-29 Semiconductor laser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10166668A Division JP3038186B2 (en) 1987-08-04 1998-06-15 Method for manufacturing semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08307009A true JPH08307009A (en) 1996-11-22
JP3075512B2 JP3075512B2 (en) 2000-08-14

Family

ID=26422480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08081457A Expired - Fee Related JP3075512B2 (en) 1987-08-04 1996-04-03 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3075512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223966A (en) * 1997-01-31 1998-08-21 Sharp Corp Gain coupled distributed feedback semiconductor laser
CN100375349C (en) * 2000-06-08 2008-03-12 日亚化学工业株式会社 Semiconductor laser device and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293989A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Semiconductor laser element and manufacture thereof
JPH0856051A (en) * 1995-08-24 1996-02-27 Sharp Corp Semiconductor laser element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293989A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Semiconductor laser element and manufacture thereof
JPH0856051A (en) * 1995-08-24 1996-02-27 Sharp Corp Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223966A (en) * 1997-01-31 1998-08-21 Sharp Corp Gain coupled distributed feedback semiconductor laser
CN100375349C (en) * 2000-06-08 2008-03-12 日亚化学工业株式会社 Semiconductor laser device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3075512B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JP3510305B2 (en) Semiconductor laser manufacturing method and semiconductor laser
US5920586A (en) Semiconductor laser
JPH0656906B2 (en) Semiconductor laser device
JPH09139550A (en) Manufacture of semiconductor laser device, and semiconductor laser device
JPH10233556A (en) Ridge-type semiconductor laser diode and its manufacturing method
JPH11112081A (en) Semiconductor laser and manufacture thereof
JPH07226566A (en) Quantum well semiconductor laser and its manufacture
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
JP2004165383A (en) Semiconductor laser device, second harmonic generator, and optical pickup apparatus
US6842471B2 (en) Semiconductor laser device having a current non-injection area
JP3075512B2 (en) Semiconductor laser device
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JPH0671121B2 (en) Semiconductor laser device
JP2001257431A (en) Semiconductor laser
JP3038186B2 (en) Method for manufacturing semiconductor laser device
JPH0671122B2 (en) Semiconductor laser device
JPH0799373A (en) Semiconductor laser device
JPH0856051A (en) Semiconductor laser element
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH09246664A (en) Semiconductor laser
JPH0614575B2 (en) Semiconductor laser device
JP3277711B2 (en) Semiconductor laser and manufacturing method thereof
US4860299A (en) Semiconductor laser device
JPS6234473Y2 (en)
JP3422365B2 (en) Ridge stripe type semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees