JPH08304360A - Flaw detecting device of nuclear reactor pressure vessel nozzle part - Google Patents

Flaw detecting device of nuclear reactor pressure vessel nozzle part

Info

Publication number
JPH08304360A
JPH08304360A JP7111673A JP11167395A JPH08304360A JP H08304360 A JPH08304360 A JP H08304360A JP 7111673 A JP7111673 A JP 7111673A JP 11167395 A JP11167395 A JP 11167395A JP H08304360 A JPH08304360 A JP H08304360A
Authority
JP
Japan
Prior art keywords
nozzle
pressure vessel
probe
reactor pressure
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111673A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
弘二 小林
Akitada Narimatsu
明格 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7111673A priority Critical patent/JPH08304360A/en
Publication of JPH08304360A publication Critical patent/JPH08304360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To provide a flaw detecting deice for reactor pressure vessel nozzle in which a flaw detection can be smoothly performed in a radius part. CONSTITUTION: This device has a probe 6 loaded on a truck 1 traveling along the peripheral part of the nozzle 41 of a pressure vessel to perform a flaw detection in a nozzle inner surface curved part 49 by this probe 6. The truck 1 has a rotating part 5 having a rotating shaft 4 right-angled to the shaft of the nozzle 41, the probe 6 is mounted on the rotating part 5, and the outer surface curved part of the probe 6 is moved in close contact with the nozzle outer surface curved part 44.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉圧力容器のノズ
ルの内面をその外表面から探傷する装置に係り、特に、
内面湾曲部(ラディアス部)を円滑に探傷できる原子炉
圧力容器ノズル部の探傷装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting an inner surface of a nozzle of a reactor pressure vessel from an outer surface thereof,
The present invention relates to a flaw detection device for a reactor pressure vessel nozzle portion that can smoothly detect an inner curved portion (radius portion).

【0002】[0002]

【従来の技術】原子炉圧力容器には種々の配管が接続さ
れている。配管は原子炉圧力容器の外周にノズルを介し
て接続されており、原子炉圧力容器とノズルとの継ぎ
目、ノズルと配管との継ぎ目、ノズルの内面等の健全性
を確認するために定期的に超音波による探傷検査が行わ
れる。
2. Description of the Related Art Various pipes are connected to a reactor pressure vessel. The piping is connected to the outer circumference of the reactor pressure vessel through a nozzle, and is regularly checked to check the integrity of the joint between the reactor pressure vessel and the nozzle, the joint between the nozzle and the pipe, the inner surface of the nozzle, etc. Ultrasonic flaw detection is performed.

【0003】図4は、上記ノズルの近傍を示すもので、
ノズル41は、原子炉圧力容器42との取り合い面部4
3、ノズルの軸を含む断面が円弧となる曲面を有するノ
ズル外面湾曲部(ラディアス部)44、大径円筒部4
5、円錐面部46、配管48が接続される小径円筒部4
7からなる。このように、ノズル41は、原子炉圧力容
器42に近いところでは径が大きく、原子炉圧力容器4
2から離れると径が小さくなっている。ノズル内面には
ノズル内面湾曲部(ラディアス部)49が形成されてい
る。原子炉圧力容器42とノズル41との溶接部付近4
3a、ノズル41と配管48との溶接部付近47a、及
びノズル内面のラディアス部49が超音波探傷検査の対
象範囲として義務付けられている。ノズル内面のラディ
アス部49の探傷検査は外面のラディアス部44より行
われる。
FIG. 4 shows the vicinity of the nozzle,
The nozzle 41 is a mating surface portion 4 with the reactor pressure vessel 42.
3, a nozzle outer curved portion (radius portion) 44 having a curved surface whose section including the axis of the nozzle is an arc, a large-diameter cylindrical portion 4
5, the small-diameter cylindrical portion 4 to which the conical surface portion 46 and the pipe 48 are connected
It consists of 7. In this way, the nozzle 41 has a large diameter in the vicinity of the reactor pressure vessel 42, and
The diameter becomes smaller as it goes away from 2. A nozzle inner surface curved portion (radius portion) 49 is formed on the inner surface of the nozzle. Near the weld between the reactor pressure vessel 42 and the nozzle 41 4
3a, the vicinity 47a of the welded portion between the nozzle 41 and the pipe 48, and the radius portion 49 on the inner surface of the nozzle are obligatory as the target range of ultrasonic flaw detection. The flaw detection of the radius portion 49 on the inner surface of the nozzle is performed from the radius portion 44 on the outer surface.

【0004】従来の探傷装置の一例を図5に示す。探傷
装置は、ノズル41の外周に吸着してノズル41の周方
向に走行する台車51と、台車51に取り付けられて台
車上をノズル41の軸方向に移動する軸方向移動部52
と、軸方向移動部52に取り付けられたアーム支持部5
3と、アーム支持部53に案内されてノズル41の径方
向に移動するアーム基部54と、このアーム基部54に
取り付けられたアーム回転軸55と、アーム回転軸55
を軸として原子炉圧力容器42に向かって回転移動可能
なアーム56と、そのアームの先端に取り付けられた超
音波探触子57とから構成されている。
FIG. 5 shows an example of a conventional flaw detector. The flaw detection device includes a carriage 51 that is attracted to the outer circumference of the nozzle 41 and travels in the circumferential direction of the nozzle 41, and an axial movement unit 52 that is attached to the carriage 51 and moves on the carriage in the axial direction of the nozzle 41.
And the arm support part 5 attached to the axial movement part 52.
3, an arm base 54 which is guided by the arm support 53 and moves in the radial direction of the nozzle 41, an arm rotation shaft 55 attached to the arm base 54, and an arm rotation shaft 55.
It is composed of an arm 56 that is rotatable about the axis toward the reactor pressure vessel 42, and an ultrasonic probe 57 attached to the tip of the arm.

【0005】検査時には、軸方向移動部52をノズル4
1の軸方向に移動させ、アーム基部54をノズル41の
径方向に移動させて超音波探触子57を取り合い面部4
3に位置決めする。アーム56の回転移動によって超音
波探触子57を押し当て、台車51をノズル41の大径
円筒部45に沿って走行させると、ノズル41の周方向
に沿って取り合い面部43の所定位置が検査できる。台
車51の周回毎にアーム基部54を所定ピッチで移動さ
せることにより、取り合い面部43の検査が終了する。
超音波探触子57がラディアス部44に来たときには、
軸方向移動部52とアーム基部54とを複合移動させて
超音波探触子57を位置決めする。ラディアス部44よ
り入射してラディアス部49を検査するにおいては、超
音波探触子57が円弧を描いて移動するように、軸方向
移動部52とアーム基部54とを複合移動させ、台車5
1の周回毎に所定角度ピッチで検査を行う。
At the time of inspection, the axial direction moving portion 52 is attached to the nozzle 4
1, the arm base 54 is moved in the radial direction of the nozzle 41 to move the ultrasonic probe 57 to the mating surface portion 4.
Position to 3. When the ultrasonic probe 57 is pressed by the rotational movement of the arm 56 and the carriage 51 is caused to travel along the large diameter cylindrical portion 45 of the nozzle 41, the predetermined position of the mating surface portion 43 is inspected along the circumferential direction of the nozzle 41. it can. The inspection of the mating surface portion 43 is completed by moving the arm base portion 54 at a predetermined pitch for each revolution of the carriage 51.
When the ultrasonic probe 57 comes to the radius part 44,
The ultrasonic probe 57 is positioned by moving the axial movement portion 52 and the arm base portion 54 together. In inspecting the radius portion 49 by entering from the radius portion 44, the axial movement portion 52 and the arm base portion 54 are combined and moved so that the ultrasonic probe 57 moves in an arc, and the carriage 5 is moved.
The inspection is performed at a predetermined angle pitch for every one revolution.

【0006】[0006]

【発明が解決しようとする課題】従来の探傷装置は、取
り合い面部43とラディアス部49とが検査できる構成
となっているが、ラディアス部49の検査のときには、
ノズル41の軸方向の移動とノズル41の径方向の移動
との2方向の直線運動を組み合わせて円弧運動を実現し
ている。しかし、2方向の直線運動の組み合わせでは正
確な円弧運動の動作や所定の角度ピッチを得ることが難
しく、超音波探触子57にラディアス部44を円滑に探
傷させることが困難である。
In the conventional flaw detector, the mating surface portion 43 and the radius portion 49 can be inspected. However, when inspecting the radius portion 49,
The circular movement is realized by combining linear movements in two directions, that is, the movement of the nozzle 41 in the axial direction and the movement of the nozzle 41 in the radial direction. However, it is difficult to obtain an accurate circular motion and a predetermined angular pitch with a combination of linear motions in two directions, and it is difficult to cause the ultrasonic probe 57 to smoothly detect the radius portion 44.

【0007】また、アーム56の回転移動によって超音
波探触子57を押し当てているので、その押し当て方向
がラディアス部44の円弧の径方向と一致せず、必ずし
も超音波探触子57がラディアス部44に正対しない。
Further, since the ultrasonic probe 57 is pressed by the rotational movement of the arm 56, the pressing direction does not coincide with the radial direction of the circular arc of the radius portion 44, and the ultrasonic probe 57 is not always required. Do not face the radius part 44 directly.

【0008】また、軸方向移動部52とアーム基部54
とがそれぞれラディアス部44の円弧の径に応じたスト
ロークを必要とするので、機構が大きくなり、駆動する
動力にも無駄が多い。
Further, the axial movement portion 52 and the arm base portion 54
Requires a stroke corresponding to the radius of the circular arc of the radius portion 44, so that the mechanism becomes large and the driving power is wasteful.

【0009】そこで、本発明の目的は、上記課題を解決
し、ラディアス部を円滑に探傷できる原子炉圧力容器ノ
ズル部の探傷装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a flaw detector for a reactor pressure vessel nozzle which can smoothly detect the radius portion.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、圧力容器のノズル外周部に沿って走行する
台車に探触子を搭載し、この探触子でノズル内面湾曲部
を探傷する装置において、上記台車にノズルの軸に直角
な方向に回転軸を有する回転部を設けると共にこの回転
部に上記探触子を取り付け、この回転部の回転により上
記探触子の外面湾曲部がノズル外面湾曲部に密着して移
動するように構成したものである。
In order to achieve the above object, the present invention mounts a probe on a carriage that runs along the outer peripheral portion of a nozzle of a pressure vessel, and uses this probe to form a curved portion on the inner surface of the nozzle. In an apparatus for flaw detection, the carriage is provided with a rotary portion having a rotary shaft in a direction perpendicular to the axis of the nozzle, the probe is attached to the rotary portion, and the outer curved portion of the probe is rotated by the rotation of the rotary portion. Is configured to move in close contact with the curved portion of the outer surface of the nozzle.

【0011】上記探触子が上記回転部の径方向に移動自
在であるように構成してもよい。
The probe may be movable in the radial direction of the rotating portion.

【0012】上記台車にノズルの軸方向に移動する軸方
向移動部を設けると共にこの軸方向移動部にノズルの径
方向に移動する径方向移動部を設け、この径方向移動部
に上記回転部を搭載してその回転軸がノズル外面湾曲部
の曲げの中心に移動できるように構成してもよい。
The carriage is provided with an axial moving portion that moves in the axial direction of the nozzle, a radial moving portion that moves in the radial direction of the nozzle is provided in the axial moving portion, and the rotating portion is provided in the radial moving portion. It may be mounted so that its rotation axis can be moved to the center of bending of the curved portion of the nozzle outer surface.

【0013】上記台車にノズルからの距離を検出する少
なくとも2つのレーザ式距離検出器を搭載してもよい。
At least two laser type distance detectors for detecting the distance from the nozzle may be mounted on the carriage.

【0014】[0014]

【作用】上記構成により、回転部はノズルの軸に直角な
方向に回転軸を有し、探触子は回転部に支持されている
ので、回転部が回転することによって探触子は上記回転
軸の周りを回転し正確な円弧運動を行う。一方、ノズル
外面湾曲部はノズルの軸を含む面で円弧を形成してい
る。従って、回転部が回転することによって探触子の外
面湾曲部がノズル外面湾曲部に密着して移動することに
なり、ノズル内面湾曲部を円滑に探傷することができ
る。
With the above structure, since the rotating part has the rotating shaft in the direction perpendicular to the axis of the nozzle and the probe is supported by the rotating part, the rotating part causes the probe to rotate as described above. It rotates around an axis and makes an accurate circular motion. On the other hand, the curved portion of the nozzle outer surface forms an arc with a surface including the axis of the nozzle. Therefore, when the rotating portion rotates, the outer curved portion of the probe comes into close contact with the outer curved portion of the nozzle, and the inner curved portion of the nozzle can be smoothly detected.

【0015】探触子が回転部の径方向に移動自在である
ことにより、探触子の外面湾曲部をノズル外面湾曲部に
正しく押し当てることができる。
Since the probe is movable in the radial direction of the rotating portion, the outer curved portion of the probe can be correctly pressed against the outer curved portion of the nozzle.

【0016】ノズルの大小によってノズル外面湾曲部の
曲げの径が異なっている場合がある。そこで、軸方向移
動部をノズルの軸方向に移動させ、径方向移動部をノズ
ルの径方向に移動させることにより、回転部をノズルの
軸方向及び径方向に移動させるようにする。この構成に
より、回転部の回転軸をノズル外面湾曲部の曲げの中心
に来るように移動させ、そこで回転部を回転させると探
触子の外面湾曲部をノズル外面湾曲部に密着して移動さ
せることができる。これにより、本発明の原子炉圧力容
器ノズル部の探傷装置はノズルの大小によらず使用でき
る。
The bending diameter of the outer curved portion of the nozzle may differ depending on the size of the nozzle. Therefore, the axial moving unit is moved in the axial direction of the nozzle, and the radial moving unit is moved in the radial direction of the nozzle, so that the rotating unit is moved in the axial direction and the radial direction of the nozzle. With this configuration, the rotating shaft of the rotating portion is moved so as to come to the center of bending of the nozzle outer surface bending portion, and when the rotating portion is rotated there, the outer surface bending portion of the probe is moved in close contact with the nozzle outer surface bending portion. be able to. As a result, the flaw detector for the nozzle part of the reactor pressure vessel of the present invention can be used regardless of the size of the nozzle.

【0017】台車にレーザ式距離検出器を搭載すること
により、台車又は各移動部の移動に際して、ノズルから
の距離を検出することができる。また、2つのレーザ式
距離検出器を用いることにより、検出ミスが防止でき
る。
By mounting the laser type distance detector on the carriage, the distance from the nozzle can be detected when the carriage or each moving part is moved. Further, by using two laser type distance detectors, detection error can be prevented.

【0018】[0018]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0019】本発明の原子炉圧力容器ノズル部の探傷装
置の側面図を図2に、平面図を図3に、ノズルに装着し
た図を図1に示す。原子炉圧力容器ノズル部の探傷装置
は、ノズル41の外周に吸着してノズル41の周方向に
走行する台車1と、台車1に取り付けられて台車1上を
ノズル41の軸方向に移動する軸方向移動部2と、軸方
向移動部2に取り付けられて軸方向移動部2上をノズル
41の径方向に移動する径方向移動部3と、径方向移動
部3に搭載されてノズル41の軸に直角な方向に回転軸
4を有する回転部5と、回転部5に回転部5の径方向に
移動自在に支持されかつ回転部5の径方向外方に向けて
外面湾曲部を向けた超音波探触子6とから構成されてい
る。この超音波探触子6の外面湾曲部は凸に湾曲してお
り、超音波のセンサ面を構成している。
FIG. 2 shows a side view of the flaw detector of the reactor pressure vessel nozzle portion according to the present invention, FIG. 3 is a plan view thereof, and FIG. 1 is a view attached to the nozzle. The flaw detection device of the nozzle part of the reactor pressure vessel is composed of a carriage 1 adsorbed on the outer circumference of the nozzle 41 and traveling in the circumferential direction of the nozzle 41, and an axis attached to the carriage 1 and moving on the carriage 1 in the axial direction of the nozzle 41. The directional moving unit 2, the radial moving unit 3 attached to the axial moving unit 2 and moving on the axial moving unit 2 in the radial direction of the nozzle 41, and the shaft of the nozzle 41 mounted on the radial moving unit 3. A rotating part 5 having a rotating shaft 4 in a direction perpendicular to the rotating part 5; and a superstructure having a rotating part 5 movably supported in the radial direction of the rotating part 5 and having an outer curved part directed outward in the radial direction of the rotating part 5. The sound wave probe 6 is included. The outer curved portion of the ultrasonic probe 6 is convexly curved to form an ultrasonic sensor surface.

【0020】次に、各部の詳細を説明する。Next, the details of each part will be described.

【0021】台車1は、ノズルの大径円筒部45に接す
る駆動輪21及び補助輪22とノズルの円錐面部46に
接する案内輪23とを備えている。駆動輪21、補助輪
22及び案内輪23はいずれも磁石で構成されており、
台車1は、これらの車輪をノズル41に吸着させつつノ
ズル41の外周を回転走行することができると共に、走
行中は、各車輪の吸着力の平衡により、台車1が大径円
筒部45と円錐面部46との境界線から所定の距離に自
動的に距離合わせされるようになっている。駆動輪2
1、補助輪22及び案内輪23はそれぞれ2組設けら
れ、各組がノズル41の周方向に台車1を挟むように振
り分けて配置されており、走行中は、台車1の主フレー
ム24がノズル41の中心線上でノズル41の接線に平
行な姿勢を維持できるようになっている。台車1の主フ
レーム24はノズル41の軸方向に伸びており、主フレ
ーム24上にノズル41の軸に平行な直線レール25が
設けられている。
The trolley 1 is provided with a drive wheel 21 and an auxiliary wheel 22 that are in contact with the large diameter cylindrical portion 45 of the nozzle, and a guide wheel 23 that is in contact with the conical surface portion 46 of the nozzle. The drive wheel 21, the auxiliary wheel 22 and the guide wheel 23 are all composed of magnets,
The trolley 1 can rotate around the outer periphery of the nozzle 41 while adsorbing these wheels to the nozzle 41, and during traveling, the trolley 1 is balanced by the attraction force of each wheel so that the trolley 1 is conical with the large-diameter cylindrical portion 45. The distance from the boundary with the surface portion 46 is automatically adjusted to a predetermined distance. Drive wheel 2
1, the auxiliary wheel 22 and the guide wheel 23 are provided in two sets, and each set is arranged so as to sandwich the carriage 1 in the circumferential direction of the nozzle 41. The posture parallel to the tangent line of the nozzle 41 on the center line of 41 can be maintained. The main frame 24 of the carriage 1 extends in the axial direction of the nozzle 41, and a linear rail 25 parallel to the axis of the nozzle 41 is provided on the main frame 24.

【0022】軸方向移動部2は、上記直線レール25に
案内されて往復移動する移動子26と、移動子26に搭
載された略箱型の主ハウジング27とからなる。主ハウ
ジング27の配管側は、電源、駆動制御、検査情報等を
外部とやりとりするためのコネクタ部28となってお
り、原子炉圧力容器側にはノズル41の径方向に伸びた
移動軸29が設けられている。
The axial moving portion 2 is composed of a moving element 26 which is guided by the linear rail 25 to reciprocate, and a substantially box-shaped main housing 27 mounted on the moving element 26. A pipe side of the main housing 27 serves as a connector portion 28 for exchanging power, drive control, inspection information and the like with the outside, and a moving shaft 29 extending in the radial direction of the nozzle 41 is provided on the reactor pressure vessel side. It is provided.

【0023】径方向移動部3は、上記移動軸29に案内
されて往復移動する移動子30と、移動子30に搭載さ
れた副ハウジング31とからなる。この副ハウジング3
1には、中心線を挟んでその両側にノズルからの距離を
検出するレーザ式距離検出器36が取り付けられてい
る。また、副ハウジング31には、ノズル41の軸に直
交する回転軸4が軸承されている。
The radial direction moving portion 3 is composed of a moving element 30 which is guided by the moving axis 29 and reciprocates, and a sub-housing 31 mounted on the moving element 30. This sub housing 3
1, laser type distance detectors 36 for detecting the distance from the nozzle are attached on both sides of the center line. The sub-housing 31 supports the rotary shaft 4 orthogonal to the axis of the nozzle 41.

【0024】回転部5は、上記回転軸4の一端に取り付
けられた回転円板32と、回転円板32の外側表面に直
径上に取り付けられたリニアスライダの固定片33と、
この固定片33に沿って往復直線移動するリニアスライ
ダの可動片34と、この可動片34に取り付けられたL
字腕部35とからなる。L字腕部35は、基端部35a
が回転部5の径方向に伸びており、原子炉圧力容器側で
折り曲げられた先端部35bがノズル41の軸に直交し
ている。
The rotating part 5 includes a rotating disc 32 attached to one end of the rotating shaft 4, and a linear slider fixing piece 33 diametrically attached to the outer surface of the rotating disc 32.
A movable piece 34 of a linear slider that linearly moves back and forth along the fixed piece 33, and an L attached to the movable piece 34.
And the arm part 35. The L-shaped arm portion 35 has a base end portion 35a.
Extends in the radial direction of the rotating portion 5, and the tip end portion 35b bent on the reactor pressure vessel side is orthogonal to the axis of the nozzle 41.

【0025】超音波探触子6は、L字腕部35の先端部
35bに2個取り付けられており、いずれの超音波探触
子6も外面湾曲部6aが回転部5の径方向外方に向けら
れている。2個の超音波探触子6は、台車1が位置する
ノズル41の中心線を挟んでノズル41の接線に平行に
並ぶように配置されている。
Two ultrasonic probes 6 are attached to the distal end portion 35b of the L-shaped arm portion 35, and the outer curved portion 6a of each ultrasonic probe 6 is radially outward of the rotating portion 5. Is directed to. The two ultrasonic probes 6 are arranged so as to be parallel to the tangent line of the nozzle 41 with the center line of the nozzle 41 on which the carriage 1 is located sandwiched.

【0026】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0027】台車1は、駆動輪21の回転により、ノズ
ルの大径円筒部45に沿って走行することができる。走
行中は、各輪の吸着力の平衡により、台車1が大径円筒
部45と円錐面部46との境界線から所定の距離に自動
的に距離合わせされる。また、台車1の主フレーム24
がノズル41の中心線上でノズル41の接線に平行な姿
勢を維持する。従って、主フレーム24に搭載された超
音波探触子6はノズル41の軸の周りの一定位置を周回
することになる。台車1の周回毎に超音波探触子6を所
定角度ピッチ移動させて検査を行う。
The trolley 1 can travel along the large diameter cylindrical portion 45 of the nozzle by the rotation of the drive wheel 21. During traveling, the bogie 1 is automatically adjusted to a predetermined distance from the boundary line between the large-diameter cylindrical portion 45 and the conical surface portion 46 due to the balance of the attraction forces of the wheels. In addition, the main frame 24 of the carriage 1
Maintains a posture parallel to the tangent line of the nozzle 41 on the center line of the nozzle 41. Therefore, the ultrasonic probe 6 mounted on the main frame 24 goes around a fixed position around the axis of the nozzle 41. The inspection is performed by moving the ultrasonic probe 6 by a predetermined angle pitch each time the carriage 1 goes around.

【0028】超音波探触子6の位置決め動作を説明す
る。
The positioning operation of the ultrasonic probe 6 will be described.

【0029】ノズル41の大小によってラディアス部4
4の円弧の径が異なっているので、軸方向移動部2をノ
ズル41の軸方向に移動させ、径方向移動部3をノズル
41の径方向に移動させる。具体的には、軸方向移動部
2が直線レール25に案内されてノズル41の軸方向に
移動し、径方向移動部3が移動軸29に案内されてノズ
ル41の径方向に移動する。このようにして、回転部5
をノズル41の軸方向及び径方向に移動させ、回転軸4
をラディアス部44の円弧の中心に位置決めする。その
際、レーザ式距離検出器36がノズルからの距離を検出
するので、位置決めが正確になる。
The radius portion 4 is made different depending on the size of the nozzle 41.
Since the diameters of the circular arcs 4 are different, the axial movement unit 2 is moved in the axial direction of the nozzle 41, and the radial movement unit 3 is moved in the radial direction of the nozzle 41. Specifically, the axial moving unit 2 is guided by the linear rail 25 to move in the axial direction of the nozzle 41, and the radial moving unit 3 is guided by the moving shaft 29 to move in the radial direction of the nozzle 41. In this way, the rotating unit 5
Is moved in the axial direction and the radial direction of the nozzle 41, and the rotary shaft 4
Is positioned at the center of the arc of the radius portion 44. At that time, since the laser type distance detector 36 detects the distance from the nozzle, the positioning becomes accurate.

【0030】軸方向移動部2及び径方向移動部3のスト
ロークは、ノズル41の大小によるラディアス部44の
円弧の径の差を補償できる大きさでよく、従来のように
ラディアス部44の円弧の径を補償できるストロークは
必要ない。従って、本発明のノズルラディアス部探傷装
置は小型で駆動力も小さくてよい。
The strokes of the axial moving portion 2 and the radial moving portion 3 may be of a size capable of compensating for the difference in the diameter of the circular arc of the radius portion 44 depending on the size of the nozzle 41. No stroke is needed to compensate for the diameter. Therefore, the nozzle radius portion flaw detector of the present invention may be small in size and have a small driving force.

【0031】このようにして回転軸4がラディアス部4
4の円弧の中心に位置したら、リニアスライダの固定片
33に対し可動片34が移動してL字腕部35がラディ
アス部44に向かって移動する。超音波探触子6がラデ
ィアス部44に適切な押圧で押し当てられる。このよう
に、超音波探触子6が回転部5の径方向に移動自在であ
ることにより、超音波探触子6をラディアス部44に適
切な押圧で押し当てることができる。
In this way, the rotary shaft 4 is connected to the radius portion 4
When located at the center of the arc of 4, the movable piece 34 moves relative to the fixed piece 33 of the linear slider, and the L-shaped arm portion 35 moves toward the radius portion 44. The ultrasonic probe 6 is pressed against the radius portion 44 with an appropriate pressure. As described above, since the ultrasonic probe 6 is movable in the radial direction of the rotating portion 5, the ultrasonic probe 6 can be pressed against the radius portion 44 with appropriate pressure.

【0032】超音波探触子6の所定角度ピッチ移動は、
回転部5の回転円盤32が回転軸4の周りに所定角度ピ
ッチで回転することによって行われる。回転部5はノズ
ル41の軸に直角な方向に回転軸4を有し、超音波探触
子6は回転部5に支持されているので、回転部5が回転
することによって超音波探触子6は回転軸4の周りを回
転し正確な円弧運動を行う。なお、図示されるように、
円弧運動の範囲は90°程度あれば十分である。特に検
査が必要な範囲はノズル内面のラディアス部49を含む
限定された範囲である。
The predetermined pitch movement of the ultrasonic probe 6 is
It is performed by rotating the rotating disk 32 of the rotating unit 5 around the rotating shaft 4 at a predetermined angle pitch. The rotating part 5 has the rotating shaft 4 in a direction perpendicular to the axis of the nozzle 41, and the ultrasonic probe 6 is supported by the rotating part 5, so that the rotating part 5 rotates to cause the ultrasonic probe to rotate. The reference numeral 6 rotates around the rotation axis 4 to perform an accurate circular arc movement. In addition, as shown in the figure,
It is sufficient that the range of the arc movement is about 90 °. Particularly, the range that needs to be inspected is a limited range including the radius portion 49 on the inner surface of the nozzle.

【0033】ラディアス部44の円弧の中心に回転軸4
が位置しているので、超音波探触子6がラディアス部4
4に沿って回転移動することになる。超音波探触子6は
回転部5の径方向外方に向けて外面湾曲部6aを向けて
いるので、常にラディアス部44に正対して移動するこ
とになる。従って、ラディアス部44を円滑に探傷する
ことができる。このようにして、ノズル内面のラディア
ス部49に生じている欠陥7を正確に検知することが可
能となる。
The rotary shaft 4 is placed at the center of the circular arc of the radius portion 44.
Is located, the ultrasonic probe 6 is located at the radius portion 4
It will rotate and move along 4. Since the ultrasonic probe 6 has the outer curved portion 6a directed outward in the radial direction of the rotating portion 5, the ultrasonic probe 6 always moves to face the radius portion 44. Therefore, the radius portion 44 can be smoothly detected. In this way, it becomes possible to accurately detect the defect 7 occurring in the radius portion 49 on the inner surface of the nozzle.

【0034】[0034]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0035】(1)探触子が正確な円弧運動を行うの
で、ラディアス部の検査が正確になる。
(1) Since the probe makes an accurate arc movement, the inspection of the radius part becomes accurate.

【0036】(2)回転部の回転のみで円弧運動ができ
るので、動力が少なくてよい。
(2) Since the circular arc motion can be performed only by the rotation of the rotating part, the power can be reduced.

【0037】(3)探触子が回転部の径方向に移動自在
である構成にあっては、超音波探触子をラディアス部に
曲げの径方向から正しく押し当てることができるので、
ラディアス部の検査が正確になる。
(3) In the structure in which the probe is movable in the radial direction of the rotating part, the ultrasonic probe can be correctly pressed against the radius part from the bending radial direction.
Radius inspection is accurate.

【0038】(4)超音波探触子が回転部の径方向に移
動自在かつ回転軸がラディアス部の円弧の中心に移動で
きる構成にあっては、ノズルの大小によらずラディアス
部の正確な検査が可能となる。
(4) In the structure in which the ultrasonic probe is movable in the radial direction of the rotating portion and the rotating shaft can move to the center of the arc of the radius portion, the radius portion can be accurately moved regardless of the size of the nozzle. Inspection is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す原子炉圧力容器ノズル
部の探傷装置をノズルに装着した図である。
FIG. 1 is a diagram in which a flaw detection device for a reactor pressure vessel nozzle portion according to an embodiment of the present invention is attached to a nozzle.

【図2】本発明の原子炉圧力容器ノズル部の探傷装置の
側面図である。
FIG. 2 is a side view of a flaw detection device for a reactor pressure vessel nozzle portion according to the present invention.

【図3】本発明の原子炉圧力容器ノズル部の探傷装置の
平面図である。
FIG. 3 is a plan view of a flaw detector for a nozzle part of a reactor pressure vessel according to the present invention.

【図4】原子炉圧力容器のノズルの近傍の断面図であ
る。
FIG. 4 is a sectional view in the vicinity of a nozzle of a reactor pressure vessel.

【図5】従来の探傷装置の側面図である。FIG. 5 is a side view of a conventional flaw detection device.

【符号の説明】[Explanation of symbols]

1 台車 2 軸方向移動部 3 径方向移動部 4 回転軸 5 回転部 6 探触子(超音波探触子) 36 レーザ式距離検出器 41 ノズル 42 原子炉圧力容器 44 ノズル外面湾曲部(ラディアス部) 49 ノズル内面湾曲部(ラディアス部) 1 Bogie 2 Axial moving part 3 Radial moving part 4 Rotating shaft 5 Rotating part 6 Probe (ultrasonic probe) 36 Laser distance detector 41 Nozzle 42 Reactor pressure vessel 44 Nozzle outer curved part (radius part) ) 49 Nozzle inner curved portion (radius portion)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器のノズル外周部に沿って走行す
る台車に探触子を搭載し、この探触子でノズル内面湾曲
部を探傷する装置において、上記台車にノズルの軸に直
角な方向に回転軸を有する回転部を設けると共にこの回
転部に上記探触子を取り付け、この回転部の回転により
上記探触子の外面湾曲部がノズル外面湾曲部に密着して
移動するように構成したことを特徴とする原子炉圧力容
器ノズル部の探傷装置。
1. A device in which a probe is mounted on a carriage that travels along the outer peripheral portion of a nozzle of a pressure vessel, and a flaw is detected on the curved portion of the inner surface of the nozzle by the probe, in the direction perpendicular to the axis of the nozzle. A rotary part having a rotary shaft is provided and the probe is attached to the rotary part, and the rotation of the rotary part causes the outer curved part of the probe to move in close contact with the nozzle outer curved part. A flaw detector for a reactor pressure vessel nozzle.
【請求項2】 上記探触子が上記回転部の径方向に移動
自在であるように構成したことを特徴とする請求項1記
載の原子炉圧力容器ノズル部の探傷装置。
2. The flaw detection device for a reactor pressure vessel nozzle portion according to claim 1, wherein the probe is configured to be movable in a radial direction of the rotating portion.
【請求項3】 上記台車にノズルの軸方向に移動する軸
方向移動部を設けると共にこの軸方向移動部にノズルの
径方向に移動する径方向移動部を設け、この径方向移動
部に上記回転部を搭載してその回転軸がノズル外面湾曲
部の曲げの中心に移動できるように構成したことを特徴
とする請求項2記載の原子炉圧力容器ノズル部の探傷装
置。
3. The trolley is provided with an axial moving portion that moves in the axial direction of the nozzle, and the axial moving portion is provided with a radial moving portion that moves in the radial direction of the nozzle, and the radial moving portion is provided with the rotating portion. 3. The flaw detection device for a reactor pressure vessel nozzle portion according to claim 2, wherein the portion is mounted so that its rotation axis can be moved to the center of bending of the curved portion of the outer surface of the nozzle.
【請求項4】 上記台車にノズルからの距離を検出する
少なくとも2つのレーザ式距離検出器を搭載したことを
特徴とする請求項1〜3いずれか記載の原子炉圧力容器
ノズル部の探傷装置。
4. The flaw detector for a reactor pressure vessel nozzle according to claim 1, wherein at least two laser type distance detectors for detecting a distance from the nozzle are mounted on the carriage.
JP7111673A 1995-05-10 1995-05-10 Flaw detecting device of nuclear reactor pressure vessel nozzle part Pending JPH08304360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111673A JPH08304360A (en) 1995-05-10 1995-05-10 Flaw detecting device of nuclear reactor pressure vessel nozzle part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111673A JPH08304360A (en) 1995-05-10 1995-05-10 Flaw detecting device of nuclear reactor pressure vessel nozzle part

Publications (1)

Publication Number Publication Date
JPH08304360A true JPH08304360A (en) 1996-11-22

Family

ID=14567294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111673A Pending JPH08304360A (en) 1995-05-10 1995-05-10 Flaw detecting device of nuclear reactor pressure vessel nozzle part

Country Status (1)

Country Link
JP (1) JPH08304360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163750A (en) * 2013-02-22 2014-09-08 Ihi Corp Ultrasonic test device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163750A (en) * 2013-02-22 2014-09-08 Ihi Corp Ultrasonic test device

Similar Documents

Publication Publication Date Title
US5062301A (en) Scanning device for ultrasonic quality control of articles
EP2138838B1 (en) Ultrasonic inspection probe carrier system for performing nondestructive testing
JP2013529791A (en) Turbine disk mobile inspection system
JPS61226606A (en) Device for measuring roundness deviation of eccentric support surface
JPS608746A (en) Method and device for detecting defect of material
JP2001194352A (en) Ultrasonic inspection device for tubular member
JP2827741B2 (en) Oval pipe welding method and apparatus
JP5198112B2 (en) Piping inspection device and inspection method thereof
KR930017268A (en) Remote Vortex and Ultrasonic Inspection System of Turbine Generator Support Ring
JPH08304360A (en) Flaw detecting device of nuclear reactor pressure vessel nozzle part
CN113820469B (en) Ball tube intersecting weld joint detection equipment
CN114354750B (en) Plug weld phased array ultrasonic inspection device
JP2013092505A (en) Piping thickness measurement device
JP3591000B2 (en) Nozzle ultrasonic flaw detector
JPH0142037Y2 (en)
JPH0611595A (en) Flaw detector
JP2557944Y2 (en) Underwater mobile inspection system
JPH1082771A (en) Inspection device for drum section of vessel
JPS60228957A (en) Apparatus for holding ultrasonic flaw detector for piping
KR20190074648A (en) Moving guide device for boiler tube inspection
JPS61153562A (en) Ultrasonic flaw detecting device
JPH0798303A (en) Ultrasonic automatic crack detector
CN214147182U (en) Five-axis transmission structure of frame weld joint detection device
JPH0815478A (en) Ultrasonic flaw detector and ultrasonic probe for pressure vessel nozzle
KR101638814B1 (en) Body rotary type ultrasonic inspection device