JPH08303988A - Multilayer type aluminum heat exchanger with good corrosion resistance - Google Patents

Multilayer type aluminum heat exchanger with good corrosion resistance

Info

Publication number
JPH08303988A
JPH08303988A JP11481095A JP11481095A JPH08303988A JP H08303988 A JPH08303988 A JP H08303988A JP 11481095 A JP11481095 A JP 11481095A JP 11481095 A JP11481095 A JP 11481095A JP H08303988 A JPH08303988 A JP H08303988A
Authority
JP
Japan
Prior art keywords
corrosion resistance
brazing
heat exchanger
tube element
aluminum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11481095A
Other languages
Japanese (ja)
Inventor
Shoichi Furuta
正一 古田
Kanji Takasaki
完二 高崎
Masahiro Kojima
正博 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP11481095A priority Critical patent/JPH08303988A/en
Publication of JPH08303988A publication Critical patent/JPH08303988A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To improve the corrosion resistance by a method wherein a plurality of flat tube elements are brazed to fins through the interposition of a layer of Al-Si brazing material where this layer of brazing material contains Zn as specified. CONSTITUTION: A corrugated fin 2 is alternately placed on the outer side of an outermost tube element and also between each of a plurality of flat tube elements 1 arranged each vertically and in a multilayer structure from left to right and an adjacent tube element 1. The joining between adjacent tube elements 1 and between a tube element 1 and a corrugated fin is effected by brazing through the interposition of a layer of AN-Si brazing material 32 which contains 0.5-3.0wt.% Zn on the outer side of the core plates 3. At each of the tube elements 1 the joining between the core plates 3 is effected through the interposition of inner brazing-material layers 33 on the inner side of the core plates 3. This method enables a simple means to improve the corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばカーエアコン
用蒸発器や産業用ラジエータ、オイルクーラーとして使
用されるような積層型アルミニウム熱交換器、即ち冷媒
通路を有する複数枚の偏平チューブエレメントが、相互
間にフィンを包含する空気流通間隙を介して積層された
形式の熱交換器に関し、特に耐食性に優れた積層型アル
ミニウム熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated aluminum heat exchanger such as an evaporator for a car air conditioner, an industrial radiator, and an oil cooler, that is, a plurality of flat tube elements having a refrigerant passage, The present invention relates to a heat exchanger of a type in which air is enclosed by air gaps including fins between the heat exchangers, and more particularly, to a laminated aluminum heat exchanger having excellent corrosion resistance.

【0002】なお、この明細書において、「アルミニウ
ム」の語はアルミニウム及びアルミニウム合金を含む意
味で用いられる。
In this specification, the term "aluminum" is used to include aluminum and aluminum alloys.

【0003】[0003]

【従来の技術及び解決しようとする課題】この種積層型
熱交換器は、腐食環境下での使用に耐え得るものとする
ために、耐食性を付与されたものに構成されることがあ
る。
2. Description of the Related Art This type of laminated heat exchanger is sometimes constructed to have corrosion resistance in order to withstand use in a corrosive environment.

【0004】このような積層型熱交換器の従来の防食思
想は、チューブエレメントを高耐食性アルミニウムで構
成する一方、フィンをInやZn等の犠牲腐食効果のあ
る元素を添加したアルミニウムで構成し、チューブエレ
メント自身の高耐食性とフィンの犠牲腐食作用により、
チューブエレメントの耐食性を確保しようというもので
あった(例えば特開昭63−241137号)。
According to the conventional anti-corrosion concept of such a laminated heat exchanger, the tube element is made of highly corrosion resistant aluminum, while the fin is made of aluminum to which an element having a sacrificial corrosion effect such as In or Zn is added. Due to the high corrosion resistance of the tube element itself and the sacrificial corrosion action of the fins,
It was intended to ensure the corrosion resistance of the tube element (for example, JP-A-63-241137).

【0005】しかしながら、例えば排気ガス濃度の高い
過酷な環境下で使用されるような場合には、上記の防食
対策では不十分であり、早期にチューブエレメントの腐
食を生じるという問題があった。
However, for example, when used in a harsh environment where the exhaust gas concentration is high, the above anticorrosion measures are not sufficient, and there is a problem that the tube element is corroded early.

【0006】この発明は、このような事情に鑑みてなさ
れたものであって、さらに耐食性を向上した積層型熱交
換器の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a laminated heat exchanger having further improved corrosion resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明は、図面の符号を参照して示すと、複数個の
偏平状チューブエレメント(1)とフィン(2)とが交
互に積層されるとともに、これらチューブエレメント
(1)とフィン(2)とがAl−Si系ろう材層(32)
を介してろう付されてなる積層型アルミニウム熱交換器
において、前記ろう材層(32)にZn:0.5〜3.0
wt%が含有されていることを特徴とする耐食性に優れた
積層型アルミニウム熱交換器を要旨とする。
In order to achieve the above-mentioned object, the present invention shows a plurality of flat tube elements (1) and fins (2) alternately laminated, as shown with reference to the drawings. At the same time, the tube element (1) and the fin (2) are joined together to form an Al-Si brazing filler metal layer (32).
In the laminated aluminum heat exchanger brazed via, the brazing filler metal layer (32) has Zn: 0.5 to 3.0.
The gist is a laminated aluminum heat exchanger having excellent corrosion resistance, which is characterized by containing wt%.

【0008】また、望ましくはチューブエレメント
(1)が、心材(31)の少なくとも外面側にろう材層
(32)を有するブレージングシートからなり、前記心材
(31)がMn:0.5〜1.4wt%、Cu:0.3〜
1.0wt%、Ti:0.05〜0.15wt%を含有し、
残部アルミニウム及び不可避不純物からなるものである
のが良いし、さらにはろう付がフッ化物系フラックスを
用いて行われたものであることも望ましい。
Preferably, the tube element (1) is made of a brazing sheet having a brazing filler metal layer (32) on at least the outer surface side of the core material (31), and the core material (31) has Mn: 0.5-1. 4 wt%, Cu: 0.3-
1.0 wt%, Ti: 0.05 to 0.15 wt%,
It is preferable that the balance is aluminum and inevitable impurities, and it is also preferable that brazing is performed using a fluoride-based flux.

【0009】[0009]

【作用】チューブエレメント(1)とフィン(2)を接
合するAl−Si系ろう材層(32)に、Zn:0.5〜
3.0wt%が含有されているから、このZnがろう付時
の加熱により拡散してチューブエレメントの表面にZn
拡散層が形成される。そして、このZn拡散層が犠牲腐
食層として優先的に腐食され、チューブエレメント
(1)が防食される。
[Function] Zn: 0.5 to 0.5 is added to the Al-Si based brazing material layer (32) for joining the tube element (1) and the fin (2).
Since 3.0 wt% is contained, this Zn is diffused by the heating during brazing and diffuses to the surface of the tube element.
A diffusion layer is formed. Then, this Zn diffusion layer is preferentially corroded as a sacrificial corrosion layer to prevent the tube element (1) from being corroded.

【0010】[0010]

【実施例】以下、この発明を、カーエアコン用の積層型
アルミニウム蒸発器に適用した実施例について説明す
る。
EXAMPLE An example in which the present invention is applied to a laminated aluminum evaporator for a car air conditioner will be described below.

【0011】図6に示す蒸発器の全体図において、
(1)は垂直状態でかつ左右方向に積層された複数枚の
偏平状チューブエレメント、(2)はその隣接するチュ
ーブエレメント(1)(1)間および最外側のチューブ
エレメント(1)の外側に配置され、かつろう付接合一
体化されたコルゲートフィンである。
In the overall view of the evaporator shown in FIG.
(1) is a plurality of flat tube elements that are vertically stacked in the left-right direction, (2) is between adjacent tube elements (1) and (1) and outside the outermost tube element (1) The corrugated fins are arranged and integrated by brazing.

【0012】前記チューブエレメント(1)は、図1〜
図6に示すように、長さ方向の両端に膨出状のタンク部
(1a)(1b)を有すると共に、長さ方向の中間部に両タ
ンク部(1a)(1b)を連通する偏平状の冷媒通路(1c)
を有している。そして、各チューブエレメント(1)は
隣接するものどおしがタンク部(1a)(1b)において当
接状態にろう付接合されると共に、各タンク部(1a)
(1b)に設けた冷媒流通孔(1d)(1d)を介して隣接タ
ンク部相互が連通状態となされている。
The tube element (1) is shown in FIGS.
As shown in FIG. 6, it has flattened tank parts (1a) and (1b) at both ends in the length direction and communicates both tank parts (1a) and (1b) to the middle part in the length direction. Refrigerant passage (1c)
have. Then, the adjacent tube elements (1) are brazed to each other so that the adjacent tube elements (1) are in contact with each other at the tank portions (1a) and (1b).
Adjacent tank portions are in communication with each other through the refrigerant circulation holes (1d) (1d) provided in (1b).

【0013】前記各チューブエレメント(1)は、いず
れも2枚の皿状コアプレート(3)をその周端接合面
(3a)において対向状に重ね合わせ、ろう付一体化する
ことにより形成されている。このコアプレート(3)
は、プレス加工により形成されたもので、コアプレート
(3)相互の接合及びこれとコルゲートフィン(2)と
のろう付接合を容易に行わしめる目的で、その材料とし
て図3(b)に示すように芯材(31)の表裏両面に外側
ろう材層(32)と内側ろう材層(33)がクラッドされた
両面ブレージングシートが用いられている。
Each of the tube elements (1) is formed by superposing two dish-shaped core plates (3) on their peripheral end joint surfaces (3a) so as to face each other and integrally brazing them. There is. This core plate (3)
3B is formed by press working and is shown as a material in FIG. 3B for the purpose of easily joining the core plates (3) to each other and brazing the corrugated fins (2) together. Thus, a double-sided brazing sheet is used in which the outer brazing material layer (32) and the inner brazing material layer (33) are clad on both front and back surfaces of the core material (31).

【0014】上記コアプレート(3)は、最外側のチュ
ーブエレメント(1)を構成する外側コアプレート
(3)を除いて、両端部に外方突出状の膨出部(4)が
形成されている。最外側のチューブエレメント(1)の
外側コアプレート(3)は、図5に示すように、その両
端部ともにフラットな状態となされ下端部には幅方向に
沿って3つの冷媒流通孔(1d)が穿設されている。
The core plate (3), except for the outer core plate (3) constituting the outermost tube element (1), has outwardly protruding bulges (4) formed at both ends. There is. As shown in FIG. 5, the outer core plate (3) of the outermost tube element (1) is flat at both ends, and has three refrigerant flow holes (1d) at the lower end along the width direction. Has been drilled.

【0015】また上記各膨出部(4)の頂壁には、コア
プレート(3)の幅方向に沿って3つの冷媒流通孔(1
d)が穿設され、該流通孔(1d)を通じて隣接するチュ
ーブエレメント(1)のタンク部相互が連通状態となさ
れている。もっとも、図6に示す蒸発器の全体図におい
て、その右から4番目と5番目に位置するチューブエレ
メント(1)(1)の下側タンク部(1b)(1b)の相互
接合面、および同8番目と9番目に位置するチューブエ
レメント(1)(1)の上側タンク部(1a)(1a)の相
互接合面、および同12番目と13番目に位置するチュ
ーブエレメント(1)(1)の下側タンク部(1b)(1
b)の相互接合面をそれぞれ構成する前記膨出部(4)
の各頂壁には、上述のような冷媒流通孔は穿設されてお
らず、その頂壁が隣接するチューブエレメント(1)の
タンク部(1a)または(1b)相互の仕切りとして作用す
るようになされており、これにより全チューブエレメン
トで構成される冷媒通路が蛇行通路に形成されている。
Further, on the top wall of each bulged portion (4), there are three refrigerant flow holes (1) along the width direction of the core plate (3).
d) is bored so that the tank portions of the adjacent tube elements (1) communicate with each other through the flow holes (1d). However, in the overall view of the evaporator shown in FIG. 6, the mutual joining surfaces of the lower tank portions (1b) and (1b) of the tube elements (1) and (1) located at the fourth and fifth positions from the right and the same. The mutual joining surfaces of the upper tank parts (1a) and (1a) of the eighth and ninth tube elements (1) and (1), and of the twelfth and thirteenth tube elements (1) and (1) Lower tank part (1b) (1
The bulging portions (4) respectively constituting the mutual joint surfaces of b)
Each of the top walls is not provided with the above-mentioned refrigerant circulation holes, and the top walls function as a partition between the tank parts (1a) or (1b) of the adjacent tube elements (1). Thus, the refrigerant passage formed of all tube elements is formed in the meandering passage.

【0016】さらに、上記各コアプレート(3)の内面
には、一方の膨出部(4)から他方の膨出部(4)に向
かって真っ直ぐに延びた、結露水排水用溝としても機能
する凹陥状内方突出リブ(5)が上記プレートの幅方向
に所定間隔で突出形成されている。そして、かかるリブ
(5)を有する2枚のコアプレート(3)(3)を重ね
合わせることで、周端部(3a)どおしが接合されるとと
もに、図2および図3に実線と一点鎖線とで示すよう
に、両コアプレート(3)(3)のリブ(5)(5)ど
おしが交互に配置された状態となされ、かつ各リブ
(5)の先端部が、対向するコアプレート(3)のリブ
(5)相互間の平面部(6)に当接された交互配置状態
で接合され、チューブエレメント(1)の冷媒通路(1
c)内に、入口タンク部(1b)から出口タンク部(1a)
に向かって真っ直ぐに延びた複数の単位冷媒通路(1e)
が形成されている。
Further, the inner surface of each core plate (3) also functions as a groove for draining condensed water, which extends straight from one bulging portion (4) toward the other bulging portion (4). The recessed inward protruding ribs (5) are formed so as to protrude at predetermined intervals in the width direction of the plate. Then, the two core plates (3) and (3) having such ribs (5) are overlapped with each other to join the peripheral end portions (3a) to each other, and the solid line in FIG. 2 and FIG. As indicated by the chain line, the ribs (5) and (5) of the core plates (3) and (3) are alternately arranged, and the tips of the ribs (5) face each other. The ribs (5) of the core plate (3) are joined to each other in an alternating arrangement in which the ribs (5) are in contact with each other, and the refrigerant passages (1) of the tube element (1) are joined.
Inside c), from the inlet tank part (1b) to the outlet tank part (1a)
Multiple unit refrigerant passages (1e) extending straight toward
Are formed.

【0017】而して、上記のようなチューブエレメント
(1)の複数枚が、相互間にコルゲートフィン(2)を
介在配置せしめた状態で、隣接するものどおしがタンク
部(1a)(1b)において当接状態にろう付接合されてい
る。ここに、隣接チューブエレメント(1)(1)どう
し及びチューブエレメント(1)とコルゲートフィン
(2)との接合はコアプレート(3)の外側ろう材層
(32)を介して行われ、各チューブエレメント(1)に
おけるコアプレート(3)相互の接合はコアプレートの
内側ろう材層(33)を介して行われる。また、右最外側
のチューブエレメント(1)の下側タンク部(1b)に
は、冷媒入口管(7)が、また左最外側のチューブエレ
メント(1)の下側タンク部(1b)には冷媒出口管
(8)がそれぞれ前記冷媒流通孔(1d)を介して連通接
続されている。なお、図5および図6において、(9)
は最外側のコルゲートフィンの外側に配設されたサイド
プレートであり、これらのサイドプレートもブレージン
グシートによって形成され、最外側のフィンにろう付さ
れたものである。
Thus, the plurality of tube elements (1) as described above are adjacent to each other with the corrugated fins (2) interposed therebetween, and the adjacent tank portions (1a) ( In 1b), they are brazed and joined to each other. Here, the adjoining tube elements (1) and (1) are joined to each other and the tube element (1) and the corrugated fins (2) are joined together via the outer brazing material layer (32) of the core plate (3). The core plates (3) of the element (1) are joined to each other via the inner brazing material layer (33) of the core plate. The lower tank portion (1b) of the right outermost tube element (1) has a refrigerant inlet pipe (7), and the lower tank portion (1b) of the left outermost tube element (1) has a lower tank portion (1b). The refrigerant outlet pipes (8) are connected to each other through the refrigerant circulation holes (1d). 5 and 6, (9)
Is a side plate disposed outside the outermost corrugated fin, and these side plates are also formed by a brazing sheet and brazed to the outermost fin.

【0018】上記のような積層型蒸発器では、冷媒入口
管(7)から流入した冷媒は前記仕切りによって区画さ
れた各チューブエレメント群毎に方向転換して蛇行状に
流れ、出口管(8)から蒸発器外へと流出するものとな
されている。そして、この間に、チューブエレメント
(1)間に形成されたフィン(2)を含む空気流通間隙
を流通する空気と熱交換を行うものとなされている。
In the laminated evaporator as described above, the refrigerant flowing in from the refrigerant inlet pipe (7) changes its direction in each tube element group divided by the partition and flows in a meandering manner, and the outlet pipe (8). It is supposed to flow out from the evaporator to the outside. Then, during this period, heat exchange is performed with the air flowing through the air circulation gap including the fins (2) formed between the tube elements (1).

【0019】ところで、前述の通り、チューブエレメン
ト(1)を構成する2枚のコアプレート(3)(3)
は、アルミニウム心材(31)の内外両面にAl−Si系
ろう材層(32)(33)が被覆されたブレージングシート
からなるものである。この発明では、フィン(2)と接
合される外側ろう材層(32)には、Zn:0.5〜3.
0wt%が含有されなければならない。かかるZnは、チ
ューブエレメント(1)とフィン(2)とのろう付時の
加熱により心材(31)に拡散して犠牲防食層を形成し、
もって心材(31)ひいてはチューブエレメント(1)の
耐食性を向上させる役割を果たす。しかし、外側ろう材
層(32)中のZnが0.5wt%未満では上記効果に乏し
く耐食性の十分な向上を図ることができない。一方、
3.0wt%を越えて含有されると初期腐食が激しく腐食
生成物が多量に発生する。従って、外側ろう材層(32)
中のZn量は0.5〜3.0wt%とする必要がある。特
に好ましいZn含有量の下限値は2.0wt%、上限値は
2.5wt%である。
By the way, as described above, the two core plates (3) and (3) constituting the tube element (1).
Is a brazing sheet in which the inner and outer surfaces of the aluminum core material (31) are covered with Al-Si brazing filler metal layers (32) (33). In the present invention, the outer brazing material layer (32) joined to the fins (2) has Zn: 0.5-3.
Must contain 0 wt%. Such Zn diffuses into the core material (31) by heating when brazing the tube element (1) and the fin (2) to form a sacrificial anticorrosion layer,
Therefore, it plays a role of improving the corrosion resistance of the core material (31) and by extension the tube element (1). However, if the content of Zn in the outer brazing material layer (32) is less than 0.5 wt%, the above effect is poor and the corrosion resistance cannot be sufficiently improved. on the other hand,
If the content exceeds 3.0 wt%, the initial corrosion is severe and a large amount of corrosion products are generated. Therefore, the outer brazing material layer (32)
The amount of Zn in it is necessary to be 0.5 to 3.0 wt%. Particularly preferable Zn content has a lower limit of 2.0 wt% and an upper limit of 2.5 wt%.

【0020】外側ろう材層(32)においてZn添加のベ
ースとなるAl−Si系合金は、具体的な組成が限定さ
れるものではないが、良好なろう材機能を発揮させるた
めにSi:6.5〜13.0wt%を含有し、残部アルミ
ニウムからなるものが良い。ベースとなるAl−Si系
合金ろう材の一例としては、Si:6.8〜8.2wt%
を含み、残部がアルミニウム及び不純物からなるBA4
343等を挙げることができる。
The Al-Si alloy serving as a base to which Zn is added in the outer brazing filler metal layer (32) is not particularly limited in specific composition, but Si: 6 is used for exhibiting a good brazing filler metal function. It is preferable that the content of aluminum is 0.5 to 13.0 wt% and the balance is aluminum. As an example of the Al-Si alloy brazing material as a base, Si: 6.8 to 8.2 wt%
BA4 containing Al and the balance aluminum and impurities
343 etc. can be mentioned.

【0021】コアプレート(3)の内側ろう材層(33)
もAl−Si系合金によって形成されており、好ましく
は外側ろう材層(32)と同じくSi:6.5〜13.0
wt%を含有し、残部アルミニウムからなるものを用いる
のが良い。この内側ろう材層(33)には、必ずしもZn
は含有される必要はないが、チューブエレメント(1)
内を流通する熱交換媒体との関係で耐食性が要求される
場合には、Znを0.5〜3.0wt%の範囲で含有せし
めても良い。
Inner brazing material layer (33) of the core plate (3)
Is also formed of an Al-Si based alloy, and is preferably Si: 6.5 to 13.0 like the outer brazing filler metal layer (32).
It is preferable to use one that contains wt% and the balance is aluminum. This inner brazing material layer (33) does not necessarily have Zn
Need not be included, but tube element (1)
When corrosion resistance is required due to the relationship with the heat exchange medium flowing inside, Zn may be contained in the range of 0.5 to 3.0 wt%.

【0022】コアプレート(3)における心材(31)の
組成も限定されることはないが、さらなる耐食性の向上
を期するためには、耐食性のあるアルミニウムで構成す
るのが良い。かかるアルミニウムとして、耐食性、加工
性に優れたJIS3003等のAl−Mn系合金や、さ
らに耐食性に優れたMn0.5〜1.4wt%、Cu:
0.3〜1.0wt%、Ti:0.05〜0.15wt%を
含有し、残部アルミニウム及び不純物からなるもの等を
挙げ得る。また、前記フィン(2)の組成も何ら限定さ
れるものではなく、通常用いられるJIS3003合金
等を用いれば良い。
The composition of the core material (31) in the core plate (3) is not limited, but in order to further improve the corrosion resistance, it is preferable that the core material (31) is made of corrosion resistant aluminum. As such aluminum, an Al-Mn alloy such as JIS 3003 having excellent corrosion resistance and workability, Mn 0.5 to 1.4 wt% having excellent corrosion resistance, and Cu:
Examples thereof include those containing 0.3 to 1.0 wt% and Ti: 0.05 to 0.15 wt% with the balance aluminum and impurities. Further, the composition of the fin (2) is not limited at all, and a JIS3003 alloy or the like which is usually used may be used.

【0023】また、熱交換器の各部材の接合のためのろ
う付方法も、特に限定されることはないが、耐食性のさ
らなる向上の観点から非腐食性のフッ化物系フラックス
を用いたろう付法が好ましい。フッ化物系フラックスの
一例としては、45.8%KF−54.2%AlF3
共晶組成ないしはこれに近い組成範囲を含んで実質的に
錯体化された錯体混合物、KAlF4 、K2 AlF5
3 AlF6 、LiF等の錯体物を用いれば良い。
The brazing method for joining the respective members of the heat exchanger is not particularly limited, but from the viewpoint of further improving the corrosion resistance, a brazing method using a non-corrosive fluoride-based flux. Is preferred. As an example of a fluoride-based flux, a complex mixture of 45.8% KF-54.2% AlF 3 or a complex mixture substantially containing a eutectic composition or a composition range close to this, KAlF 4 , K 2 AlF. 5 ,
A complex such as K 3 AlF 6 or LiF may be used.

【0024】次に、この発明の効果を確認するため、以
下の試験を行った。
Next, the following tests were conducted to confirm the effects of the present invention.

【0025】即ち、同一組成の2枚のコアプレート
(3)(3)を重ね合わせたものを複数個用意し、これ
らとフィン(2)とを交互に積層して図1〜6に示すよ
うな積層型熱交換器に仮組した。ここに、コアプレート
(3)の心材(31)、外側ろう材層(32)、内側ろう材
層(33)及びフィン(2)の組成を表1に示すように各
種に設定した。また、各コアプレート(3)における心
材(31)の厚さは0.40mm、外側ろう材層(32)及
び外側ろう材層(33)の厚さはそれぞれ0.05mmと
し、フィン(2)の厚さは0.12mmとした。
That is, a plurality of core plates (3) and (3) having the same composition are superposed on each other, and the fins (2) and the core plates (3) are alternately laminated as shown in FIGS. It was temporarily assembled in a simple laminated heat exchanger. Here, the compositions of the core material (31), the outer brazing material layer (32), the inner brazing material layer (33) and the fin (2) of the core plate (3) were variously set as shown in Table 1. The core material (31) in each core plate (3) has a thickness of 0.40 mm, the outer brazing material layer (32) and the outer brazing material layer (33) each have a thickness of 0.05 mm, and the fin (2) Had a thickness of 0.12 mm.

【0026】次に、上記各組立体をろう付した。ろう付
は、No1の熱交換器については真空中で605℃×3
分加熱することにより行い、No2〜11の熱交換器に
ついては、フッ化物系フラックスの懸濁液に浸漬し乾燥
したのち、不活性ガス雰囲気中で600℃×3分加熱す
ることにより行った。
Next, the above-mentioned respective assemblies were brazed. Brazing is performed at 605 ° C x 3 in vacuum for No1 heat exchanger.
The heat exchangers No. 2 to 11 were immersed in a suspension of a fluoride flux and dried, and then heated in an inert gas atmosphere at 600 ° C. for 3 minutes.

【0027】そして、得られた各熱交換器につきSWA
ATによる腐食試験を行った。具体的には、ASTM人
工海水(NaCl:20.6g/l、MgCl2 ・6H
2 O:6g/l、Na2 SO4 :4.8g/l、CuC
2 ・2H2 O:1.4g/l、KCl:0.8g/
l、NaHCO3 :0.2g/l、KBr:0.2g/
l)と酢酸10ml/海水1l(pH2.8〜3.0)
の混合溶液(液温49℃)を30分噴霧したのち、湿潤
状態(49℃、98%RH)に90分置き、これを12
0分1サイクルとして繰り返したときのチューブエレメ
ント(1)に漏れを生じるまでの時間を測定した。その
結果を表1に示す。
Then, for each heat exchanger obtained, SWA
A corrosion test by AT was conducted. Specifically, ASTM artificial seawater (NaCl: 20.6g / l, MgCl 2 · 6H
2 O: 6 g / l, Na 2 SO 4 : 4.8 g / l, CuC
l 2 · 2H 2 O: 1.4g / l, KCl: 0.8g /
1, NaHCO 3 : 0.2 g / l, KBr: 0.2 g /
l) and acetic acid 10 ml / seawater 1 l (pH 2.8 to 3.0)
After spraying the mixed solution (solution temperature 49 ° C.) for 30 minutes, leave it in a wet state (49 ° C., 98% RH) for 90 minutes.
The time until leakage occurred in the tube element (1) when repeated as 0 minute 1 cycle was measured. Table 1 shows the results.

【0028】[0028]

【表1】 上記表1の結果から、外側ろう材層(32)にZnを0.
5〜3wt%の範囲で含有せしめた本発明実施品は、フィ
ン(2)にInを加えてその犠牲腐食効果を利用した従
来品(No1)に較べて漏れに至るまでの時間が長く、
耐食性が向上していることがわかる。また、Zn含有量
が0.5wt%未満のもの(No2及び7)では、耐食性
の向上効果に乏しく、Zn含有量が3wt%を越えるもの
(No6及び11)では、腐食生成物が多いものであっ
た。
[Table 1] From the results shown in Table 1 above, Zn was added to the outer brazing material layer (32) in an amount of 0.
The product of the present invention, which is contained in the range of 5 to 3 wt%, takes a longer time until leakage than the conventional product (No 1) in which In is added to the fin (2) and its sacrificial corrosion effect is utilized.
It can be seen that the corrosion resistance is improved. Further, if the Zn content is less than 0.5 wt% (Nos. 2 and 7), the effect of improving the corrosion resistance is poor, and if the Zn content exceeds 3 wt% (Nos. 6 and 11), there are many corrosion products. there were.

【0029】また、心材にAl−Cu−Mn−Ti合金
を用いた実施品(No8、9、10)は、JIS300
3合金を用いた実施品(No3、4、5)よりも耐食性
に優れていることもわかる。
The products (Nos. 8, 9 and 10) using the Al-Cu-Mn-Ti alloy as the core material are JIS300.
It can also be seen that the corrosion resistance is superior to the implementation products using No. 3 alloy (No. 3, 4, 5).

【0030】[0030]

【発明の効果】この発明は、上述の次第で、複数個の偏
平状チューブエレメントとフィンとが交互に積層される
とともに、これらチューブエレメントとフィンとがAl
−Si系ろう材層を介してろう付されてなる積層型アル
ミニウム熱交換器において、前記ろう材層にZn:0.
5〜3.0wt%が含有されていることを特徴とするもの
であるから、チューブエレメントの耐食性を向上でき、
ひいては耐食性に優れた積層型熱交換器の提供が可能と
なる。しかも、ろう材層に所定量のZnを含有させるだ
けで良いから、材料的にも安価であるとともに複雑な工
程も不要であり、簡易な手段で耐食性の向上効果を得る
ことができる。
As described above, according to the present invention, a plurality of flat tube elements and fins are alternately laminated and the tube elements and fins are made of Al.
In a laminated aluminum heat exchanger brazed through a Si-based brazing filler metal layer, Zn: 0.
Since it is characterized by containing 5 to 3.0 wt%, it is possible to improve the corrosion resistance of the tube element,
Consequently, it becomes possible to provide a laminated heat exchanger having excellent corrosion resistance. Moreover, since the brazing material layer only needs to contain a predetermined amount of Zn, the material is inexpensive, and complicated steps are not necessary, and the effect of improving corrosion resistance can be obtained by a simple means.

【0031】また、請求項2に記載の発明によれば、心
材がMn:0.5〜1.4wt%、Cu:0.3〜1.0
wt%、Ti:0.05〜0.15wt%を含有し、残部ア
ルミニウム及び不可避不純物からなるものであるから、
さらに耐食性を向上することができる。
According to the second aspect of the invention, the core material contains Mn: 0.5 to 1.4 wt% and Cu: 0.3 to 1.0.
wt%, Ti: 0.05 to 0.15 wt% is contained, and the balance is aluminum and inevitable impurities.
Furthermore, the corrosion resistance can be improved.

【0032】また、請求項3に記載の発明によれば、チ
ューブエレメントとフィンとのろう付を非腐食性のフッ
化物系フラックスを介して行うから、益々耐食性に優れ
た積層型熱交換器となし得る。
According to the third aspect of the present invention, since the brazing between the tube element and the fin is carried out via the non-corrosive fluoride flux, the laminated heat exchanger is further improved in corrosion resistance. You can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すもので、チューブエ
レメントのタンク部付近の拡大断面図である。
FIG. 1 shows an embodiment of the present invention and is an enlarged cross-sectional view in the vicinity of a tank portion of a tube element.

【図2】チューブエレメントを構成するコアプレートを
冷媒通路側から見た平面図である。
FIG. 2 is a plan view of a core plate forming a tube element as seen from a refrigerant passage side.

【図3】(a)は図2のIII −III 線断面図、(b)は
(a)の一部拡大図である。
3A is a sectional view taken along line III-III in FIG. 2, and FIG. 3B is a partially enlarged view of FIG.

【図4】(a)は図2のIVa −IVa 線断面図、(b)は
同じくIVb −IVb 線断面図である。
4A is a sectional view taken along line IVa-IVa in FIG. 2, and FIG. 4B is a sectional view taken along line IVb-IVb.

【図5】積層型蒸発器の一部を分離して示す斜視図であ
る。
FIG. 5 is a perspective view showing a part of the laminated evaporator separately.

【図6】積層型蒸発器の全体正面図である。FIG. 6 is an overall front view of a laminated evaporator.

【符号の説明】[Explanation of symbols]

1…チューブエレメント 2…フィン 31…心材 32…ろう材層 1 ... Tube element 2 ... Fin 31 ... Core material 32 ... Brazing material layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の偏平状チューブエレメント
(1)とフィン(2)とが交互に積層されるとともに、
これらチューブエレメント(1)とフィン(2)とがA
l−Si系ろう材層(32)を介してろう付されてなる積
層型アルミニウム熱交換器において、 前記ろう材層(32)にZn:0.5〜3.0wt%が含有
されていることを特徴とする耐食性に優れた積層型アル
ミニウム熱交換器。
1. A plurality of flat tube elements (1) and fins (2) are alternately laminated, and
These tube elements (1) and fins (2) are A
A laminated aluminum heat exchanger brazed through an l-Si based brazing filler metal layer (32), wherein the brazing filler metal layer (32) contains Zn: 0.5 to 3.0 wt%. Laminated aluminum heat exchanger with excellent corrosion resistance.
【請求項2】 チューブエレメント(1)が、心材(3
1)の少なくとも外面側にろう材層(32)を有するブレ
ージングシートからなり、前記心材(31)がMn:0.
5〜1.4wt%、Cu:0.3〜1.0wt%、Ti:
0.05〜0.15wt%を含有し、残部アルミニウム及
び不可避不純物からなるものである請求項1に記載の耐
食性に優れた積層型アルミニウム熱交換器。
2. The tube element (1) comprises a core material (3
1) made of a brazing sheet having a brazing material layer (32) on at least the outer surface side, and the core material (31) has a Mn: 0.
5 to 1.4 wt%, Cu: 0.3 to 1.0 wt%, Ti:
The laminated aluminum heat exchanger having excellent corrosion resistance according to claim 1, wherein the laminated aluminum heat exchanger contains 0.05 to 0.15 wt% and the balance is aluminum and inevitable impurities.
【請求項3】 ろう付がフッ化物系フラックスを用いて
行われたものである請求項1または2に記載の耐食性に
優れた積層型アルミニウム熱交換器。
3. The laminated aluminum heat exchanger with excellent corrosion resistance according to claim 1, wherein the brazing is performed using a fluoride-based flux.
JP11481095A 1995-05-12 1995-05-12 Multilayer type aluminum heat exchanger with good corrosion resistance Pending JPH08303988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481095A JPH08303988A (en) 1995-05-12 1995-05-12 Multilayer type aluminum heat exchanger with good corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11481095A JPH08303988A (en) 1995-05-12 1995-05-12 Multilayer type aluminum heat exchanger with good corrosion resistance

Publications (1)

Publication Number Publication Date
JPH08303988A true JPH08303988A (en) 1996-11-22

Family

ID=14647258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481095A Pending JPH08303988A (en) 1995-05-12 1995-05-12 Multilayer type aluminum heat exchanger with good corrosion resistance

Country Status (1)

Country Link
JP (1) JPH08303988A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056363B2 (en) 2008-11-25 2015-06-16 Solvay Fluor Gmbh Anticorrosive flux
US9579752B2 (en) 2010-02-10 2017-02-28 Solvay Fluor Gmbh Flux forming an insoluble brazing residue
EP2969308B1 (en) 2013-03-13 2018-08-29 Novelis, Inc. Brazing sheet core alloy for heat exchanger
WO2021070794A1 (en) * 2019-10-11 2021-04-15 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger and heat exchanger for air conditioning device
WO2021070793A1 (en) * 2019-10-11 2021-04-15 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger, joint structure of brazing sheet for heat exchanger, method for joining brazing sheet for heat exchanger, and heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056363B2 (en) 2008-11-25 2015-06-16 Solvay Fluor Gmbh Anticorrosive flux
US9579752B2 (en) 2010-02-10 2017-02-28 Solvay Fluor Gmbh Flux forming an insoluble brazing residue
EP2969308B1 (en) 2013-03-13 2018-08-29 Novelis, Inc. Brazing sheet core alloy for heat exchanger
WO2021070794A1 (en) * 2019-10-11 2021-04-15 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger and heat exchanger for air conditioning device
WO2021070793A1 (en) * 2019-10-11 2021-04-15 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger, joint structure of brazing sheet for heat exchanger, method for joining brazing sheet for heat exchanger, and heat exchanger
JP2021063263A (en) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger, joint structure of brazing sheet for heat exchanger, and heat exchanger
JP2021063264A (en) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 Brazing sheet for heat exchanger and heat exchanger for air conditioner
CN113453840A (en) * 2019-10-11 2021-09-28 松下知识产权经营株式会社 Brazing sheet for heat exchanger, joining structure of brazing sheet for heat exchanger, joining method of brazing sheet for heat exchanger, and heat exchanger

Similar Documents

Publication Publication Date Title
EP1211473B1 (en) Heat exchanger of aluminium
EP0131444A1 (en) Heat exchanger and method of manufacturing same
JP4560902B2 (en) Heat exchanger and manufacturing method thereof
JPH07227695A (en) Flux for brazing, heat exchanger and production of heat exchanger
JP4236183B2 (en) Aluminum alloy clad material for automotive heat exchanger
JPS63112065A (en) Heat exchanger made of aluminum
US20050006066A1 (en) Heat exchanger useful as charge-air cooler for commercial vehicles
JPH08136183A (en) Laminated type heat exchanger
EP3234490B1 (en) Aluminum alloy finned heat exchanger
JPH08303988A (en) Multilayer type aluminum heat exchanger with good corrosion resistance
JPH0933190A (en) Laminate heat exchanger
JP3704178B2 (en) Aluminum material for brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
JP3753794B2 (en) Aluminum material for vacuum brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
JP3852047B2 (en) Aluminum laminated oil cooler
JPH10122788A (en) Aluminum material for vacuum brazing, and drawn cup type heat-exchanger being excellent in anticorrosive property using the material
JP4745710B2 (en) Brazing method of heat exchanger
JP3774044B2 (en) Aluminum heat exchanger
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP4736847B2 (en) Heat exchanger and manufacturing method thereof
JPH093580A (en) Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JP2000158070A (en) Tube for heat exchanger
JP2014047997A (en) Aluminum heat exchanger for room air conditioner
JP2002243385A (en) Heat exchanger
JP2005307252A (en) Aluminum alloy clad material for automobile heat exchanger
JPH09138093A (en) Drawn cup type heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111