JPH08302475A - Production of metal-coated rare-earth element-containing powder - Google Patents

Production of metal-coated rare-earth element-containing powder

Info

Publication number
JPH08302475A
JPH08302475A JP7136149A JP13614995A JPH08302475A JP H08302475 A JPH08302475 A JP H08302475A JP 7136149 A JP7136149 A JP 7136149A JP 13614995 A JP13614995 A JP 13614995A JP H08302475 A JPH08302475 A JP H08302475A
Authority
JP
Japan
Prior art keywords
electroless plating
powder
metal
earth element
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7136149A
Other languages
Japanese (ja)
Other versions
JP3377650B2 (en
Inventor
Yukihiro Tamiya
幸広 田宮
Taku Sugiura
卓 杉浦
Toshinobu Takahata
敏伸 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13614995A priority Critical patent/JP3377650B2/en
Publication of JPH08302475A publication Critical patent/JPH08302475A/en
Application granted granted Critical
Publication of JP3377650B2 publication Critical patent/JP3377650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the dissolution loss of a rare-earth metal at the time of coating the surface of a rare-earth element-contg. powder with metal in an alkaline electroless plating bath by conducting catalysis imparting treatment and electroless plating as the pretreatment under specified conditions. CONSTITUTION: The surface of the powder of a rare-earth element-contg. material such as a rare-earth metal alloy and the oxide of a rare-earth element is electroless-plated with a metal such as Cu. In this case, the catalysis imparting treatment to deposit a metal such as Pd on the powder surface is previously conducted, and then the powder is dipped in an electroless plating bath to deposit a Cu plating film on the surface. In this catalysis imparting treatment by Pd, etc., the powder is dipped in a catalysis imparting soln. kept at pH 5-12.5 and 20-50 deg.C for >=10min to deposit Pd on the surface as an electroless plating catalyst. Subsequently, the powder is dispersed in a soln. contg. 0.2-1.5mol/l reducing agent and then dipped in an aq. soln. not contg. the reducing agent and contg. a Cu salt for 10-120sec to form a Cu coating film without damaging the rare-earth metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類酸化物等の希土
類元素含有粉体への触媒金属の付与、あるいはマイクロ
カプセル化した水素吸蔵合金への利用が可能な金属被覆
希土類元素含有粉体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a metal-coated rare earth element-containing powder which can be applied to a rare earth element-containing powder such as a rare earth oxide or the like, or can be used as a microencapsulated hydrogen storage alloy. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】希土類酸化物や希土類合金などの希土類
元素含有物は、触媒担持用、水素吸蔵合金材料あるいは
磁石材料として利用されている。しかし、触媒として使
用する場合には、希土類含有物の表面にパラジウムなど
の金属を担持する必要があり、また、水素吸蔵合金ある
いは磁石材料として使用するためには、形状保持性や耐
蝕性の改善を行うために表面に金属被覆層を設ける必要
がある。湿式法により金属被覆層を設ける方法として
は、電気めっき法と無電解めっき法とがあるが、非導電
性物質にも金属被覆層を設けることができるという点を
考慮すると、無電解めっきの方が有利である。無電解め
っきを施すに際しては、前処理として被めっき材料の表
面に、触媒となる銀やパラジウムなどを吸着させる触媒
付与処理を行った後、該被めっき材料を金属塩、金属錯
化剤、pH調整剤、還元剤などを含む無電解めっき浴に
浸漬して、めっき金属による金属被覆層を形成させるの
が一般的な手法である。
2. Description of the Related Art Rare earth element-containing materials such as rare earth oxides and rare earth alloys are used as catalyst supports, hydrogen storage alloy materials or magnet materials. However, when it is used as a catalyst, it is necessary to support a metal such as palladium on the surface of the rare earth-containing material, and in order to use it as a hydrogen storage alloy or a magnet material, it is necessary to improve its shape retention and corrosion resistance. In order to carry out, it is necessary to provide a metal coating layer on the surface. As a method for providing a metal coating layer by a wet method, there are an electroplating method and an electroless plating method. However, considering that a metal coating layer can be provided on a non-conductive substance, the electroless plating method is preferable. Is advantageous. When performing electroless plating, a catalyst-providing treatment for adsorbing silver or palladium as a catalyst is performed on the surface of the material to be plated as a pretreatment, and then the material to be plated is subjected to a metal salt, a metal complexing agent, pH. It is a general method to form a metal coating layer of plating metal by immersing it in an electroless plating bath containing a modifier, a reducing agent and the like.

【0003】[0003]

【発明が解決しようとする課題】上記した方法により、
希土類元素含有粉体の表面に金属被覆層を形成させる場
合、該粉体の表面の触媒付与を一般的に使用されている
塩酸酸性タイプの付与液を使用すると、希土類元素含有
粉体が化学的に溶解したり、触媒付与が十分に行われな
かったりして、健全な無電解めっき層の形成が行われな
い。また、無電解めっき処理を行うに際しても、通常め
っき金属として銀やパラジウムをめっきする場合には、
無電解めっき浴として、pH12以上の高アルカリ浴が
使用されるが、無電解めっき浴にこのような高アルカリ
性のめっき浴を使用するときは、希土類元素含有粉体が
化学的に溶解するために、やはり健全な無電解めっき層
の形成が行われず、従って品質のよい金属被覆希土類元
素含有粉体を得ることができない。
According to the above method,
When a metal coating layer is formed on the surface of a rare earth element-containing powder, a rare acid element-containing powder can be chemically treated by using a hydrochloric acid acidic type application liquid that is generally used to apply a catalyst to the surface of the powder. Therefore, a sound electroless plating layer cannot be formed due to the fact that the electroless plating layer dissolves in the solution or the catalyst is not sufficiently applied. Also, when performing electroless plating treatment, when silver or palladium is usually plated as the plating metal,
As the electroless plating bath, a highly alkaline bath having a pH of 12 or more is used. However, when such a highly alkaline plating bath is used, since the rare earth element-containing powder is chemically dissolved, However, since a sound electroless plating layer is not formed, a high quality metal-coated rare earth element-containing powder cannot be obtained.

【0004】本発明は、希土類元素含有粉体の無電解め
っき処理による金属被覆の形成に際しての上記した問題
点を排除し、希土類元素含有粉体の溶解を極力少なくし
て、健全な無電解めっき層を有する金属被覆希土類元素
含有粉体を製造する方法を提供することを目的とするも
のである。
The present invention eliminates the above problems in forming a metal coating by electroless plating of a rare earth element-containing powder, and reduces the dissolution of the rare earth element-containing powder as much as possible to achieve sound electroless plating. It is an object of the present invention to provide a method for producing a metal-coated rare earth element-containing powder having a layer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、希土類元素含有粉体を、アルカリ性無電
解めっき浴を使用した無電解めっき法により金属被覆す
る方法において、無電解めっきの前処理としての触媒付
与処理を、触媒付与液のpHを5〜12.5とし、浴温
20〜50℃で0.5〜10分間行い、次いで行なわれ
る無電解めっき処理における処理時間を10分間以下と
したことを特徴とする金属被覆希土類元素含有粉体の製
造方法である。
Means for Solving the Problems The present invention for achieving the above-mentioned object is a method of metal-coating a rare earth element-containing powder by an electroless plating method using an alkaline electroless plating bath. The catalyst application treatment as a pretreatment is carried out at a bath temperature of 20 to 50 ° C. for 0.5 to 10 minutes with the catalyst application liquid having a pH of 5 to 12.5. The method for producing a metal-coated rare earth element-containing powder is characterized in that the time is not more than minutes.

【0006】本発明において、触媒付与処理後の希土類
元素含有粉体は、0.2〜1.5モル/リットルの還元
剤含有溶液中に分散させた後に、該分散液を10〜12
0秒の添加時間で、還元剤を含まぬ無電解めっき液中に
添加するようにして無電解めっき処理を行うことが好ま
しい。
In the present invention, the rare earth element-containing powder after the catalyst application treatment is dispersed in a reducing agent-containing solution of 0.2 to 1.5 mol / liter, and then the dispersion is added to 10 to 12 thereof.
It is preferable to perform the electroless plating treatment such that the reducing agent is added to the electroless plating solution containing no reducing agent at an addition time of 0 seconds.

【0007】[0007]

【作用】以下に本発明の詳細およびその作用についてさ
らに具体的に説明する。希土類元素含有物は、通常耐薬
品性が乏しく、酸性溶液や金属錯化剤を多量に含有する
高アルカリ性浴に浸漬すると極めて容易に化学的な溶解
が起こる。そしてこの溶解作用は処理温度の上昇や処理
時間の経過とともに著しく進行する。
The function of the present invention and its function will be described more specifically below. The rare earth element-containing material usually has poor chemical resistance, and when it is immersed in an acidic solution or a highly alkaline bath containing a large amount of a metal complexing agent, chemical dissolution occurs extremely easily. Then, this dissolving action remarkably progresses as the treatment temperature rises and the treatment time elapses.

【0008】本発明において、無電解めっきの前処理と
して行われる触媒付与処理において、触媒付与液のpH
を5〜12.5とし、処理温度を20〜50℃とし、ま
た処理時間を0.5〜10分間としたのは、該触媒付与
液のpHが5よりも低く、また12.5を超えると、処
理温度や処理時間に関わりなく、希土類元素含有物の溶
解が無視し得ぬ程進行してしまい、また処理温度が50
℃を超え、処理時間が10分間を超えた場合には、液の
pHを本発明の範囲内に調整しても溶解が進行してしま
うからである。また、処理温度が20℃未満では、液温
の管理が難しくなり、処理時間が0.5分よりも短くな
ると処理が不均一となるのでいずれも好ましくない。し
かし、この処理温度や、処理時間の下限値は、専ら作業
性に基づく限界値であり、設備などの改良によりさらに
低い値とすることは可能である。
In the present invention, the pH of the catalyst-applied liquid in the catalyst-applied treatment performed as a pretreatment for electroless plating.
Is set to 5 to 12.5, the treatment temperature is set to 20 to 50 ° C., and the treatment time is set to 0.5 to 10 minutes because the pH of the catalyst application liquid is lower than 5 and exceeds 12.5. Irrespective of the treatment temperature and the treatment time, the dissolution of the rare earth element-containing substance progresses to a non-negligible level, and the treatment temperature is 50
This is because if the temperature exceeds 0 ° C and the treatment time exceeds 10 minutes, the dissolution will proceed even if the pH of the liquid is adjusted within the range of the present invention. Further, if the treatment temperature is lower than 20 ° C., it becomes difficult to control the liquid temperature, and if the treatment time is shorter than 0.5 minutes, the treatment becomes nonuniform, which is not preferable. However, the lower limit values of the processing temperature and the processing time are limit values based solely on workability, and can be set to lower values by improving equipment and the like.

【0009】さらに本発明においては、無電解メッキ処
理の反応終了時間を10分以内に限定しているが、該時
間内で所望の金属被覆層の形成が完了し、これ以上反応
を継続すると希土類元素含有物の溶解が進行するからで
ある。そしてこのような短時間の処理によって反応を終
了させるためには、触媒付与処理を施した希土類元素含
有物を予め0.2〜1.5モル/リットルの還元剤を含
む溶液中に分散させておいて、その分散溶液を還元剤を
含まない無電解めっき浴に添加して無電解めっき処理す
ることが好ましい。これは、触媒付与した希土類元素含
有粉体を還元剤を含む溶液中に分散させることにより、
希土類元素含有粉体に吸着した錫またはパラジウムなど
の触媒金属の表面に、通常の無電解めっき浴よりも高濃
度の還元剤を有する液膜層が形成され、これによって酸
化還元電位が卑となるために強い還元力を生じ、無電解
メッキの反応開始が早まることに由来するものと思われ
る。
Further, in the present invention, the reaction completion time of the electroless plating treatment is limited to 10 minutes or less. However, when the formation of the desired metal coating layer is completed within this time and the reaction is continued for a longer time, the rare earth element is added. This is because the dissolution of the element-containing material proceeds. In order to terminate the reaction by such a short time treatment, the rare earth element-containing material that has been subjected to the catalyst application treatment is previously dispersed in a solution containing 0.2 to 1.5 mol / liter of a reducing agent. In addition, it is preferable that the dispersion solution is added to an electroless plating bath containing no reducing agent for electroless plating. This is achieved by dispersing the catalyst-containing rare earth element-containing powder in a solution containing a reducing agent,
On the surface of the catalyst metal such as tin or palladium adsorbed on the rare earth element-containing powder, a liquid film layer having a higher concentration of the reducing agent than that of the usual electroless plating bath is formed, which makes the redox potential base. It is considered that this is because the strong reducing power is generated and the reaction start of the electroless plating is accelerated.

【0010】この場合において、還元剤濃度が0.2モ
ル/リットルよりも低い場合には、酸化還元電位が十分
に卑とならず、従って無電解めっき反応の開始が遅れ、
また、還元剤濃度が1.5モル/リットルよりも高い場
合には、無電解めっき反応に際して、希土類元素含有粉
体同士が凝集して金属被覆が均一に行われ難くなるから
である。また、分散液を10〜120秒の添加時間範囲
内で無電解めっき浴中に添加するが、これは無電解めっ
き中でのメッキ金属の析出性と粉体の浴中への分散性を
最適状態にするためであって、添加時間が10秒よりも
短い場合には、局部的にめっき金属の析出反応が進行
し、希土類元素含有粉体の凝集、または無電解めっき浴
の自己分解によって金属粉末が生成が起こる恐れがあ
り、また、120秒よりも長いと、添加時間の差により
粉体表面尾金属被覆の厚さに差を生じて均一な金属被覆
層を有する粉体が得られなくなるからである。
In this case, when the concentration of the reducing agent is lower than 0.2 mol / liter, the redox potential is not sufficiently base, so that the start of the electroless plating reaction is delayed.
Further, when the reducing agent concentration is higher than 1.5 mol / liter, the rare earth element-containing powders aggregate with each other during the electroless plating reaction, and it becomes difficult to uniformly coat the metal. In addition, the dispersion liquid is added to the electroless plating bath within the addition time range of 10 to 120 seconds, which is optimum for the deposition property of the plating metal during electroless plating and the dispersibility of the powder in the bath. If the addition time is shorter than 10 seconds, the deposition reaction of the plating metal locally progresses, the rare earth element-containing powder agglomerates, or the self-decomposition of the electroless plating bath causes the metal. The powder may be generated, and if it is longer than 120 seconds, a difference in the addition time causes a difference in the thickness of the metal coating on the surface of the powder, which makes it impossible to obtain a powder having a uniform metal coating layer. Because.

【0011】[0011]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0012】実施例1 粒子径が30μm以下の酸化ランタン粉体(和光純薬工
業社製)100gを、OPC−50インデューサー(小
野製薬工業社製)の50ミリリットル/リットル溶液l
リットルを使用して、ペラー撹拌しながら、40℃で2
分間処理した後、濾過、レパルピング水洗、濾過を行
い、次いで処理後の粉体をOPC−150クリスター
(小野製薬工業社製)の150ミリリットル/リットル
溶液1リットルを使用して、ペラー撹拌しながら、25
℃で5分間処理した後、濾過、レパルプ洗浄、濾過を行
って触媒付与処理を施した。上記の処理で使用した触媒
付与液のpHは、それぞれ12.2および8.5であっ
た。その後、粉体を処理した液のpHを無電解めっき液
と同じpH値である12.5に調整し、65℃に加温し
た0.25モル/リットルのホルマリン溶液14リット
ル中に添加し、この溶液を撹拌しながら、表1に示す還
元剤を含まぬ無電解めっき浴中に30秒間かけて添加
し、銅含有量が50重量%となるようにしてめっき被膜
を粉体表面に銅被膜を形成させた。この場合において
は、無電解めっきの処理時間は5分間であった。
Example 1 100 g of a lanthanum oxide powder (made by Wako Pure Chemical Industries, Ltd.) having a particle diameter of 30 μm or less was mixed with 50 ml / l of a solution of OPC-50 inducer (made by Ono Pharmaceutical Co., Ltd.).
2 at 40 ° C. with peller stirring using 1 liter
After treatment for 1 minute, filtration, repulping water washing, and filtration are carried out, and then the treated powder is used with 1 liter of a 150 ml / liter solution of OPC-150 crystal (Ono Pharmaceutical Co., Ltd.) while stirring with a peller, 25
After treatment at 5 ° C. for 5 minutes, filtration, repulp washing and filtration were performed to carry out a catalyst application treatment. The pH of the catalyst application liquid used in the above treatment was 12.2 and 8.5, respectively. After that, the pH of the solution treated with the powder was adjusted to 12.5 which is the same pH value as the electroless plating solution, and added to 14 liters of a 0.25 mol / liter formalin solution heated to 65 ° C., While stirring this solution, it was added to the electroless plating bath containing no reducing agent shown in Table 1 over 30 seconds, and a plating film was formed on the powder surface so that the copper content became 50% by weight. Was formed. In this case, the electroless plating treatment time was 5 minutes.

【0013】[0013]

【表1】 (浴組成) CuSO4 ・5H2 0 :10g/リットル EDTA・2Na :30g/リットル α−α´ジピリジル :0.02g/リットル ポリエチレングリコール :0.5g/リットル pH :12.5 (処理条件) 液量 :40リットル 温度 :65℃ 撹拌 :ペラー撹拌 無電解めっき処理後の銅イオンは、50mg/リットル
以下になっており、ほぼ全量の銅が析出していることが
確認できた。
(Bath composition) CuSO4 · 5H20: 10 g / liter EDTA · 2Na: 30 g / liter α-α ′ dipyridyl: 0.02 g / liter Polyethylene glycol: 0.5 g / liter pH: 12.5 (treatment condition ) Liquid amount: 40 liters Temperature: 65 ° C. Stirring: Peller stirring After the electroless plating, the amount of copper ions was 50 mg / liter or less, and it was confirmed that almost all copper was deposited.

【0014】その後、試料を十分に水洗し、表2に示す
銅の防錆液によって処理をした。
Thereafter, the sample was thoroughly washed with water and treated with the copper anticorrosive solution shown in Table 2.

【0015】[0015]

【表2】 (液組成) ベンゾトリアゾール :1g/リットル 液量 :10リットル 温度 :50℃ 時間 :15分 撹拌 :ペラー撹拌 処理後の試料を十分に水洗し、40℃で48時間の真空
乾燥を行い、試料表面の観察およびEPMAによる元素
分析を行った。その結果、酸化ランタンの表面にはすべ
て銅が検出され、銅の未析出部分は見られなかった。ま
た、銅被覆酸化ランタン粉体の重量を測定したところ、
198.2gであり、酸化ランタンの溶解損失量は1.
8%と極めて少なかった。この結果によれば、本発明の
方法によれば、酸化ランタンをほとんど溶解することな
く、銅被覆酸化ランタン粉体の製造を行うことができる
ことが分かる。
[Table 2] (Liquid composition) Benzotriazole: 1 g / liter Liquid volume: 10 liter Temperature: 50 ° C Time: 15 minutes Stirring: Peller stirring The treated sample was thoroughly washed with water and vacuum dried at 40 ° C for 48 hours. The sample surface was observed and elemental analysis was performed by EPMA. As a result, all copper was detected on the surface of the lanthanum oxide, and no non-precipitated portion of copper was found. Further, when the weight of the copper-coated lanthanum oxide powder was measured,
198.2 g, and the dissolution loss amount of lanthanum oxide was 1.
It was extremely low at 8%. According to this result, it can be seen that according to the method of the present invention, the copper-coated lanthanum oxide powder can be produced with almost no dissolution of lanthanum oxide.

【0016】実施例2 水素吸蔵合金であるLa0.6 Nd0.4 Ni5
合金(住友金属鉱山社製)100gを使用し、実施例1
と同様にして銅被覆La0.6 Nd0.4Ni5 の
製造を行った。
Example 2 La0.6Nd0.4Ni5 which is a hydrogen storage alloy
Example 1 using 100 g of alloy (Sumitomo Metal Mining Co., Ltd.)
Copper-clad La0.6Nd0.4Ni5 was manufactured in the same manner as in.

【0017】表面観察の結果、La0.6 Nd0.4
Ni5 の表面にはすべて銅が検出された。また、銅
被覆La0.6 Nd0.4 Ni5 粉体の重量を測
定したところ、199.1gであり、La0.6 Nd
0.4 Ni5 の溶解損失量は極めて少なかった。こ
の結果より、本発明の方法によるときは、La0.6N
d0.4 Ni5 をほとんど溶解することなく、銅被
覆La0.6 Nd0.4 Ni5 粉体の製造を行う
ことができることが分かる。
As a result of surface observation, La0.6 Nd0.4
Copper was all detected on the surface of Ni5. The weight of the copper-coated La0.6Nd0.4Ni5 powder was measured and found to be 199.1 g.
The dissolution loss of 0.4 Ni5 was extremely small. From this result, according to the method of the present invention, La0.6N
It can be seen that the copper-coated La0.6Nd0.4Ni5 powder can be manufactured with almost no dissolution of d0.4Ni5.

【0018】実施例3 酸化ネオジウム(和光純薬工業社製)粉体を使用した以
外は、実施例1と同様にして、銅被覆酸化ネオジウムの
製造を行った。
Example 3 Copper-coated neodymium oxide was produced in the same manner as in Example 1 except that neodymium oxide (Wako Pure Chemical Industries, Ltd.) powder was used.

【0019】表面観察の結果、酸化ネオジウムの表面に
は、すべて銅が検出された。また銅被覆ネオジウム粉体
の重量を測定したところ190.7gであり、酸化ネオ
ジウムの溶解損失量は極めて少なかった。この結果よ
り、本発明の方法によれば、酸化ネオジウムをほとんど
溶解することなく、銅被覆酸化ネオジウムの製造を行う
ことができることが分かる。
As a result of observing the surface, all copper was detected on the surface of neodymium oxide. The weight of the copper-coated neodymium powder was measured and found to be 190.7 g, indicating that the dissolution loss of neodymium oxide was extremely small. From these results, it can be seen that the method of the present invention can produce copper-coated neodymium oxide with almost no dissolution of neodymium oxide.

【0020】比較例1 pHが1以下である触媒付与液OPC−80キャタリス
トM(奥野製薬工業社製)80ミリリットル/リットル
溶液と0PC−555アクセレーター(奥野製薬工業社
製)とを使用した以外は、実施例1と同様にして銅被覆
ランタン粉体を製造した。
Comparative Example 1 A catalyst application liquid OPC-80 Catalyst M (manufactured by Okuno Chemical Industries Co., Ltd.) having a pH of 1 or less, 80 ml / liter solution and 0PC-555 accelerator (manufactured by Okuno Pharmaceutical Co., Ltd.) were used. A copper-coated lanthanum powder was produced in the same manner as in Example 1 except for the above.

【0021】その結果、触媒付与時における酸化ランタ
ンの溶解が認められ、乾燥後の重量を測定したところ1
23.6gであり、酸化ランタンの76.4%が溶解し
ていた。この結果から、触媒付与処理にpH1以下の処
理液を使用した場合には、大部分の酸化ランタンが溶解
し、健全な銅被覆酸化ランタン粉体の製造は不可能であ
ることが分かった。
As a result, dissolution of lanthanum oxide was observed when the catalyst was applied, and the weight after drying was measured to be 1
It was 23.6 g, and 76.4% of lanthanum oxide was dissolved. From this result, it was found that when a treatment liquid having a pH of 1 or less was used for the catalyst application treatment, most of the lanthanum oxide was dissolved and a sound copper-coated lanthanum oxide powder could not be produced.

【0022】比較例2 触媒付与処理後の粉体を、撹拌しながら、還元剤を含ま
ない無電解銅めっき浴中に添加し、5分間放置後、pH
を12.5に調整した0.25モル/リットルのホルマ
リン溶液14リットルを60秒かけて添加した以外は実
施例1と同様にして銅被覆酸化ランタン粉体を製造し
た。
Comparative Example 2 The catalyst-treated powder was added to a reducing agent-free electroless copper plating bath with stirring, and the mixture was allowed to stand for 5 minutes.
A copper-coated lanthanum oxide powder was produced in the same manner as in Example 1 except that 14 liters of a 0.25 mol / liter formalin solution adjusted to 12.5 was added over 60 seconds.

【0023】その結果、表面観察においては酸化ランタ
ンの表面すべてに銅が観察されたが、乾燥後の重量を測
定したところ166.2gであり、酸化ランタンの3
3.8%が溶解していた。この結果から、酸化ランタン
粉体を、還元剤を含まない無電解銅めっき浴中に分散さ
せた後、還元剤を添加する方法では、健全な銅被覆酸化
ランタン粉体を製造することは不可能であることが分か
った。
As a result, in the surface observation, copper was observed on the entire surface of the lanthanum oxide, but when the weight after drying was measured, it was 166.2 g.
3.8% was dissolved. From this result, it is impossible to produce a sound copper-coated lanthanum oxide powder by the method of adding the reducing agent after dispersing the lanthanum oxide powder in the electroless copper plating bath containing no reducing agent. It turned out that

【0024】比較例3 ホルマリン溶液中に分散させた触媒付与処理後の酸化ラ
ンタン分散液を10分間かけてホルマリンを含まない無
電解銅めっき浴中に添加した以外は実施例1と同様にし
て銅被覆酸化ランタン粉体を製造した。
Comparative Example 3 Copper was prepared in the same manner as in Example 1 except that the catalyst-added lanthanum oxide dispersion liquid dispersed in a formalin solution was added to the formalin-free electroless copper plating bath over 10 minutes. A coated lanthanum oxide powder was produced.

【0025】その結果、表面観察においては、酸化ラン
タンの表面すべてに銅が観察されたが、乾燥後の重量を
測定したところ178.6gであり、酸化ランタンの2
2.4%が溶解していた。この結果から、酸化ランタン
粉体を還元剤を含まない無電解めっき浴中に添加する時
間を長くとることにより、酸化ランタンは溶解しやすく
なり、健全な銅被覆酸化ランタン粉体を得ることが困難
であることが分かった。
As a result, in the surface observation, copper was observed on the entire surface of the lanthanum oxide, but when the weight after drying was measured, it was 178.6 g, which was 2% of that of lanthanum oxide.
2.4% was dissolved. From this result, it is difficult to obtain a sound copper-coated lanthanum oxide powder by increasing the time for adding the lanthanum oxide powder to the electroless plating bath containing no reducing agent, because the lanthanum oxide is easily dissolved. It turned out that

【0026】[0026]

【発明の効果】以上述べたように、本発明によって製造
した金属被覆希土類元素含有粉体は、希土類元素含有物
の化学的な溶解がほとんどないため、希土類元素含有粉
体の持つ特性や被覆金属の持つ特性を有効に利用するこ
とができ、触媒や水素吸蔵合金への利用が十分可能であ
る。
As described above, the metal-coated rare earth element-containing powder produced according to the present invention has almost no chemical dissolution of the rare earth element-containing powder. The characteristics of the can be effectively used, and it can be sufficiently used as a catalyst or a hydrogen storage alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素含有粉体を、アルカリ性無電
解めっき浴を使用した無電解めっき法により金属被覆す
る方法において、無電解めっきの前処理としての触媒付
与処理を触媒付与液のpHを5〜12.5とし、浴温2
0〜50℃で0.5〜10分間行い、次いで行なわれる
無電解めっき処理における処理時間を10分間以下とし
たことを特徴とする金属被覆希土類元素含有粉体の製造
方法。
1. A method of metal-coating a rare earth element-containing powder by an electroless plating method using an alkaline electroless plating bath, wherein a catalyst applying treatment as a pretreatment for electroless plating is carried out at a pH of a catalyst applying liquid of 5 ~ 12.5, bath temperature 2
A method for producing a metal-coated rare earth element-containing powder, which is performed at 0 to 50 ° C. for 0.5 to 10 minutes, and then a treatment time in an electroless plating treatment performed is 10 minutes or less.
【請求項2】 触媒付与処理後の希土類元素含有粉体
を、0.2〜1.5モル/リットルの還元剤含有溶液中
に分散させた後に、該分散液を10〜120秒の添加時
間で、還元剤を含まぬ無電解めっき液中に添加して無電
解めっき処理を行うことを特徴とする請求項1記載の金
属被覆希土類元素含有粉体の製造方法。
2. The rare earth element-containing powder after the catalyst application treatment is dispersed in a reducing agent-containing solution of 0.2 to 1.5 mol / liter, and the dispersion is added for 10 to 120 seconds. 2. The method for producing a metal-coated rare earth element-containing powder according to claim 1, wherein the electroless plating treatment is performed by adding it to an electroless plating solution containing no reducing agent.
JP13614995A 1995-05-10 1995-05-10 Method for producing metal-coated rare earth element-containing powder Expired - Fee Related JP3377650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13614995A JP3377650B2 (en) 1995-05-10 1995-05-10 Method for producing metal-coated rare earth element-containing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13614995A JP3377650B2 (en) 1995-05-10 1995-05-10 Method for producing metal-coated rare earth element-containing powder

Publications (2)

Publication Number Publication Date
JPH08302475A true JPH08302475A (en) 1996-11-19
JP3377650B2 JP3377650B2 (en) 2003-02-17

Family

ID=15168463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13614995A Expired - Fee Related JP3377650B2 (en) 1995-05-10 1995-05-10 Method for producing metal-coated rare earth element-containing powder

Country Status (1)

Country Link
JP (1) JP3377650B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material
JPS61132501A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Formed hydrogen storage alloy
JPS6398372A (en) * 1986-10-15 1988-04-28 Kyowa Hakko Kogyo Co Ltd Production of granular food
JPS6415301A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Rare earth metal-iron group alloy powder for resin combination type permanent magnet having excellent corrosion resistance
JPH01195281A (en) * 1988-01-28 1989-08-07 Hitachi Chem Co Ltd Catalyst for electroless plating
JPH04157166A (en) * 1990-10-19 1992-05-29 Minoru Tsuda Method for chemically plating aluminum stock
JPH04365876A (en) * 1991-06-13 1992-12-17 Ishihara Chem Co Ltd Catalyst liquid for copper base selecting electroless plating
JPH07310102A (en) * 1994-05-12 1995-11-28 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen compound magnet powder and magnet powder obtained by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material
JPS61132501A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Formed hydrogen storage alloy
JPS6398372A (en) * 1986-10-15 1988-04-28 Kyowa Hakko Kogyo Co Ltd Production of granular food
JPS6415301A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Rare earth metal-iron group alloy powder for resin combination type permanent magnet having excellent corrosion resistance
JPH01195281A (en) * 1988-01-28 1989-08-07 Hitachi Chem Co Ltd Catalyst for electroless plating
JPH04157166A (en) * 1990-10-19 1992-05-29 Minoru Tsuda Method for chemically plating aluminum stock
JPH04365876A (en) * 1991-06-13 1992-12-17 Ishihara Chem Co Ltd Catalyst liquid for copper base selecting electroless plating
JPH07310102A (en) * 1994-05-12 1995-11-28 Sumitomo Metal Mining Co Ltd Method for producing rare earth-iron-nitrogen compound magnet powder and magnet powder obtained by the method

Also Published As

Publication number Publication date
JP3377650B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP3929399B2 (en) Method for electroless metal plating
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
TWI419995B (en) Method for surface treatment of aluminum or aluminum alloy
JP6081199B2 (en) Plating catalyst and method
CN112501598B (en) Chemical nickel plating solution for aluminum substrate PCB circuit board and preparation method thereof
TW201331411A (en) Stabilized silver catalysts and methods
JP6307300B2 (en) Plating catalyst and method
JP2019007067A (en) Electroless plating process
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
JP4078410B2 (en) Manufacturing method of silver diffusion copper powder
Osaka et al. Evaluation of Substrate (Ni)‐Catalyzed Electroless Gold Plating Process
CN105209660A (en) Method for coating of carbon nanomaterials
JP3377650B2 (en) Method for producing metal-coated rare earth element-containing powder
WO2023201600A1 (en) Preparation method for feconicuzn high entropy alloy and feconicuzn high entropy alloy
JP6474860B2 (en) Electroless nickel strike plating solution and method for forming nickel plating film
JP6081200B2 (en) Plating catalyst and method
Georgieva Investigation of the influence of Ni 2+ concentration for the obtaining of electroless Cu-Ni-P alloy coatings on the dielectric surface
CN112501596B (en) Fluorine-free and palladium-silver-free activation method before chemical nickel plating on titanium surface
JPS63165582A (en) Production of metal coated fiber
JP4261973B2 (en) Method for producing conductive electroless plating powder
JP3858971B2 (en) Electroless plating method for fine particles
JP2004131800A (en) Conductive electroless plating powder and method for manufacturing the same
JP4644765B2 (en) Silver diffused copper powder, process for producing the same, and conductive paste using the same
JP3389959B2 (en) Manufacturing method of metal coated powder
JPH05156456A (en) Electroless plating pretreating agent for aluminum base material and electroless plating method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees