JPH08299789A - Production of fixed titanium dioxide catalyst - Google Patents

Production of fixed titanium dioxide catalyst

Info

Publication number
JPH08299789A
JPH08299789A JP7108447A JP10844795A JPH08299789A JP H08299789 A JPH08299789 A JP H08299789A JP 7108447 A JP7108447 A JP 7108447A JP 10844795 A JP10844795 A JP 10844795A JP H08299789 A JPH08299789 A JP H08299789A
Authority
JP
Japan
Prior art keywords
titanium dioxide
substrate
titanium
catalyst
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7108447A
Other languages
Japanese (ja)
Inventor
Hiroyuki Noda
博行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA PREF GOV TECHNOPOLIS
YAMAGATA PREF GOV TECHNOPOLIS ZAIDAN
Original Assignee
YAMAGATA PREF GOV TECHNOPOLIS
YAMAGATA PREF GOV TECHNOPOLIS ZAIDAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA PREF GOV TECHNOPOLIS, YAMAGATA PREF GOV TECHNOPOLIS ZAIDAN filed Critical YAMAGATA PREF GOV TECHNOPOLIS
Priority to JP7108447A priority Critical patent/JPH08299789A/en
Publication of JPH08299789A publication Critical patent/JPH08299789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To easily produce a titanium dioxide catalyst useful as a photocatalyst at a low cost by spraying a soln. contg. a titanium alkoxide on the surface of a substrate, forming a titanium dioxide hydrate layer by hydrolysis and firing the substrate with the titanium dioxide hydrate layer. CONSTITUTION: A titanium alkoxide diluted with alcohol is sprayed on the surface of a heated substrate and a titanium dioxide hydrate layer is formed on the surface of the substrate by hydrolyzing the titanium alkoxide with moisture in the air. The resultant substrate is fired and unfixed excess titanium dioxide is removed from the surface of the substrate by washing. The objective fixed anatase-type titanium dioxide photocatalyst is easily and effectively produced. Since the easily available titanium alkoxide is used as starting material for titanium dioxide, the catalyst having very high activity is produced at a low cost. The substrate is made of glass, ceramics, a heat resistant metal, etc., the firing temp. is preferably 400-600 deg.C and the concn. of the titanium alkoxide is preferably 0.1-50wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水処理やガス処理に用
いられる固定化二酸化チタン光触媒の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an immobilized titanium dioxide photocatalyst used for water treatment or gas treatment.

【0002】[0002]

【従来の技術】水処理やガス処理に用いられる固定化二
酸化チタン光触媒として酸化チタン被覆硝子ビーズなど
が用いられている。このような触媒を製造するために、
二酸化チタン微粒子の固定化方法が種々提案されてい
る。例えば、表面にシラン処理を施した硝子ビーズと二
酸化チタン微粒子とを還流させる方法、及び、四塩化チ
タンと水蒸気とを 300〜500 ℃に加熱された硝子ビーズ
表面に暴露することにより硝子ビーズ表面に二酸化チタ
ン微粒子を付着させ、その後に高温で焼成する方法が知
られている(Heller, A. et al., J. Electrochem. So
c., 138, 3660, 1991)。また、支持体表面に二酸化チタ
ンを溶射して固定化する方法(特開平3-8448号公報)
や、二酸化チタンを繊維状あるいは多孔質の支持体中で
調製し、焼成して固定化する方法(特開平5-96180 号公
報)なども知られている。
2. Description of the Related Art Titanium oxide-coated glass beads and the like are used as immobilized titanium dioxide photocatalysts used for water treatment and gas treatment. In order to produce such a catalyst,
Various methods for fixing fine particles of titanium dioxide have been proposed. For example, a method of refluxing glass beads whose surface has been subjected to silane treatment and fine particles of titanium dioxide, and exposure of titanium tetrachloride and water vapor to the surface of the glass beads heated to 300 to 500 ° C. A method is known in which fine particles of titanium dioxide are attached and then fired at high temperature (Heller, A. et al., J. Electrochem. So.
c., 138, 3660, 1991). Further, a method in which titanium dioxide is sprayed and fixed on the surface of the support (Japanese Patent Laid-Open No. 3-8448).
Another method is also known in which titanium dioxide is prepared in a fibrous or porous support and then fixed by firing (JP-A-5-96180).

【0003】しかしながら、これらの方法は、いずれも
製造工程が複雑で生成物や試薬の取扱いが煩雑であり、
また、大掛かりな装置が必要となるので製造コストが高
くなるという問題があった。さらに、四塩化チタンを用
いた方法では、含まれる金属イオンや塩素イオン等の不
純物によって、生成する触媒の活性が低下してしまうと
いう問題点もあった。
However, in all of these methods, the manufacturing process is complicated and the handling of products and reagents is complicated,
Further, there is a problem that the manufacturing cost is increased because a large-scale device is required. Further, in the method using titanium tetrachloride, there is a problem that the activity of the produced catalyst is lowered due to impurities such as metal ions and chlorine ions contained therein.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、光触
媒として有用な二酸化チタン触媒の効率的な製造方法を
提供することにある。より具体的には、簡便かつ安価に
光触媒として有用な二酸化チタン触媒を製造する方法を
提供することが本発明の目的である。また、別の観点か
らは、複雑な工程を経ることなく、効率的に触媒活性に
優れた二酸化チタン触媒を製造する方法を提供すること
も本発明の目的である。
An object of the present invention is to provide an efficient method for producing a titanium dioxide catalyst useful as a photocatalyst. More specifically, it is an object of the present invention to provide a method for producing a titanium dioxide catalyst which is useful as a photocatalyst simply and inexpensively. From another point of view, it is also an object of the present invention to provide a method for efficiently producing a titanium dioxide catalyst having excellent catalytic activity without going through complicated steps.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の課題
を解決するために種々の検討を重ねた結果、アルコール
で希釈したチタンアルコキシドを加温された基材表面に
噴霧し、大気中の水分でチタンアルコキシドを加水分解
して基材表面に含水二酸化チタン層を形成させた後、得
られた基材を焼成し、さらに基材表面から固定化してい
ない余分の二酸化チタンを洗浄して取り除くことによっ
て、高活性な固定化アナタース型二酸化チタン光触媒を
製造できることを見いだした。また、この方法に従え
ば、複雑な工程を経ることなく、極めて安価に高活性な
触媒を製造することができることを見いだした。本発明
はこれらの知見を基にして完成されたものである。
As a result of various studies to solve the above problems, the present inventors have sprayed a titanium alkoxide diluted with alcohol onto the surface of a heated substrate and exposed it to the atmosphere. After hydrolyzing the titanium alkoxide with water to form a hydrous titanium dioxide layer on the surface of the base material, the resulting base material is fired, and excess titanium dioxide that has not been immobilized is washed from the surface of the base material. It was found that a highly active immobilized anatase-type titanium dioxide photocatalyst can be produced by removing it. It was also found that according to this method, a highly active catalyst can be produced at a very low cost without going through complicated steps. The present invention has been completed based on these findings.

【0006】すなわち本発明は、基材表面にアナタース
型二酸化チタンを被覆した固定化アナタース型二酸化チ
タン触媒の製造方法であって、以下の工程:(a) 実質的
に無水の有機溶媒中にチタンアルコキシドを含む溶液の
層を基材表面に形成させる工程;(b) 上記溶媒を揮発さ
せるとともにチタンアルコキシドを加水分解して基材表
面に含水二酸化チタン層を形成させる工程;及び、(c)
上記工程(b) で得られた含水二酸化チタン層を含む基材
を焼成する工程を含む方法を提供するものである。ま
た、本発明の別の態様によれば、工程(c) に続き以下の
工程:(d) 基材表面に固定化されていない二酸化チタン
を除く工程をさらに含む上記方法が提供される。
That is, the present invention is a method for producing an immobilized anatase-type titanium dioxide catalyst in which the surface of a substrate is coated with anatase-type titanium dioxide, which comprises the following steps: (a) Titanium in a substantially anhydrous organic solvent. Forming a layer of a solution containing an alkoxide on the surface of the base material; (b) evaporating the solvent and hydrolyzing the titanium alkoxide to form a hydrous titanium dioxide layer on the surface of the base material; and (c)
It is intended to provide a method including a step of firing the substrate containing the hydrous titanium dioxide layer obtained in the step (b). Further, according to another embodiment of the present invention, there is provided the above method, which further comprises the following step: (c), and the following step: (d) removing titanium dioxide not immobilized on the surface of the substrate.

【0007】これらの方法の好ましい態様として、該溶
媒がアルコール類、エーテル類、ケトン類、及びそれら
の混合物からなる群から選ばれる上記方法;工程(a) 及
び/又は工程(b) を室温ないし溶媒の発火点未満の温度
の範囲で行う上記方法;溶液中のチタンアルコキシドの
濃度が 0.1〜50重量%である上記方法;工程(a) におい
て基材表面に溶液を噴霧することにより該溶液の層を基
材表面に形成させる上記方法;基材が球状、板状、繊維
状、又は多孔質状の硝子、セラミックス、耐熱金属、又
は砂礫である上記方法;工程(a) において清浄化の前処
理を施した基材を用いる上記方法;焼成を 400〜600 ℃
の範囲の温度で行う上記方法;及び該触媒が光触媒であ
る上記方法が提供される。
In a preferred embodiment of these methods, the solvent is selected from the group consisting of alcohols, ethers, ketones, and mixtures thereof; step (a) and / or step (b) is performed at room temperature or The above method carried out in a temperature range below the flash point of the solvent; the above method wherein the concentration of titanium alkoxide in the solution is 0.1 to 50% by weight; and the solution is sprayed onto the surface of the substrate in step (a). The above method of forming a layer on the surface of a substrate; the above method wherein the substrate is spherical, plate-like, fibrous or porous glass, ceramics, heat-resistant metal, or gravel; before cleaning in step (a) The above method using the treated base material; firing at 400 to 600 ° C
And a method wherein the catalyst is a photocatalyst.

【0008】上記(a) において用いられる基材として
は、600 ℃程度までの焼成に対して安定なものであれば
いかなるものを用いてもよい。例えば、硝子、セラミッ
クス、耐熱金属、又は砂礫などを用いることができる
が、コスト等の点から硝子ビーズや砂礫などを用いるこ
とが好ましい。これらの基材の形状および大きさは特に
限定されないが、例えば、球状、板状、繊維状、又は多
孔質状など形状のものを好適に用いることができる。よ
り具体的には、硝子製の球状基材(硝子ビーズ)を用い
る場合、粒径 0.1〜 10 mm程度、好ましくは 0.5〜2 mm
程度のものを用いることができる。これらの基材には、
使用に先立って清浄化等の前処理を施してもよい。
As the base material used in the above (a), any base material can be used as long as it is stable to firing up to about 600 ° C. For example, glass, ceramics, heat-resistant metal, gravel, or the like can be used, but glass beads, gravel, or the like is preferably used from the viewpoint of cost and the like. The shape and size of these base materials are not particularly limited, but for example, spherical, plate-like, fibrous, or porous shapes can be preferably used. More specifically, when using a glass spherical substrate (glass beads), the particle size is about 0.1 to 10 mm, preferably 0.5 to 2 mm.
Something can be used. These substrates include
A pretreatment such as cleaning may be performed before use.

【0009】チタンアルコキシドを溶解するための有機
溶媒はチタンアルコキシドを安定に溶解できるものなら
ばいかなるものを用いてもよい。好ましくは、溶媒重量
に対して少なくとも10重量%以上、好ましくは50重量%
以上、より好ましくは任意の割合で水と混じり合う性質
の任意の水性有機溶媒を用いることができる。例えば、
メタノール、エタノール、イソプロパノール、又はn-ブ
タノールなどのアルコール類;テトラヒドロフランまた
はジオキサンなどのエーテル類;あるいはアセトンまた
はメチルエチルケトンなどのケトン類を用いることがで
きる。これらのうち、アルコール類を用いることが好ま
しく、イソプロパノールを用いることが特に好ましい。
As the organic solvent for dissolving the titanium alkoxide, any solvent can be used as long as it can stably dissolve the titanium alkoxide. Preferably at least 10% by weight, preferably 50% by weight, based on the weight of the solvent.
As described above, more preferably, any aqueous organic solvent having a property of being mixed with water in an arbitrary ratio can be used. For example,
Alcohols such as methanol, ethanol, isopropanol, or n-butanol; ethers such as tetrahydrofuran or dioxane; or ketones such as acetone or methyl ethyl ketone can be used. Of these, alcohols are preferably used, and isopropanol is particularly preferably used.

【0010】上記のような有機溶媒を単独で用いてもよ
いが、2種以上の溶媒の混合物を用いてもよい。また、
溶媒を2種以上組み合わせて用いる場合には、任意の有
機溶媒、例えば、実質的に水と混じり合わない性質の有
機溶媒を水性有機溶媒と組み合わせて用いてもよい。こ
のような場合、溶媒混合物が溶媒全重量に対して少なく
とも10重量%以上、好ましくは50重量%以上の割合で水
と混じり合う性質を有することが望ましい。また、チタ
ンアルコキシドの溶解に用いる前記の有機溶媒は、溶液
状態でのチタンアルコキシドの加水分解を防ぐために、
実質的に無水であることが望ましい。このような溶媒の
無水化の方法は当業者に周知である。
The above-mentioned organic solvents may be used alone, or a mixture of two or more kinds of solvents may be used. Also,
When two or more kinds of solvents are used in combination, any organic solvent, for example, an organic solvent which is substantially immiscible with water may be used in combination with the aqueous organic solvent. In such a case, it is desirable that the solvent mixture has a property of being mixed with water in a proportion of at least 10% by weight, preferably 50% by weight or more, based on the total weight of the solvent. Further, the organic solvent used to dissolve the titanium alkoxide, in order to prevent the hydrolysis of the titanium alkoxide in solution,
It is preferably substantially anhydrous. Methods of dehydrating such solvents are well known to those skilled in the art.

【0011】チタンアルコキシドとしては、例えば、チ
タンエトキシド、チタンイソプロポキシド、またはチタ
ンブトキシドなどを用いることができるが、これらのう
ちチタンイソプロポキシドを用いることが好ましい。二
酸化チタン触媒を光触媒として用いる場合、一般的に触
媒中に含まれる陽イオンや陰イオン不純物が増加するに
つれて光触媒活性が低下する傾向がある。従って、容易
に高純度の市販製品が入手可能なチタンアルコキシドを
二酸化チタンの原料として用いる本発明の方法は、簡便
に高活性光触媒を製造できるという点で優れた特徴を有
している。また、上記の理由から、本発明の方法では高
純度のチタンアルコキシドを用いることが好ましい。例
えば、純度95〜99.999% 程度のもの、好ましくは99 %以
上のチタンアルコキシドを用いることができる。
As the titanium alkoxide, for example, titanium ethoxide, titanium isopropoxide, titanium butoxide and the like can be used, but among these, titanium isopropoxide is preferably used. When a titanium dioxide catalyst is used as a photocatalyst, the photocatalytic activity generally tends to decrease as the cation and anion impurities contained in the catalyst increase. Therefore, the method of the present invention in which a titanium alkoxide, which can be easily obtained as a highly pure commercial product, is used as a raw material of titanium dioxide has an excellent feature in that a highly active photocatalyst can be easily produced. For the above reasons, it is preferable to use high-purity titanium alkoxide in the method of the present invention. For example, titanium alkoxide having a purity of about 95 to 99.999%, preferably 99% or more, can be used.

【0012】溶液中のチタンアルコキシドの濃度は特に
限定されず、基材表面にチタンアルコキシド溶液の層を
形成する方法に応じて適宜選択すればよい。層を形成す
る方法は当業者に利用可能なものならばいかなる方法を
採用してもよいが、例えば、噴霧、塗布、又は浸漬など
の方法を用いることが好適である。一例を挙げると、噴
霧により基材表面にチタンアルコキシド溶液の層を形成
する場合、溶液中のチタンアルコキシドの濃度は 0.1〜
50重量%程度、好ましくは 1〜20重量%、特に好ましく
は 3〜10重量%程度の範囲とすればよい。また、基材表
面に形成されるチタンアルコキシド溶液の層の厚さは、
通常 1〜500 μm 程度、好ましくは10〜100 μm 程度で
ある。このような層を形成することによって、基材の表
面を溶液で完全に被覆することが好ましい。
The concentration of titanium alkoxide in the solution is not particularly limited and may be appropriately selected depending on the method of forming the layer of titanium alkoxide solution on the surface of the substrate. As a method for forming a layer, any method can be adopted as long as it is available to those skilled in the art, but it is preferable to use a method such as spraying, coating, or dipping. As an example, when forming a layer of titanium alkoxide solution on the surface of the substrate by spraying, the concentration of titanium alkoxide in the solution is 0.1 ~
It may be about 50% by weight, preferably 1 to 20% by weight, and particularly preferably about 3 to 10% by weight. The thickness of the layer of titanium alkoxide solution formed on the surface of the base material is
It is usually about 1 to 500 μm, preferably about 10 to 100 μm. It is preferable to completely coat the surface of the substrate with the solution by forming such a layer.

【0013】本発明の方法では、上記の工程(a) により
有機溶媒中に溶解されたチタンアルコキシドを溶液状態
で基材の表面に付着させて層を形成させるので、チタン
アルオキシドが基材表面に到達する前に実質的に加水分
解されることがない。一方、工程(b) においては、溶液
から有機溶媒が徐々に揮発するとともに、溶液が大気中
の水分を吸収(吸湿)してチタンアルコキシドが加水分
解される。その結果、基材表面には均質で微細な含水二
酸化チタン粒子膜が形成される。
In the method of the present invention, the titanium alkoxide dissolved in the organic solvent in the above step (a) is adhered to the surface of the substrate in a solution state to form a layer. Is not substantially hydrolyzed before reaching. On the other hand, in the step (b), the organic solvent is gradually volatilized from the solution, and the solution absorbs (absorbs) moisture in the air to hydrolyze the titanium alkoxide. As a result, a uniform and fine hydrous titanium dioxide particle film is formed on the surface of the base material.

【0014】工程(a) 及び/又は工程(b) は室温〜溶媒
の発火温度未満、好ましくは室温〜溶媒の沸点未満の温
度で行うことができるが、適宜の加温下で行うことによ
り、溶媒の揮発を促進して効率的に含水二酸化チタン微
粒子膜を材料表面に形成することができる。このような
加温下での操作によって工程(a) 及び工程(b) を同時に
行うことも可能であり、このような態様も本発明の範囲
に包含されることはいうまでもない。もっとも、必要以
上に高い温度で工程(a) を行うと、基材表面にチタンア
ルコキシドを含む溶液の層が形成される前に溶媒が揮発
してしまい、チタンアルコキシドの加水分解が生じるの
で好ましくない。
Step (a) and / or step (b) can be carried out at a temperature from room temperature to a temperature lower than the ignition temperature of the solvent, preferably from room temperature to a temperature lower than the boiling point of the solvent. It is possible to promote the evaporation of the solvent and efficiently form a hydrous titanium dioxide fine particle film on the material surface. It is needless to say that the step (a) and the step (b) can be simultaneously performed by such an operation under heating, and such an embodiment is also included in the scope of the present invention. However, if the step (a) is performed at an unnecessarily high temperature, the solvent volatilizes before the layer of the solution containing the titanium alkoxide is formed on the surface of the base material, which causes hydrolysis of the titanium alkoxide, which is not preferable. .

【0015】一般に、二酸化チタンの光触媒活性は結晶
化が進んだアナタース型が最も高いことが知られてい
る。従って、本発明の方法により製造される触媒は、実
質的にアナタース型の二酸化チタンのみによって被覆さ
れていることが好ましい。このような触媒は本発明の工
程(c) により製造することができる。より具体的には、
工程(b) で得られた被覆基材を400 〜600 ℃程度の範囲
の温度で焼成することにより、無定形の含水二酸化チタ
ンを高度に結晶化したアナタース型に変換することが可
能である。焼成の温度は特に限定されず、所望の触媒の
種類や被覆の量などの条件に応じて、当業者により適宜
選択可能である。なお、焼成後、固定化されなかった余
分の二酸化チタンを触媒から取り除くことが好ましい
が、このような方法は当業者に周知である。
It is generally known that the photocatalytic activity of titanium dioxide is highest in the anatase type where crystallization is advanced. Therefore, the catalyst produced by the method of the present invention is preferably coated only with substantially anatase-type titanium dioxide. Such a catalyst can be produced by the step (c) of the present invention. More specifically,
By baking the coated substrate obtained in step (b) at a temperature in the range of 400 to 600 ° C., it is possible to convert the amorphous hydrous titanium dioxide into a highly crystallized anatase type. The calcination temperature is not particularly limited and can be appropriately selected by those skilled in the art according to the conditions such as the desired catalyst type and coating amount. Note that it is preferable to remove excess titanium dioxide that has not been immobilized from the catalyst after calcination, but such a method is well known to those skilled in the art.

【0016】得られた触媒の被覆を形成する二酸化チタ
ンの結晶化度は、X線回折法やレーザーラマン分光法等
の方法によって確認することができる。このような方法
は、いずれも当業者に周知かつ利用可能である。なお、
基材の種類や形態が多岐にわたるとX線回折法では評価
が困難である場合があるが、レーザーラマン分光法では
基材の形態にかかわらず評価が可能である。得られた触
媒の光触媒活性は、例えば、水道水中の残留塩素の減少
量を観測することにより、簡便かつ安価に評価を行うこ
とが可能である。
The crystallinity of titanium dioxide forming the coating of the obtained catalyst can be confirmed by a method such as X-ray diffraction method or laser Raman spectroscopy. All such methods are well known and available to those of skill in the art. In addition,
It may be difficult to evaluate by X-ray diffractometry if there are various types of base materials and forms, but laser Raman spectroscopy allows evaluation regardless of the form of the base material. The photocatalytic activity of the obtained catalyst can be evaluated easily and inexpensively by, for example, observing the reduction amount of residual chlorine in tap water.

【0017】[0017]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、本発明の範囲は下記の実施例に限定される
ことはない。 例1 二酸化チタン固定化の材料として直径 0.5 mm の硝子ビ
ーズを用い、前処理として洗浄と乾燥を行った。 3重量
%のチタンイソプロポキシドのイソプロパノール溶液を
室温に保った硝子ビーズ表面に噴霧し、イソプロパノー
ルを揮発させつつ吸湿によりチタンイソプロポキシドの
加水分解を行い、ビーズ表面に含水二酸化チタン微粒子
膜を形成した。電気炉を用いて、この粒子に500 ℃で2
時間の熱処理を施した。焼成後、硝子ビーズ表面に固定
化していない余分の二酸化チタンを洗浄して取り除くこ
とにより、固定化アナタース型二酸化チタン光触媒(I)
を製造した。
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples. Example 1 Glass beads having a diameter of 0.5 mm were used as a material for immobilizing titanium dioxide, and washing and drying were performed as pretreatments. 3 wt% titanium isopropoxide in isopropanol is sprayed on the glass beads surface kept at room temperature to hydrolyze the titanium isopropoxide by absorbing moisture while volatilizing the isopropanol to form a hydrous titanium dioxide fine particle film on the beads surface. did. Using an electric furnace, the particles are heated to 500 ° C for 2
Heat treatment was applied for an hour. After firing, by removing the excess titanium dioxide not immobilized on the surface of the glass beads by washing, the immobilized anatase-type titanium dioxide photocatalyst (I)
Was manufactured.

【0018】得られた固定化アナタース型二酸化チタン
光触媒(I) の結晶化度をレーザーラマン分光法を用いて
評価した結果を図1に示す。熱処理前(B) には認められ
なかったアナタース型二酸化チタン由来のピークが熱処
理後(A) に出現し、明らかに硝子ビーズ表面にアナター
ス型二酸化チタン層が形成されていたことが確認でき
た。なお、図中の(C) は硝子ビーズ単独で得られた信
号、(D) は市販アナタース型二酸化チタン粉末(和光純
薬製)で得られた信号である。
The crystallinity of the obtained immobilized anatase-type titanium dioxide photocatalyst (I) was evaluated by laser Raman spectroscopy. The results are shown in FIG. A peak derived from anatase-type titanium dioxide, which was not observed before the heat treatment (B), appeared after the heat treatment (A), and it was confirmed that an anatase-type titanium dioxide layer was clearly formed on the surface of the glass beads. In the figure, (C) is a signal obtained with glass beads alone, and (D) is a signal obtained with a commercially available anatase-type titanium dioxide powder (manufactured by Wako Pure Chemical Industries, Ltd.).

【0019】実施例2 二酸化チタン固定化の材料として直径 2.0 mm の硝子ビ
ーズを用い、前処理として洗浄と乾燥を行った。 10 重
量%のチタンイソプロポキシドのイソプロパノール溶液
を80℃程度の温度に保った硝子ビーズ表面に噴霧して、
溶媒を強制的に揮発させるとともに、吸湿によるチタン
イソプロポキシドの加水分解を行ってビーズ表面に含水
二酸化チタン微粒子膜を形成した。電気炉を用いて、こ
の粒子に600 ℃で2時間の熱処理を施した。焼成後、硝
子ビーズ表面に固定化していない余分の二酸化チタンを
洗浄して取り除くことにより、固定化アナタース型二酸
化チタン触媒(II)を製造した。
Example 2 Glass beads having a diameter of 2.0 mm were used as a material for immobilizing titanium dioxide, and washing and drying were performed as pretreatments. Spray 10 wt% titanium isopropoxide in isopropanol on the surface of the glass beads kept at a temperature of about 80 ° C.
The solvent was forcibly volatilized and the titanium isopropoxide was hydrolyzed by moisture absorption to form a hydrous titanium dioxide fine particle film on the bead surface. The particles were heat-treated at 600 ° C. for 2 hours using an electric furnace. After firing, the excess titanium dioxide not immobilized on the surface of the glass beads was washed and removed to produce an immobilized anatase type titanium dioxide catalyst (II).

【0020】例3 基材としてそれぞれ砂礫(粒径約 1 mm)、セラミックス
(アルミナ製、粒径約2 mm)、及び耐熱金属としてチタ
ン(粒径 0.5〜1 mm)を用いて、例2と同様の方法によ
り固定化アナタース型二酸化チタン触媒(III) 〜(V) を
製造した。
Example 3 Using gravel (particle size: about 1 mm), ceramics (made of alumina, particle size: about 2 mm) as the base material, and titanium (particle size: 0.5 to 1 mm) as the refractory metal, as in Example 2 Immobilized anatase type titanium dioxide catalysts (III) to (V) were produced by the same method.

【0021】例4 本発明の方法(例1)で製造した固定化アナタース型二
酸化チタン触媒(I) 、例1の方法において熱処理を施す
前の固定化二酸化チタン触媒、および市販のアナタース
型二酸化チタン粉末を硝子ビーズの表面に付着させた固
定化二酸化チタン触媒(Heller, A., et al., J. Electr
ochem. Soc., 138, 3660, 1991) の光触媒活性を比較し
た。光触媒活性の測定は基本的にマシューズ(Matthews,
R.W., Solar Energy, 38, 405, 1987) の方法に従い、
円筒型反応器に固定化二酸化チタンを装着して上端と下
端を硝子繊維で終端し、円筒型反応器の周囲を紫外線灯
で光照射し、円筒型反応器の上部から水道水を自然落下
させ、光触媒処理水を円筒型反応器の下端で採集するこ
とにより評価した。
Example 4 Immobilized anatase-type titanium dioxide catalyst (I) prepared by the method of the present invention (Example 1), immobilized titanium dioxide catalyst before heat treatment in the method of Example 1, and commercially available anatase-type titanium dioxide Immobilized titanium dioxide catalyst (Heller, A., et al., J. Electr) in which powder is attached to the surface of glass beads
Ochem. Soc., 138, 3660, 1991). Photocatalytic activity is basically measured by Matthews,
RW, Solar Energy, 38, 405, 1987)
The fixed titanium dioxide was attached to the cylindrical reactor, the upper end and the lower end were terminated with glass fiber, and the circumference of the cylindrical reactor was illuminated with an ultraviolet lamp, and tap water was naturally dropped from the upper part of the cylindrical reactor. , Photocatalyst-treated water was evaluated by collecting it at the lower end of the cylindrical reactor.

【0022】採集した光触媒処理水中の残留塩素濃度を
簡易分析キットを用いて測定した結果、水道水では 1 p
pm、熱処理を施していない固定化二酸化チタン触媒では
0.3ppm 、市販のアナタース型二酸化チタン粉末を硝子
ビーズに付着させた触媒では0.1 ppm 、本発明の方法で
製造した固定化アナタース型二酸化チタン光触媒(I)で
は0.1 ppm 未満であり、本発明の方法で製造した固定化
アナタース型二酸化チタン光触媒は極めて高活性であっ
た。また、本発明の方法で製造した固定化アナタース型
二酸化チタン光触媒(II)〜(V) について同様に光触媒活
性を評価したところ、固定化アナタース型二酸化チタン
光触媒(I) と同程度の活性を示した。
The residual chlorine concentration in the collected photocatalyst-treated water was measured using a simple analysis kit, and as a result, tap water was 1 p
pm, for immobilized titanium dioxide catalyst that has not been heat treated
0.3 ppm, 0.1 ppm for a catalyst prepared by attaching commercially available anatase-type titanium dioxide powder to glass beads, and less than 0.1 ppm for the immobilized anatase-type titanium dioxide photocatalyst (I) produced by the method of the present invention. The immobilized anatase-type titanium dioxide photocatalyst prepared in 1. was extremely active. Further, when the photocatalytic activity of the immobilized anatase type titanium dioxide photocatalyst (II) to (V) produced by the method of the present invention was evaluated in the same manner, it showed the same level of activity as the immobilized anatase type titanium dioxide photocatalyst (I). It was

【0023】[0023]

【発明の効果】本発明の方法によれば、固定化アナター
ス型二酸化チタン光触媒を簡便かつ効率的に製造でき
る。特に、本発明の方法では、高純度の市販製品を容易
に入手できるチタンアルコキシドを二酸化チタンの原料
として用いるので、極めて高活性な触媒を安価に製造で
きるという特徴があり、また、特別な装置を必要としな
いので触媒の製造コストを低減できるという特徴があ
る。
According to the method of the present invention, an immobilized anatase type titanium dioxide photocatalyst can be produced simply and efficiently. In particular, since the method of the present invention uses titanium alkoxide as a raw material for titanium dioxide, which is readily available as a high-purity commercially available product, it has a feature that an extremely highly active catalyst can be produced at low cost, and a special apparatus can be used. Since it is not necessary, the production cost of the catalyst can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法で製造した固定化アナタース型
二酸化チタン触媒の結晶化度を表すレーザーラマンスペ
クトルを示す図である。図中、A は焼成後、B は焼成前
の結果を示し、C は基材のビーズ単独、D は標品として
の市販アナタース型二酸化チタン粉末のスペクトルを示
す。
FIG. 1 is a diagram showing a laser Raman spectrum showing the crystallinity of an immobilized anatase-type titanium dioxide catalyst produced by the method of the present invention. In the figure, A shows the results after firing, B shows the results before firing, C shows the spectrum of the base beads alone, and D shows the spectrum of the commercially available anatase-type titanium dioxide powder as a standard product.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基材表面にアナタース型二酸化チタンを被
覆した固定化アナタース型二酸化チタン触媒の製造方法
であって、以下の工程: (a) 実質的に無水の有機溶媒中にチタンアルコキシドを
含む溶液の層を基材表面に形成させる工程; (b) 上記溶媒を揮発させるとともにチタンアルコキシド
を加水分解して基材表面に含水二酸化チタン層を形成さ
せる工程;及び、 (c) 上記工程(b) で得られた含水二酸化チタン層を含む
基材を焼成する工程を含む方法。
1. A method for producing an immobilized anatase-type titanium dioxide catalyst in which the surface of a substrate is coated with anatase-type titanium dioxide, comprising the steps of: (a) containing a titanium alkoxide in a substantially anhydrous organic solvent. Forming a layer of a solution on the surface of the substrate; (b) evaporating the solvent and hydrolyzing the titanium alkoxide to form a hydrous titanium dioxide layer on the surface of the substrate; and (c) the step (b) ) A method including the step of firing the substrate containing the hydrous titanium dioxide layer obtained in (1).
【請求項2】 工程(c) に続き以下の工程: (d) 基材表面に固定化されていない二酸化チタンを除く
工程をさらに含む請求項1に記載の方法。
2. The method according to claim 1, further comprising the following step following step (c): (d) removing titanium dioxide not immobilized on the surface of the substrate.
【請求項3】 該溶媒がアルコール類、エーテル類、ケ
トン類、及びそれらの混合物からなる群から選ばれる請
求項1または2に記載の方法。
3. The method according to claim 1, wherein the solvent is selected from the group consisting of alcohols, ethers, ketones, and mixtures thereof.
【請求項4】 工程(a) 及び/又は工程(b) を室温ない
し溶媒の発火点未満の温度の範囲で行う請求項1ないし
3のいずれか1項に記載の方法。
4. The method according to any one of claims 1 to 3, wherein step (a) and / or step (b) are carried out at a temperature ranging from room temperature to a temperature below the flash point of the solvent.
【請求項5】 溶液中のチタンアルコキシドの濃度が
0.1〜50重量%である請求項1ないし4のいずれか1項
に記載の方法。
5. The concentration of titanium alkoxide in the solution is
The method according to any one of claims 1 to 4, which is 0.1 to 50% by weight.
【請求項6】 工程(a) において基材表面に溶液を噴霧
することにより該溶液の層を基材表面に形成させる請求
項1ないし5のいずれか1項に記載の方法。
6. The method according to claim 1, wherein a layer of the solution is formed on the surface of the substrate by spraying the solution on the surface of the substrate in step (a).
【請求項7】 基材が球状、板状、繊維状、又は多孔質
状の硝子、セラミックス、耐熱金属、又は砂礫である請
求項1ないし6のいずれか1項に記載の方法。
7. The method according to claim 1, wherein the substrate is spherical, plate-like, fibrous or porous glass, ceramics, heat-resistant metal, or gravel.
【請求項8】 工程(a) において清浄化の前処理を施し
た基材を用いる請求項1ないし7のいずれか1項に記載
の方法。
8. The method according to claim 1, wherein the substrate subjected to the pretreatment for cleaning in step (a) is used.
【請求項9】 焼成を 400〜600 ℃の範囲の温度で行う
請求項1ないし8のいずれか1項に記載の方法。
9. The method according to claim 1, wherein the calcination is carried out at a temperature in the range of 400 to 600 ° C.
【請求項10】 該触媒が光触媒である請求項1ないし
9のいずれか1項に記載の方法。
10. The method according to claim 1, wherein the catalyst is a photocatalyst.
JP7108447A 1995-05-02 1995-05-02 Production of fixed titanium dioxide catalyst Pending JPH08299789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7108447A JPH08299789A (en) 1995-05-02 1995-05-02 Production of fixed titanium dioxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7108447A JPH08299789A (en) 1995-05-02 1995-05-02 Production of fixed titanium dioxide catalyst

Publications (1)

Publication Number Publication Date
JPH08299789A true JPH08299789A (en) 1996-11-19

Family

ID=14485021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7108447A Pending JPH08299789A (en) 1995-05-02 1995-05-02 Production of fixed titanium dioxide catalyst

Country Status (1)

Country Link
JP (1) JPH08299789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
KR100290066B1 (en) * 1998-07-13 2001-05-15 김명신 How to fix titanium dioxide, used as an air freshener, on activated carbon
JP2001340757A (en) * 2000-06-01 2001-12-11 Seiichi Rengakuji Titanium dioxide photocatalyst carring body and method of producing the same
KR100299405B1 (en) * 1998-07-13 2002-02-19 김명신 Fixing Titanium Film to Teflon Film Used as Air Cleaner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290066B1 (en) * 1998-07-13 2001-05-15 김명신 How to fix titanium dioxide, used as an air freshener, on activated carbon
KR100299405B1 (en) * 1998-07-13 2002-02-19 김명신 Fixing Titanium Film to Teflon Film Used as Air Cleaner
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2001340757A (en) * 2000-06-01 2001-12-11 Seiichi Rengakuji Titanium dioxide photocatalyst carring body and method of producing the same

Similar Documents

Publication Publication Date Title
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP3524342B2 (en) Titanium dioxide sol and thin film for thin film formation
US6306796B1 (en) Photocatalyst, process for producing the same and multifunctional members
EP0826633B1 (en) Particles, aqueous dispersion and film of titanium oxide, and preparation thereof
CA2343085C (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
JP2002370034A (en) Oxide photocatalyst material using inorganic metallic compound and applied article thereof
Anderson et al. The effect of Brij® surfactants in sol–gel processing for the production of TiO2 thin films
JP4681879B2 (en) Producing a solution for use as a coating in a transparent film of a photocatalyst
EP2000208A9 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
KR20020092067A (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP2002253975A (en) Oxide photocatalytic material using organometallic compound and its application article
EP2246304B1 (en) Titanium oxide and method of producing the same
JPH08299789A (en) Production of fixed titanium dioxide catalyst
JP2739128B2 (en) Decomposition method of organic chemicals by titanium ceramic membrane
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
WO2001017922A1 (en) Method and apparatus for producing glass having photocatalyst formed thereon
JP2009102188A (en) Ordinary temperature glass, ordinary temperature glass coating material, and method for forming ordinary temperature glass
WO2003008079A2 (en) Metal oxide films
JP4187632B2 (en) Method for forming titanium dioxide thin film and catalyst having the titanium dioxide thin film
KR100631104B1 (en) Hydrophilic glass coated with metal oxide and method for producing it
JP3726366B2 (en) Fluorescent lamp
JPH11290696A (en) Photocatalyst base material
US20050175852A1 (en) Thin silica film and silica-titania composite film, and method for preparing them
JP4010934B2 (en) Titanium oxide particles, water-dispersed sols, thin films thereof, and production methods thereof