JPH0829944B2 - Method for producing oxide superconducting material - Google Patents

Method for producing oxide superconducting material

Info

Publication number
JPH0829944B2
JPH0829944B2 JP3094824A JP9482491A JPH0829944B2 JP H0829944 B2 JPH0829944 B2 JP H0829944B2 JP 3094824 A JP3094824 A JP 3094824A JP 9482491 A JP9482491 A JP 9482491A JP H0829944 B2 JPH0829944 B2 JP H0829944B2
Authority
JP
Japan
Prior art keywords
superconducting
region
substrate
superconducting material
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3094824A
Other languages
Japanese (ja)
Other versions
JPH07142777A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3094824A priority Critical patent/JPH0829944B2/en
Publication of JPH07142777A publication Critical patent/JPH07142777A/en
Publication of JPH0829944B2 publication Critical patent/JPH0829944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミック系超電導材料
の作製方法に関する。そしてこのセラミック系超電導材
料を用いて単結晶超電導材料を用いた電子ディバイスま
たは超電導マグネットを作製せんとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic superconducting material. Then, an electronic device or a superconducting magnet using a single crystal superconducting material is produced using this ceramic superconducting material.

【0002】[0002]

【従来の技術】従来超電導材料はNb-Ge(例えばNb3Ge)の
金属材料が用いられている。この材料は金属であるため
延性、展性を高く有し、超電導マグネット用のコイル巻
を行うことが可能であった。
2. Description of the Related Art Conventionally, Nb-Ge (for example, Nb 3 Ge) metallic material has been used as a superconducting material. Since this material is a metal, it has high ductility and malleability, and it was possible to perform coil winding for a superconducting magnet.

【0003】しかし、これらの金属材料を用いた超電導
材料はTc( 超電導臨界温度を以下単にTcという) が小さ
く23K またはそれ以下しかない。これに対し工業上の応
用を考えるならば、このTcが30K 好ましくは77K または
それ以上であるとさらに有効である。特に77K 以上の温
度のTcを有する超電導材料が開発されるならば、液体窒
素温度雰囲気下での動作を可能とし、工業上の運転維持
価格をこれまでの約1/10またはそれ以下にすることが可
能であると期待されている。
However, the superconducting material using these metal materials has a small Tc (superconducting critical temperature hereafter simply referred to as Tc) and is only 23K or lower. On the other hand, when considering industrial applications, it is more effective that the Tc is 30K, preferably 77K or higher. In particular, if a superconducting material with a Tc at a temperature of 77K or higher is developed, it will be possible to operate in a liquid nitrogen temperature atmosphere, and the industrial operation and maintenance price will be about 1/10 or less of the previous value. Is expected to be possible.

【0004】[0004]

【発明が解決しようとする課題】このため、Tcの高い材
料として、金属ではなくセラミック系材料、特に酸化物
セラミック系材料が注目されている。しかしこの注目さ
れているセラミック系超電導材料は、Tcが高いにもかか
わらず、曲げ性、延性、展性に乏しく、少し曲げてもわ
れてしまう。いわんや線材料として作ることはまったく
不可能である。特にこれを円板状または円筒状の基体の
表面にマグネット用のコイルを構成すべく巻くことはま
ったく不可能であった。そしてこのコイルに大電流( 大
きい電流密度) を流して結果として強磁場を発生させる
ことはまったく不可能であった。
Therefore, as a material having a high Tc, attention is focused on a ceramic material, particularly an oxide ceramic material, instead of a metal. However, this ceramic-based superconducting material, which has been attracting attention, has poor bendability, ductility, and malleability, even though it has a high Tc, and may be bent a little. It is impossible at all to make wire material. In particular, it has been impossible at all to wind this into a coil for a magnet on the surface of a disk-shaped or cylindrical substrate. And it was completely impossible to generate a strong magnetic field by passing a large current (large current density) through this coil.

【0005】[0005]

【課題を解決するための手段】本発明は基板上に超電導
を呈すべきセラミックス材料を膜状に形成せしめ、この
膜を熱処理により斜方晶形を有するペルブスカイト構造
とせしめる。しかしこの熱処理を単に600 〜1050℃好ま
しくは900 〜950 ℃で酸化雰囲気で行うと、結晶粒径が
1〜50μmの微結晶構造となり、結晶粒界がその電気伝
導に支障をきたす。このためこのアニ−ルと同時にレ−
ザ光等を用いて一部瞬間的に溶融し、この溶融領域を少
しづつ連続して移動させることにより、溶融していない
残った領域が実質的な核となって単結晶またはそれに近
い結晶成長を行わしめる(結晶化度をより高める)こと
ができる。また、前記溶融工程を電気炉等による加熱に
よって行った場合は、酸化物超電導材料を構成する材料
中の低融点材料よりも高温で熱処理を行うことにより、
前記低融点材料のみを溶融させることが可能であり、そ
の結果本発明の効果を得ることが出来た。本発明はかか
る単結晶またはそれに近い結晶を成長した後、これを徐
冷して斜方晶形のペルブスカイト構造を有する超電導装
置を作らんとしたものである。
According to the present invention, a ceramic material to exhibit superconductivity is formed into a film on a substrate, and the film is heat-treated to form a perovskite structure having an orthorhombic form. However, if this heat treatment is simply carried out at 600 to 1050 ° C., preferably 900 to 950 ° C. in an oxidizing atmosphere, a fine crystal structure having a crystal grain size of 1 to 50 μm is formed, and the grain boundaries hinder the electric conduction. For this reason, at the same time as this annealing
The light is used to melt a portion of the material instantaneously, and the melted area is continuously moved little by little, so that the remaining unmelted area becomes a substantial nucleus for single crystal or near-crystal growth. Can be performed (the degree of crystallinity can be further increased). When the melting step is performed by heating with an electric furnace or the like, by performing heat treatment at a higher temperature than the low melting point material in the material forming the oxide superconducting material,
It is possible to melt only the low melting point material, and as a result, the effect of the present invention can be obtained. The present invention is to produce a superconducting device having an orthorhombic perovskite structure by gradually growing such a single crystal or a crystal close to the single crystal.

【0006】本発明は予め所望の形状を有する基体、例
えば帯状、円筒状または円板状の基体に対し膜状にセラ
ミック材料特に酸化物セラミック材料を電子ビ−ム蒸着
法、スパッタ法、印刷法、塗布法等により形成する。こ
の方法で形成するとこの薄膜はアモルファスまたは格子
歪および格子欠陥を多量に有する微結晶を有する多結晶
構造を呈する。この構造では一般に半導体性または超電
導性を有さない導電性または絶縁性である。
According to the present invention, a substrate having a desired shape, for example, a belt-shaped, cylindrical or disk-shaped substrate, is provided with a film-shaped ceramic material, particularly an oxide ceramic material, by an electron beam evaporation method, a sputtering method, or a printing method. It is formed by a coating method or the like. When formed by this method, the thin film exhibits an amorphous or polycrystalline structure having microcrystals having a large amount of lattice strain and lattice defects. This structure is generally conductive or insulating without semiconductor or superconductivity.

【0007】このためかかる状態の膜に対し、本発明は
酸化物雰囲気にて600 〜1050℃好ましくは900 〜950 ℃
で加熱アニ−ルし、ペロブスカイト構造に変成する。さ
らにその一部に対しレ−ザ光等を照射する等の方法で一
部溶融せしめ、その程度を少しづつ走査(スキャン) す
ることにより、一定の巾を有する帯状に単結晶化または
それに近い再結晶化する工程を有せしめる。この工程に
よりレ−ザ光等の照射された領域のみアニ−ル工程が行
われて結晶化率(結晶粒径を大きく、好ましくは単結
晶) を向上し、この領域内の結晶粒界、格子歪、格子欠
陥を少なくさせ得る。同時に一度溶融して再結晶化をさ
せる時、その温度が600 〜1050℃好ましくは900 〜950
℃に保持されているため、本来超電導を有すべきペロブ
スカイト構造の結晶構造をさせ得る。このアニ−ルが終
わった後、これら全体を1℃/ 分以下の温度勾配にて徐
冷する。そしてこれら再結晶化された部分をすべて斜方
晶形を有するペロブスカイト構造とせしめ、一定のTco
とより大きい臨界電流密度を有する超電導材料とし得
る。
Therefore, for the film in such a state, the present invention is conducted in an oxide atmosphere at 600 to 1050 ° C., preferably 900 to 950 ° C.
It is annealed by heating and transformed into a perovskite structure. Furthermore, a part of it is melted by a method such as irradiating it with laser light, etc., and by gradually scanning (scanning) the degree, single crystallization into a band with a certain width or re-crystallization close to it is performed. It has a step of crystallizing. By this process, an annealing process is performed only in the region irradiated with laser light or the like to improve the crystallization rate (large crystal grain size, preferably single crystal), and the crystal grain boundaries and lattices in this region are improved. Strain and lattice defects can be reduced. At the same time, when melted and recrystallized, the temperature is 600 to 1050 ° C, preferably 900 to 950 ° C.
Since the temperature is kept at 0 ° C., a perovskite crystal structure that should have superconductivity should be obtained. After this anneal is finished, the whole is gradually cooled with a temperature gradient of 1 ° C./min or less. Then, all of these recrystallized parts are made to have a perovskite structure having an orthorhombic structure, and a constant Tco
And a superconducting material having a higher critical current density.

【0008】このスパッタ法等で形成される薄膜はタ−
ゲットを調整し膜形成後セラミック超電導材料例えば(A
1-X Bx)yCuzOwXv 但しx=0.1 〜1,好ましくは0.6 〜0.
7,y=2.0 〜4.0,好ましくは2.5 〜3.5,z=1.5 〜3.5,
w=4.0 〜10.0好ましくは6〜8,v=0〜3.0 であっ
て、Aは元素周期表3a族、特にイットリウムより選ば
れた1つまたは複数の元素、Bは元素周期表2a族より
選ばれた1種類または複数種類の元素例えばバリウムで
ある。またXは元素周期表7a族または7b族より選ば
れた元素であって、前者の代表例はマンガン(Mn)であ
り、後者の代表例は弗素(F),塩素(Cl)である。尚、本明
細書における元素周期表は理化学辞典(岩波書店 1963
年4月1日発行)によるものである。本発明のレ−ザ光
源は例えばYAG レ−ザ(波長1.06μ) またはエキシマレ
−ザ(KrF,KrCl 等) を用いた。前者は円状のレ−ザビ−
ムを5〜30KHz の周波数で繰り返して照射することがで
き、そしてこの照射された部分のみ一度溶融し、照射を
位置することによって冷却し、再結晶化させる時、隣の
既に再結晶した領域の結晶構造を軸として結晶成長を
し、超電導材料とし得ることが特徴である。また後者の
エキシマレ−ザを用いる場合は面例えば20×30mm2 に対
してパルス照射をすることが可能となる。他方、これを
光学系でしぼることにより、線または帯状( 巾5 〜100
μm)のレ−ザビ−ムを作ることができ、このレ−ザビ−
ムをセラミック膜に帯状に照射することが可能である。
本発明はかくの如く基体の表面に形成されたセラミック
材料に対し選択的にレ−ザ光を照射してその部分のみ超
電導材料とさせることを特徴としている。するとこの周
辺部の残存した領域は実質的に絶縁領域(Tc 以下の湿度
においては超電導を有する部分に比べて理論的には無限
に抵抗が大きく絶縁領域とすることが可能となる。そし
てこの部分を除去することも可能であるが、多層配線の
段差を少なくする場合には凹部のうめこみ材料とするこ
とが可能となる。即ち多層巻が可能となる。
The thin film formed by this sputtering method is a target.
After the get is adjusted and the film is formed, the ceramic superconducting material such as (A
1-X Bx) yCuzOwXv where x = 0.1 to 1, preferably 0.6 to 0.
7, y = 2.0 to 4.0, preferably 2.5 to 3.5, z = 1.5 to 3.5,
w = 4.0 to 10.0, preferably 6 to 8 and v = 0 to 3.0, A is one or more elements selected from the periodic table 3a, particularly yttrium, and B is selected from the periodic table 2a group. One or a plurality of different elements, such as barium. X is an element selected from Group 7a or Group 7b of the Periodic Table of Elements, the former representative example being manganese (Mn) and the latter representative example being fluorine (F) and chlorine (Cl). The periodic table of elements in this specification is a dictionary of physics and chemistry (Iwanami Shoten 1963)
Issued on April 1, 2012). As the laser light source of the present invention, for example, a YAG laser (wavelength 1.06 μ) or an excimer laser (KrF, KrCl, etc.) is used. The former is a circular laser beam.
The system can be repeatedly irradiated with a frequency of 5 to 30 KHz, and only this irradiated part is melted once, cooled by positioning the irradiation and recrystallized, so that the next recrystallized region It is characterized in that it can be used as a superconducting material by growing crystals around the crystal structure. When the latter excimer laser is used, pulse irradiation can be performed on a surface, for example, 20 × 30 mm 2 . On the other hand, by squeezing this with an optical system, a line or band (width 5 to 100
(μm) laser beam can be made, and this laser beam
It is possible to irradiate the ceramic membrane in strips with a film.
The present invention is characterized in that the ceramic material formed on the surface of the substrate as described above is selectively irradiated with laser light to make only that portion a superconducting material. Then, the remaining area of this peripheral portion can be an insulating area (in theory, the resistance is infinitely higher than the area having superconductivity at a humidity of Tc or less. Although it is possible to remove, it is possible to use as a material for filling the recess in order to reduce the step difference of the multi-layer wiring, that is, multi-layer winding is possible.

【0009】[0009]

【作用】これまでの金属超電導材料を用いる場合、配向
性や結晶性等に注意を払う必要はほとんどなく、そのた
め線材やコイル等を構成せしめることは容易であった。
When the metal superconducting material used so far is used, it is almost unnecessary to pay attention to the orientation and the crystallinity, so that it is easy to construct the wire and the coil.

【0010】しかし本発明のセラミック超電導体に関し
ては、最終形状に近い基体等を設け、この基体上に帯状
に超電導を結晶化処理の後、超電導を呈すべき材料を膜
状(そのままでは超電導を呈さない) に形成する。そし
てこの膜に対し選択的にレ−ザアニ−ル等を行うことに
よりアニ−ルを行った部分のみ結晶化度を向上せしめ
る。そしてこのレ−ザ光等を任意に走査することによ
り、その表面領域にのみ任意の線、帯または面を導出さ
せることができる。そしてこの領域のみTc以下の温度で
は抵抗「0」の状態を生ぜしめ得る。その際、その周辺
の膜材料は製造工程の簡略化のため、そのまま残存させ
る。するとこの残存領域はTcを有さないため、またはTc
が十分結晶化領域に比べて小さいため、絶縁材料とみな
すことができる。即ち抵抗0の領域の周辺部には絶縁物
を充填させている。かくして曲げ性、延性、展性のほと
んどないセラミックを用いても超電導装置を構成させる
ことを可能とせしめる。
However, with respect to the ceramic superconductor of the present invention, a substrate close to the final shape is provided, and after superconducting is crystallized in the form of strips on this substrate, the material which should exhibit superconductivity is formed into a film (as it is, the superconductivity is exhibited as it is). Not) to form. Then, the film is selectively annealed to improve the crystallinity only in the annealed portion. By arbitrarily scanning the laser light or the like, it is possible to derive an arbitrary line, band, or surface only in the surface region. Then, only in this region, at a temperature below Tc, a state of resistance "0" can be produced. At that time, the surrounding film material is left as it is to simplify the manufacturing process. Then this residual region has no Tc, or
Is sufficiently smaller than the crystallized region, it can be regarded as an insulating material. That is, the periphery of the region of the resistance 0 is filled with an insulator. Thus, it becomes possible to construct a superconducting device even by using a ceramic having almost no bendability, ductility and malleability.

【0011】[0011]

【実施例】「実施例1 」図1は本発明の製造工程を示
す。
EXAMPLES Example 1 FIG. 1 shows the manufacturing process of the present invention.

【0012】図1(A) において、基体(1) はセラミック
材料例えばアルミナ、チタン酸ストロンチウムまたは超
電導セラミックスを用いた。銅の如き金属を用いてもよ
い。この基体をこの実施例では板状を有する基体上に前
記した超電導材料をスパッタ法により0.5 〜20μm 例え
ば8μmの厚さに形成した。このスパッタに際しては、
予めタ−ゲットに(A1-X Bx)yCuzOwXv 例えば(YBa2)Cu3
4O6 8X3 0.01として十分混合したものを用いた。
In FIG. 1A, the substrate (1) is made of a ceramic material such as alumina, strontium titanate or superconducting ceramics. A metal such as copper may be used. In this embodiment, this substrate is formed on the plate-shaped substrate by the sputtering method to a thickness of 0.5 to 20 μm, for example 8 μm. In this spatter,
Pre-target on (A 1-X Bx) yCuzOwXv For example (YBa 2 ) Cu 3
It was used thoroughly mixed as ~ 4 O 6 ~ 8 X 3 ~ 0.01.

【0013】それをスパッタ法で飛翔化させ、基体(1)
上に膜(2) を形成させた。この際基体は室温〜400 ℃例
えば室温に加熱した雰囲気でアルゴンに酸素を若干加え
た。かくして図1(B) の形状が作られた後、図1(C) に
示すごとく、YAG レ−ザ光(波長1.06μ)(3)を照射す
る。これはパルス光であるため、そのパルスが帯上に走
査(11)するために1つの円形スポットに次の円形スポッ
トの80〜90%が重なるようにした。即ちレ−ザ光の走査
速度は1m/ 分とし、周波数8KHz、スポット径100μm と
した。するとこのレ−ザ光の照射された部分のみ選択的
に溶融し、レ−ザ光がまったく照射されなくなった後、
再結晶化がなされる。この再結晶化の速度を余り急峻に
しないため、この図1(C) の工程の際、基体全体を600
〜1050℃、好ましくは900 〜950 ℃、例えば930 ℃の温
度にハロゲンランプにより加熱した雰囲気でレ−ザアニ
−ルを行った。するとレ−ザ光により照射される部分は
1300℃またはそれ以上の温度に瞬間的になるため一度溶
融する。その後、930 ℃を保持しているため、その領域
はこのレ−ザ光の照射がなくなった時に固化する。この
際、すでにレ−ザ光の照射されている領域が結晶化が十
分となるため、この結晶と同じ結晶方位に成長し、結果
として、結晶の領域をより大きく成長させることができ
る。この後、これらに対し1℃/分以下の温度勾配で徐
冷し、超電導材料を得ることができた。そしてこの実施
例でのTcは98K また臨界電流密度6.3 ×104A/cm2 (77K
において) を得た。
The substrate is made to fly by a sputtering method to form a substrate (1)
A film (2) was formed on top. At this time, the substrate was heated to room temperature to 400 ° C., for example, room temperature, and a small amount of oxygen was added to argon. Thus, after the shape of FIG. 1 (B) is created, as shown in FIG. 1 (C), YAG laser light (wavelength 1.06 μ) (3) is irradiated. Since this is pulsed light, one circular spot was made to overlap 80 to 90% of the next circular spot in order to scan (11) the pulse on the band. That is, the scanning speed of the laser light was 1 m / min, the frequency was 8 KHz, and the spot diameter was 100 μm. Then, only the portion irradiated with the laser light is selectively melted, and after the laser light is not irradiated at all,
Recrystallization is done. In order not to make the recrystallization speed too steep, the entire substrate should be kept at 600 ° C. during the process of FIG. 1 (C).
The laser anneal was carried out in an atmosphere heated to 1050 DEG C., preferably 900 DEG to 950 DEG C., for example 930 DEG C. by means of a halogen lamp. Then, the part illuminated by the laser light
It melts once because it becomes instantaneous at a temperature of 1300 ° C or higher. After that, since the temperature is maintained at 930 ° C., the region solidifies when the irradiation with the laser light is stopped. At this time, since the region already irradiated with the laser light is sufficiently crystallized, it grows in the same crystal orientation as this crystal, and as a result, the crystal region can be grown larger. Thereafter, these were gradually cooled with a temperature gradient of 1 ° C./min or less, and a superconducting material could be obtained. The Tc in this example is 98K and the critical current density is 6.3 × 10 4 A / cm 2 (77K
At).

【0014】かくしてこのレ−ザ光を照射して実質的に
帯または線状にTcを有する領域を作ることができた。
Thus, it was possible to irradiate this laser beam to form a region having Tc substantially in the form of a band or a line.

【0015】「実施例2 」図2は本発明の他の実施例を
示す。
[Second Embodiment] FIG. 2 shows another embodiment of the present invention.

【0016】図面において基体(1) は円筒状を有する。
ここに実施例1と同様に膜状にセラミック材料(2) をス
クリ−ン印刷法で形成する。
In the drawing, the substrate (1) has a cylindrical shape.
The ceramic material (2) is formed in a film form here by the screen printing method as in the first embodiment.

【0017】作製はこの円筒基体を矢印(12)に示す如く
に回転しつつコ−ティングすればよい。
For production, this cylindrical substrate may be coated while rotating as shown by an arrow (12).

【0018】次にこれら膜の形成された基体を乾燥し、
酸化雰囲気で600 〜1050℃例えば730 ℃の温度に保持す
る。そしてこの基体にYAG レ−ザ(3) を照射しつつこの
レ−ザ光を(11)の方向に徐々に移す。同時に円筒を矢印
(12)の方向に回転をする。するとこの円筒状基体に対し
一本の連続した帯状のTcを有する単結晶領域(4) を構成
させることができる。その隣接部(5) はTcのより低い領
域として残存させる。即ちコイル状に超電導ワイヤを実
質的に形成したことと同じ超電導マグネットコイルを構
成させることができた。
Next, the substrate on which these films are formed is dried,
The temperature is kept at 600 to 1050 ° C, for example, 730 ° C in an oxidizing atmosphere. Then, while irradiating this substrate with the YAG laser (3), this laser light is gradually moved in the direction of (11). At the same time the cylinder arrow
Rotate in the direction of (12). Then, a single crystal region (4) having one continuous band-shaped Tc can be formed on this cylindrical substrate. The adjacent portion (5) is left as a region having a lower Tc. That is, the same superconducting magnet coil as that in which the superconducting wire was substantially formed in a coil shape could be constructed.

【0019】図4はかかる工程を繰り返し行うことによ
り多層に超電導ワイヤを形成したものである。
FIG. 4 shows a multi-layered superconducting wire formed by repeating the above steps.

【0020】これに図2におけるA−A’の縦断面図が
対応する。図面の構成を略記する。
This corresponds to the vertical sectional view taken along the line AA 'in FIG. The configuration of the drawings is abbreviated.

【0021】基体(1) 上に第1のセラミック材料を膜コ
−ティング(2-1) する。この後これを600 〜1050℃に加
熱焼成しつつレ−ザ光を(4-1),(4-2) ・・・・(4-n) に
照射する。これは基体(1) を回転しつつレ−ザ光を右へ
移動することにより成就し得る。するとこのレ−ザ光が
照射され、かつアニ−ルされた領域部分(4-1),・・・(4
-n) のみ超電導材料に変成する。そしてその他の領域(5
-1),(5-2) ・・は非超電導または低いTco を有する超電
導セラミックスとして残る。
The first ceramic material is film-coated (2-1) on the substrate (1). After this, while heating and baking this at 600 to 1050 ° C., laser light is applied to (4-1), (4-2) ... (4-n). This can be accomplished by rotating the substrate (1) while moving the laser light to the right. Then, this laser light is irradiated and the annealed region portion (4-1) ,.
-Only n) is transformed into a superconducting material. And other areas (5
-1), (5-2) ・ ・ remain as non-superconducting or superconducting ceramics with low Tco.

【0022】次にこれらの上に第2のセラミック材料を
膜コ−ティング(2-2) する。さらに同様に加熱酸化しつ
つレ−ザアニ−ルを行い、帯状のTcを有する領域(4'-
n), ・・・(4'-2),(4'-1) を作る。この時レ−ザはその
深さ方向の制御が比較的困難のため下側ににじみ出しや
すい。そのため(4'-1),(4'-2) の位置はその下側のTcを
有する領域(4-1),(4-2) ・・・の上方を避け、Tcのない
または少ない領域(5-1),(5-2) ・・・の上方に配設す
る。この(4-1) は1回コイルをまわって(4-2) に電気的
に連結している。これら端部の(4-n) では2層目の(4'-
n)に(10-1)にて連結している。
Next, a second ceramic material is film-coated (2-2) on them. Further, similarly, laser annealing is performed while heating and oxidizing, and a band-shaped region (4'-) having Tc is formed.
n), ... Make (4'-2), (4'-1). At this time, since the laser is relatively difficult to control in the depth direction, the laser easily exudes downward. Therefore, the positions of (4'-1) and (4'-2) are located below the area with Tc (4-1), (4-2) ... It is installed above (5-1), (5-2). This (4-1) turns the coil once and is electrically connected to (4-2). In (4-n) at these ends, the second layer (4'-
It is connected to n) at (10-1).

【0023】さらにこの2層目の他方の端部(4'-1)は3
層目の(4''-1) と(10-2)で連結しており、3層目のTcを
有する領域を(4''-1),(4''-2) ・・・(4''-n) として作
り得、さらに(10-3)にて4層目と連結させる。かくして
多層構造(ここでは4層構造)をしても1本の長い線が
繰り返し巻かれ、実質的にコイルの多層巻と同じ構成と
することができる。 この図4の実施例では(4-1),(4-
2) の巾の約5倍に(5-1),(5-2) ・・・を有せしめ、(4'
-1), (4''-1)(4'''-1) は(5-1) の上方に形成され、そ
れぞれの層間で互いのリ−ド線同志のショ−トが発生し
ないようしている。多層配線はこれを繰り返し、1層〜
数十層とし得る。またこの際は直列にあたかも1本の導
体の如くに連結した。しかし用途により並列に連結して
もよい。そして外部取り出し電極、リ−ド(30),(30')を
設けた。
Further, the other end (4'-1) of the second layer is 3
The regions (4 ''-1) and (10-2) of the third layer are connected, and the region having Tc of the third layer is (4 ''-1), (4 ''-2) ... ( 4 ″ -n), and further connect with the 4th layer at (10-3). Thus, even with a multi-layer structure (here, a four-layer structure), one long wire is repeatedly wound, and the structure can be substantially the same as the multi-layer winding of the coil. In the embodiment of FIG. 4, (4-1), (4-
About 5 times the width of 2), (5-1), (5-2) ...
-1), (4 ''-1) and (4 '''-1) are formed above (5-1), so that the shorts of the lead wires of each other do not occur between the layers. are doing. Repeat this for multi-layer wiring
It can be dozens of layers. At this time, they were connected in series as if they were one conductor. However, they may be connected in parallel depending on the application. Then, external extraction electrodes and leads (30) and (30 ') were provided.

【0024】その他は実施例1と同様である。Others are the same as in the first embodiment.

【0025】「実施例3」図3は本発明の他の実施例を
示す図面である。図面において、基体(1) は板状を有
し、一方の端部より超電導の線状の領域(4) は、このレ
−ザ光(11),(11')に走査させる。この際、同時に実施例
1と同様に加熱焼成させているため、レ−ザ光(3) の照
射された領域(4) を単結晶化させている。
[Embodiment 3] FIG. 3 is a view showing another embodiment of the present invention. In the drawing, a substrate (1) has a plate shape, and a linear region (4) of superconductivity from one end is made to scan with this laser light (11), (11 '). At this time, since the heating and firing are performed at the same time as in Example 1, the region (4) irradiated with the laser light (3) is single-crystallized.

【0026】この図面では1層の構成を示すが、図4に
示した実施例と同様に多層構成を有せることが可能であ
る。
Although a single-layer structure is shown in this drawing, it is possible to have a multi-layer structure as in the embodiment shown in FIG.

【0027】このレ−ザアニ−ルを加えた領域のTcは98
K を得た。
The Tc of the region to which the laser anneal is added is 98.
Got k

【0028】[0028]

【発明の効果】本発明によりこれまでまったく不可能と
されていたセラミック超電導体の単結晶またはそれに近
い結晶を実質的にコイル状、板状、線または帯状に構成
させることが可能となった。
According to the present invention, it has become possible to form a single crystal of a ceramic superconductor, which has been heretofore impossible at all, or a crystal close thereto, into a substantially coil shape, plate shape, wire shape or band shape.

【0029】そして曲げるとすぐわれてしまうセラミッ
クス超電導をして金属とまったく同様の超電導装置を作
ることが可能となった。
It has become possible to make a superconducting device that is exactly the same as metal by performing ceramics superconducting which is easily broken when bent.

【0030】さらにこの際、非超電導領域はアイソレイ
ション領域として用い、このパタ−ニングに対しフォト
リソグラフィ−技術をまったく用いていないことはきわ
めて多量生産に優れたものと推定される。本発明の超導
電材料は延性、展性、曲げ性を有さない材料特にセラミ
ック材料であればなんでもよい。
Further, at this time, it is presumed that the non-superconducting region is used as the isolation region and the photolithography technique is not used for this pattern at all, which is excellent in mass production. The superconducting material of the present invention may be any material that is not ductile, malleable or bendable, especially a ceramic material.

【0031】本発明の実施例として薄膜の例を示した
が、レーザーの代わりに一般的な熱アニールを用い、線
材やバルク等にも応用可能であることは言うまでもな
い。
Although an example of a thin film has been shown as an embodiment of the present invention, it is needless to say that general thermal annealing is used in place of the laser and it can be applied to a wire rod, a bulk, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導材料の作製工程FIG. 1 is a process for producing an oxide superconducting material of the present invention.

【図2】本発明の酸化物超電導材料の実施例FIG. 2 Example of oxide superconducting material of the present invention

【図3】本発明の酸化物超電導材料の実施例FIG. 3 Example of oxide superconducting material of the present invention

【図4】本発明の酸化物超電導材料の実施例FIG. 4 Example of oxide superconducting material of the present invention

【符号の説明】[Explanation of symbols]

1・・・基体 2・・・超電導用材料 3・・・レ−ザ光 4・・・超電導のTco の高い領域 5・・・超電導のTco の低い領域 1 ... Substrate 2 ... Superconducting material 3 ... Laser light 4 ... High superconducting Tco region 5 ... Superconducting low Tco region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/00 ZAA H01F 6/06 ZAA H01L 39/06 ZAA 39/24 ZAA F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 12/00 ZAA H01F 6/06 ZAA H01L 39/06 ZAA 39/24 ZAA F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導セラミックス材料の一部に選択的に
レーザー光を照射し被照射部分の結晶化度を向上させる
工程を有し、 該工程において前記超電導セラミックス材料は加熱され
ていることを特徴とする酸化物超電導材料の作製方法。
1. A part of a superconducting ceramic material is selectively selected.
Irradiate laser light to improve the crystallinity of the irradiated area
A step in which the superconducting ceramic material is heated
And a method for producing an oxide superconducting material.
【請求項2】請求項1において超電導セラミックス材料
、(A1−xBx)yCuzOwXv x=0.1〜
1.0,y=2.0〜4.0,z=1.0〜4.0,w
=4.0〜10.0,v=0〜3.0但しAは元素周期
表3a族、Bは元素周期表2a族、Xは元素周期表7a
族または7b族より選ばれたそれぞれ1つまたは複数種
の元素よりなることを特徴とする酸化物超電導材料の作
製方法。
2. The superconducting ceramic material according to claim 1.
Is (A1 - xBx) yCuzOwXvx = 0.1
1.0, y = 2.0-4.0, z = 1.0-4.0, w
= 4.0 to 10.0, v = 0 to 3.0, where A is group 3a of the periodic table of elements, B is group 2a of the periodic table of elements, and X is 7a of the periodic table of elements.
A method for producing an oxide superconducting material, which comprises one or more kinds of elements each selected from Group 7 or Group 7b.
【請求項3】請求項1において、加熱は600〜105
0℃でなされることを特徴とする酸化物超電導材料の作
製方法。
3. The heating according to claim 1, wherein the heating is 600 to 105.
A method for producing an oxide superconducting material, which is performed at 0 ° C.
JP3094824A 1991-04-01 1991-04-01 Method for producing oxide superconducting material Expired - Lifetime JPH0829944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094824A JPH0829944B2 (en) 1991-04-01 1991-04-01 Method for producing oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094824A JPH0829944B2 (en) 1991-04-01 1991-04-01 Method for producing oxide superconducting material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62173606A Division JPH0812819B2 (en) 1987-07-10 1987-07-10 Superconductor fabrication method

Publications (2)

Publication Number Publication Date
JPH07142777A JPH07142777A (en) 1995-06-02
JPH0829944B2 true JPH0829944B2 (en) 1996-03-27

Family

ID=14120806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094824A Expired - Lifetime JPH0829944B2 (en) 1991-04-01 1991-04-01 Method for producing oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0829944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289450B2 (en) 2006-01-13 2016-03-22 3M Innovative Properties Company Silver-containing antimicrobial articles and methods of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157440A (en) * 2008-12-26 2010-07-15 Toshiba Corp Oxide superconductor, and method for reducing ac loss of oxide superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265475A (en) * 1987-04-23 1988-11-01 Agency Of Ind Science & Technol Manufacture of superconducting electronic circuit
JPS63273371A (en) * 1987-05-01 1988-11-10 Fujikura Ltd Manufacture of superconducting electric circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289450B2 (en) 2006-01-13 2016-03-22 3M Innovative Properties Company Silver-containing antimicrobial articles and methods of manufacture

Also Published As

Publication number Publication date
JPH07142777A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US5912211A (en) Method of manufacturing a superconducting pattern by light irradiation
EP0282360B1 (en) Method for manufacturing components of superconducting ceramic oxide materials
JP2660280B2 (en) Superconductor
JP2660281B2 (en) Superconductor fabrication method
JPH0812819B2 (en) Superconductor fabrication method
JP2645489B2 (en) Superconductor fabrication method
JPH0829944B2 (en) Method for producing oxide superconducting material
JPH07114295B2 (en) Superconducting coil fabrication method
JPH07114296B2 (en) Superconductor
US5248658A (en) Method of manufacturing a superconducting oxide pattern by laser sublimation
JPH0818915B2 (en) Preparation method of oxide superconducting polycrystalline thin film
JP2010056454A (en) Method of manufacturing metal oxide layer
JP2630362B2 (en) Superconducting coil
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JP2585624B2 (en) Superconducting coil fabrication method
JPH083968B2 (en) How to make a superconductor
JP2754494B2 (en) Method for producing an oriented layer of Bi-Sr-Ca-Cu-oxide or T1-Ba-Ca-Cu-oxide high temperature superconductor
JP2645490B2 (en) How to make superconducting material
JP2654555B2 (en) Superconducting device manufacturing method
JPH063766B2 (en) Superconducting coil manufacturing method
Jannah et al. Surface Morphology Studies on Laser Irradiated Target and Bi (Pb) SrCaCuO Thin Films
JP5624840B2 (en) Manufacturing method of oxide superconductor
JPH01100095A (en) Production of oxide superconductor circuits
JPH063765B2 (en) Superconducting coil
JPH01100096A (en) Production of oxide superconductor thin film