JPH0829505A - Method for estimating residual capacity of battery - Google Patents

Method for estimating residual capacity of battery

Info

Publication number
JPH0829505A
JPH0829505A JP6162568A JP16256894A JPH0829505A JP H0829505 A JPH0829505 A JP H0829505A JP 6162568 A JP6162568 A JP 6162568A JP 16256894 A JP16256894 A JP 16256894A JP H0829505 A JPH0829505 A JP H0829505A
Authority
JP
Japan
Prior art keywords
battery
capacity
storage battery
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6162568A
Other languages
Japanese (ja)
Other versions
JP3126591B2 (en
Inventor
Katsu Maekawa
克 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06162568A priority Critical patent/JP3126591B2/en
Publication of JPH0829505A publication Critical patent/JPH0829505A/en
Application granted granted Critical
Publication of JP3126591B2 publication Critical patent/JP3126591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To estimate the residual capacity of a battery accurately by determining the differential charging rate and the time integrated current value of the battery over a predetermined period. CONSTITUTION:The voltage of a battery 1 is recovered gradually as the current thereof decreased below a predetermined level (no-load state), and a microcomputer 7 estimates the noload converging from a level increased over a ;predetermined period and measures the charging rate. The time integrated current value of the battery 1 is then divided by the difference between current and previous charging rates thus estimating the fully charged capacity of the battery 1. The estimated capacity is multiplied by the current charging rate in order to estimate the residual capacity (ampere-hour) of the battery 1 under no-load. Furthermore, the time integrated current value after estimation of the residual capacity is subtracted from the residual capacity thus estimating the residual capacity of the battery 1 under charged/discharged state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車、電動車椅
子等の電動車両に用いられている蓄電池の残存容量推定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the remaining capacity of a storage battery used in electric vehicles such as electric vehicles and electric wheelchairs.

【0002】[0002]

【従来の技術】電気自動車、電動車椅子等では動力源と
してバッテリ(蓄電池)を用いており、バッテリが完全
放電すると路上で立ち往生することになるので、使用し
ているバッテリからあとどれだけエネルギを取りだすこ
とができるか(残存容量)を知ることはユ―ザにとって
重要である。
2. Description of the Related Art Electric vehicles, electric wheelchairs and the like use batteries (storage batteries) as a power source. If the batteries are completely discharged, they will be stuck on the road. It is important for users to know whether they can do it (remaining capacity).

【0003】バッテリの残存容量の推定方法としては、
次のような方法が知られている。 推定方法(1):バッテリを数時間以上休止させた後の
バッテリ無負荷電圧やバッテリ液の比重に基づく推定方
法、 推定方法(2):バッテリがある程度の充放電電流を流
しているときのバッテリ電圧に基づく推定方法、 推定方法(3):バッテリの充放電電流を積算する方
法、 推定方法(4):無負荷電圧の時間変化に基づく推定方
法。
As a method of estimating the remaining capacity of the battery,
The following methods are known. Estimating method (1): An estimating method based on the no-load voltage of the battery or the specific gravity of the battery fluid after the battery has been rested for several hours or more, and an estimating method (2): the battery when the battery is flowing a certain amount of charge / discharge current. Estimating method based on voltage, estimating method (3): method of integrating charging / discharging current of battery, estimating method (4): estimating method based on time change of no-load voltage.

【0004】推定方法(1)は、バッテリの充電率(完
全充電を 100パ―セント、終止電圧まで放電した完全放
電をゼロパ―セントとする)を正確に示す。バッテリの
容量は、使いはじめ初期にある程度増加し、バッテリ寿
命が近づくと急速に減少するが、バッテリの容量が安定
している大部分の期間については充電率イコ―ル残存容
量とみてよいので、推定方法(1)の結果を残存容量と
してよい。しかし、推定方法(1)は、バッテリを数時
間休止させなければならないので非実用的である。
The estimation method (1) accurately indicates the charge rate of the battery (100% for full charge, and zero% for full discharge after discharging to the final voltage). The capacity of the battery increases to some extent at the beginning of use and then decreases rapidly as the battery life approaches, but for most of the period when the capacity of the battery is stable, it can be regarded as the charge rate equal remaining capacity, The result of the estimation method (1) may be used as the remaining capacity. However, the estimation method (1) is impractical because it requires the battery to rest for several hours.

【0005】推定方法(2)は、どちらかといえば定電
流負荷向きであり、電気自動車などの変動負荷では正確
な結果は得られない。また、電流が流れているときのバ
ッテリ電圧は温度変化が大きいので定電流の場合でも、
あまり精度は高くない。この方法から推定されるのも、
正確にいえば残存容量というより充電率である。
The estimation method (2) is rather suitable for a constant current load, and an accurate result cannot be obtained with a variable load such as an electric vehicle. Also, since the battery voltage when current is flowing changes greatly with temperature, even when the current is constant,
Not very accurate. It is estimated from this method that
To be precise, it is the charging rate rather than the remaining capacity.

【0006】推定方法(3)は完全充電率のアンペアア
ワ―値から、その後の充放電のアンペアアワ―値を差し
引くことにより求めるので、バッテリに残っているエネ
ルギが求められるが、誤差が累積するので長時間の推定
には向いていない。また、推定方法(2)と同様に推定
結果がバッテリ温度の影響を受ける。
The estimation method (3) is obtained by subtracting the ampere hour value of the subsequent charging / discharging from the ampere hour value of the full charge rate, so the energy remaining in the battery can be obtained, but since the error accumulates, it is long. Not suitable for estimating time. Further, the estimation result is affected by the battery temperature as in the estimation method (2).

【0007】推定方法(4)は比較的新しい推定方法
で、バッテリの無負荷電圧の変化に着目して、従来長時
間を要した無負荷電圧からの充電率推定を短時間で行な
うことを可能としたもので、”A Battery State-of-Cha
rge Indicator for Electric Wheelchairs”,James H.
Aylor et al,IEEE TRANSACTIO ON INDUSTRIAL ELECTRON
ICS,VOL.39,NO.5,OCTOBER 1992の文献で公知化されて
いる。
The estimation method (4) is a relatively new estimation method, and paying attention to the change in the no-load voltage of the battery, it is possible to estimate the charging rate from the no-load voltage, which conventionally took a long time, in a short time. I said, “A Battery State-of-Cha
rge Indicator for Electric Wheelchairs ”, James H.
Aylor et al, IEEE TRANSACTIO ON INDUSTRIAL ELECTRON
It is well known in the literature of ICS, VOL.39, NO.5 and OCTOBER 1992.

【0008】この推定方法(4)について図4〜図6を
用いて説明する。説明の簡単のため、バッテリの充電率
測定の例を示す図4は前記文献に記載されている回路よ
り簡略化している。また、図6のフロ―チャ―トは前記
文献に記載されている内容をフロ―チャ―ト化したもの
である。図4において、1はバッテリ、2は電動機、3
は電動機を駆動する制御装置、4はホ―ルCT等の電流
検出器、5は電流検出回路、6は電圧検出回路、7は充
電率を測定し残存容量を推定するマイクロコンピュ―
タ、8は充電率を表示する表示回路である。マイクロコ
ンピュ―タに付随するメモリ等の構成要素については周
知であるので省略し、単にマイクロコンピュ―タ7とし
た。バッテリの充放電電流を検出する電流検出器4の出
力値を電流検出回路5を介してマイクロコンピュ―タ7
に取りこむ。バッテリの端子電圧の値も電圧検出回路6
を介してマイクロコンピュ―タ7に取りこむ。この二つ
のデ―タからマイクロコンピュ―タ7は、バッテリの充
電率を推定し、その結果を表示回路8に出力する。
This estimation method (4) will be described with reference to FIGS. For simplification of description, FIG. 4 showing an example of battery charge rate measurement is simplified from the circuit described in the above document. The flowchart of FIG. 6 is a flowchart of the contents described in the above-mentioned document. In FIG. 4, 1 is a battery, 2 is an electric motor, 3
Is a controller for driving an electric motor, 4 is a current detector such as a Hall CT, 5 is a current detection circuit, 6 is a voltage detection circuit, 7 is a micro computer for measuring the charging rate and estimating the remaining capacity.
Reference numerals 8 and 8 are display circuits for displaying the charging rate. Since components such as a memory attached to the microcomputer are well known, they are omitted and only the microcomputer 7 is used. The output value of the current detector 4 for detecting the charging / discharging current of the battery is transferred via the current detection circuit 5 to the microcomputer 7
Take in. The value of the terminal voltage of the battery is also the voltage detection circuit 6
It is taken into the microcomputer 7 through the. From these two data, the microcomputer 7 estimates the charging rate of the battery and outputs the result to the display circuit 8.

【0009】図5はバッテリの負荷が無負荷になった時
の時間経過に伴うバッテリの電圧特性図である。放電停
止後のバッテリの電圧は図5のように変化する。図5に
おいて、縦軸は無負荷電圧、横軸は対数目盛りで示した
時間軸Xとして示している。従って、
FIG. 5 is a voltage characteristic diagram of the battery with the lapse of time when the load of the battery becomes no load. The voltage of the battery after the discharge is stopped changes as shown in FIG. In FIG. 5, the vertical axis represents the no-load voltage, and the horizontal axis represents the time axis X shown on a logarithmic scale. Therefore,

【0010】[0010]

【数1】 X= log10t …(1) である。このように時間軸を対数目盛りでとると、バッ
テリ電圧曲線は2本の漸近線を持つ。すなわち放電停止
後の数分の間、バッテリ電圧曲線はほとんど直線的に変
化し、数時間経過すると、VOCV の一定値に落ち着く。
従って放電停止後、バッテリ電圧曲線が直線的に変化し
ている数分の間の二つの時点X0 (= log100 )、X
1 (= log101 )での無負荷電圧V0 とV1 とから、
長時間休止後の無負荷電圧VOCV は
## EQU1 ## X = log 10 t (1) When the time axis is logarithmically scaled as described above, the battery voltage curve has two asymptotes. That is, the battery voltage curve changes almost linearly for a few minutes after the discharge is stopped, and after a few hours, it reaches a constant value of VOCV.
Therefore, after the discharge is stopped, two time points X 0 (= log 10 t 0 ), X for a few minutes during which the battery voltage curve changes linearly.
From the no-load voltages V 0 and V 1 at 1 (= log 10 t 1 ),
The no-load voltage V OCV after a long rest is

【0011】[0011]

【数2】 VOCV ={(V1 −V0 )/(X1 −X0 )}・Xp +V0 …(2) で求められる。前記文献では、種々の鉛バッテリのいろ
いろな使用条件下で、Xp の値として一定値 1.64 を用
いてバッテリの完全充電と完全放電のときのバッテリ電
圧差にたいするVOCV の推定値の誤差が数パ―セント以
内に収まり、充電率を数パ―セント以内で推定できるこ
とが述べられている。特定のバッテリであればそのバッ
テリのXp を求めればさらに正確な推定が可能になると
思われる。
Determined by the following equation 2] VOCV = {(V 1 -V 0 ) / (X 1 -X 0)} · Xp + V 0 ... (2). In the above-mentioned document, under various usage conditions of various lead batteries, a constant value of 1.64 is used as the value of Xp, and the error of the estimated value of VOCV with respect to the battery voltage difference at the time of full charge and full discharge of the battery is several parts. It is stated that it is within cents and the charging rate can be estimated within a few percent. For a specific battery, more accurate estimation will be possible if Xp of the battery is obtained.

【0012】図6はこの原理を用いてマイクロコンピュ
―タ7が行う処理内容をフロ―チャ―ト化したものであ
る。まずステップ1でタイマtm の値をクリアする。ス
テップ2ではバッテリ電流Ib の絶対値が所定値Imin
以下であるかどうかを調べる。Imin 以上のバッテリ電
流が流れていれば、無負荷電圧に基づく推定は行なわれ
ず終了する。Imin 以下であれば、ステップ3でタイマ
tm の値をサンプリングタイムdt 分インクリメントす
る。ステップ4ではタイマtm の値から測定時刻t0
達したかどうかを調べ、達していなければステップ2に
戻る。測定時刻t0 に達したらステップ5に進み、その
ときのバッテリ電圧を測定し、V0 にセ―ブする。ステ
ップ6〜ステップ9では、ステップ2〜ステップ5と同
様にして時刻t1 におけるバッテリ電圧を測定し、V1
にセ―ブする。ステップ10では前記(2)式にしたがっ
て安定後の無負荷電圧VOCV を推定する。バッテリの充
電率COCV はVOCV と線形関係にあるので無負荷電圧推
定値VOCV から
FIG. 6 is a flowchart of the processing contents performed by the microcomputer 7 using this principle. First, in step 1, the value of the timer tm is cleared. In step 2, the absolute value of the battery current Ib is the predetermined value Imin.
Check if: If the battery current equal to or greater than Imin flows, the estimation based on the no-load voltage is not performed and the process ends. If it is less than Imin, the value of the timer tm is incremented by the sampling time dt in step 3. In step 4, it is checked from the value of the timer tm whether or not the measurement time t 0 has been reached. If it has not reached, the process returns to step 2. When the measurement time t 0 is reached, the routine proceeds to step 5, where the battery voltage at that time is measured and saved at V 0 . In steps 6 to 9, the battery voltage at time t 1 is measured in the same manner as in steps 2 to 5, and V 1
To save. In step 10, the stabilized no-load voltage V OCV is estimated according to the above equation (2). Since the charging rate COCV of the battery has a linear relationship with VOCV, the estimated no-load voltage VOCV

【0013】[0013]

【数3】 COCV =(VOCV −VOCV(0))/(VOCV(100)−VOCV(0))・100 …(3) によってCOCV がパ―セント表示で求められる。ただ
し、VOCV(100)、VOCV(0)は充電率 100パ―セント、ゼ
ロパ―セントにおけるVOCV である。
## EQU3 ## COCV = (VOCV-VOCV (0)) / (VOCV (100) -VOCV (0)). Multidot.100 (3) The COCV is obtained in the percentage display. However, VOCV (100) and VOCV (0) are VOCV at a charging rate of 100 percent and zero percent.

【0014】前記文献は、バッテリ電流が流れていると
きの、充電率推定方法も含むが、こちらは、推定方法
(3)と類似の方式で、サンプリングタイムごとに充放
電電流の大きさに応じて前記無負荷電圧から求めたCOC
V の値を減少させていく方式である。ただし、バッテリ
の充電率の変化は、充放電電流と正確には比例関係にあ
るわけではないし、バッテリ温度の影響も受ける。この
ため、COCV 測定毎に、前回走行中の平均電流と充電率
変化との比例定数を補正計算により修正して、誤差が少
なくなる工夫をしている。これにより、前回の走行とま
ったく同じ走行を行ない、かつ温度もほぼ飽和して前回
と同様であるとすると、かなり正確な推定が期待でき
る。前記文献では起伏の多いコ―スと平坦なコ―スでの
テストでいずれも好結果を得ている。
The above-mentioned document also includes a method of estimating the charging rate when the battery current is flowing, but this method is similar to the estimating method (3) and depends on the magnitude of the charging / discharging current at each sampling time. COC calculated from the above no-load voltage
This is a method of decreasing the value of V. However, the change in the charging rate of the battery is not exactly proportional to the charging / discharging current, and is also affected by the battery temperature. Therefore, for each COCV measurement, the proportional constant between the average current during the previous run and the change in the charging rate is corrected by a correction calculation to reduce the error. As a result, if the vehicle travels exactly the same as the previous one, and the temperature is almost saturated, and it is the same as the previous one, it is possible to expect a fairly accurate estimation. In the above-mentioned document, good results were obtained in both tests on a rough course and a flat course.

【0015】[0015]

【発明が解決しようとする課題】しかし、前述した方式
は走行パタ―ンが変わったとき、すなわち、起伏の多い
コ―スを走行した後平坦なコ―スを走ったときなどには
テスト結果が悪くなることが予想される。長い坂の登坂
前後で停止して無負荷電圧の時間変化に基づく推定を行
ない、その後平坦路走行をおこなう場合について考えて
みる。登坂後に停止したときの推定でそのときの充電率
は高精度に推定されるが、そのとき充放電電流と充電率
変化の比例定数が大きな値に補正される。このため、そ
の後の平坦路走行中は充電率の下がり方が早いかのよう
に表示される。これはバッテリの充電率の真の下がり方
と合致しない。登坂中の大電流放電によりバッテリ温度
が上昇していれば、いくらか登坂前よりも充電率の下が
り方は早くなる。しかし登坂中の大電流放電時に比べれ
ば充放電電流に対する充電率変化の比例定数は小さくな
るはずである。それなのに登坂中より、その後の平坦路
走行時のほうが充放電電流に対する充電率変化の比例定
数が大きくなるのはおかしい。走行時間が長く続くほど
このための誤差は大きくなる。つまり同様な走行パタ―
ンが続くときに精度をあげるための工夫が、走行パタ―
ンが変わった場合には裏目に出ているといえる。
However, in the above-mentioned method, when the running pattern is changed, that is, when a flat course is run after running on a rugged course, the test results are obtained. Is expected to get worse. Consider a case in which the vehicle is stopped before and after climbing a long slope, the estimation is performed based on the change over time of the no-load voltage, and then the vehicle runs on a flat road. The charging rate at that time is estimated with high accuracy by estimation when the vehicle stops after climbing the hill, but at that time, the proportional constant of the charge / discharge current and the change in the charging rate is corrected to a large value. Therefore, while the vehicle is traveling on a flat road thereafter, it is displayed as if the charging rate declines quickly. This is inconsistent with the true decline in battery charge rate. If the battery temperature rises due to the large current discharge during climbing, the charging rate will decrease somewhat earlier than before climbing. However, the proportional constant of change in charging rate with respect to charging / discharging current should be smaller than that during high current discharging during climbing. However, it is strange that the proportional constant of the change in the charging rate with respect to the charging / discharging current becomes larger when the vehicle is traveling on a flat road thereafter than when the vehicle is climbing uphill. The error for this becomes larger as the running time continues longer. In other words, similar running patterns
The pattern to improve the accuracy when driving continues is the running pattern.
It can be said that it is behind the scenes when it changes.

【0016】また推定方法(4)から求まるのは充電率
であるが、完全充電におけるバッテリ容量は変化するの
で、たとえば100AH のバッテリでCOCV が 100パ―セン
トであっても、100AH のエネルギを取り出せるとは限ら
ない。バッテリ寿命近くになると、容量は急激に減少す
る。このため、電動車椅子や電気自動車のユ―ザは、表
示されている充電率だけでなく、最近の充電率の下がり
方にも注意する必要がある。充電率の下がり方や、充電
に要した時間などから経験的に、その時点でのバッテリ
容量を推定しなければならないわけで、決して使いやす
いとは言えない。このためバッテリの充電を早めにおこ
なうことになり、寿命が近づいたバッテリの消耗をより
激しくすると思われる。バッテリ寿命にさらに近づき容
量減少が激しくなると、あとどれだけ走行できるかの把
握が困難となるので、バッテリ交換も早め早めにおこな
うことになり、ランニングコストを押しあげることにな
ると思われる。
Further, what is obtained from the estimation method (4) is the charging rate, but since the battery capacity at full charge changes, even if the COCV is 100 percent for a battery of 100 AH, for example, 100 AH of energy can be extracted. Not necessarily. At the end of battery life, capacity drops sharply. For this reason, users of electric wheelchairs and electric vehicles need to pay attention not only to the displayed charging rate but also to the recent decrease in charging rate. It is not easy to use because the battery capacity at that time must be estimated empirically from how the charging rate decreases and the time required for charging. For this reason, the battery will be charged earlier, and it is thought that the battery will be exhausted more and more due to the end of its life. When the battery life gets even closer and the capacity decreases sharply, it becomes difficult to know how much more the vehicle can run, so it will be necessary to replace the battery early and early, which will increase running costs.

【0017】もしも、残存容量がアンペアアワ―(エネ
ルギ)で表示されていれば、ユ―ザは自分の通常の走行
スタイルであとどれだけ走行できるかを把握でき、通常
の走行距離を走れるだけのエネルギが残っていれば充電
不用であるし、通常の走行距離プラスアルファ―だけ走
行できるアンペアアワ―のエネルギが充電できるあいだ
はバッテリ交換も不用であることがわかる。充電率をア
ンペアアワ―に変換するにはバッテリの容量に充電率を
乗算すればよいが、バッテリ容量として公称容量のよう
な固定値を用いると、バッテリの寿命が近づき、容量が
減少したばあいに真の残存容量より推定値が大きくなる
ので、ユ―ザがこの推定値の表示を信用しているとバッ
テリ上がりにより立ち往生する危険がある。 (目的)本発明は、上記の事情に鑑みてなされたもので
短時間で高精度に残存エネルギを推定し、バッテリユ―
ザに好都合な蓄電池の残存容量推定方法を得ることを目
的とする。
If the remaining capacity is displayed in ampere hours (energy), the user can know how much he or she can run in his or her normal driving style, and the energy required to run the normal mileage. It can be seen that if is left, the battery is not needed to be charged, and battery replacement is also unnecessary while the energy of ampere hours that can run the normal mileage plus alpha can be charged. To convert the charge rate to ampere hour, the capacity of the battery should be multiplied by the charge rate.However, if a fixed value such as the nominal capacity is used as the battery capacity, when the battery life approaches and the capacity decreases, Since the estimated value is larger than the true remaining capacity, there is a risk that the user may get stuck due to the battery exhaustion if the user trusts the displayed estimated value. (Purpose) The present invention has been made in view of the above circumstances, and estimates the remaining energy with high accuracy in a short time to obtain a battery unit.
The purpose of the present invention is to obtain a method for estimating the remaining capacity of a storage battery that is convenient for the user.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、蓄電池の電流が所定値以下のとき、一定
期間における前記蓄電池の電圧変化から充電率を測定
し、前回測定した充電率と今回測定した充電率の差分値
とその間の前記蓄電池の電流の時間積分値とから完全充
電における蓄電池の容量を推定し、推定された完全充電
における蓄電池の容量と今回測定した充電率とから前記
蓄電池の残存容量を推定する。
In order to achieve the above object, the present invention measures the charging rate from the voltage change of the storage battery during a certain period when the current of the storage battery is a predetermined value or less, and measures the charging rate measured last time. And the capacity of the storage battery in full charge is estimated from the difference value of the charging rate measured this time and the time integral value of the current of the storage battery between them, and the capacity of the storage battery in the estimated full charging and the charging rate measured this time Estimate the remaining capacity of the storage battery.

【0019】更に、前記残存容量を推定した後の前記蓄
電池の電流の時間積分値と前記残存容量とから充放電中
における蓄電池の残存容量を推定する。更に、前記蓄電
池の電流の時間積分値が所定値に満たないときは、完全
充電における蓄電池の容量の推定を行なわず、前回の残
存容量の推定値と該時間積分値とから蓄電池の残存容量
を推定する。
Further, the remaining capacity of the storage battery during charging and discharging is estimated from the time integrated value of the current of the storage battery after estimating the remaining capacity and the remaining capacity. Furthermore, when the time integrated value of the current of the storage battery is less than a predetermined value, the capacity of the storage battery in full charge is not estimated, and the remaining capacity of the storage battery is calculated from the previous estimated value of the remaining capacity and the time integrated value. presume.

【0020】更に、前回測定した充電率と今回測定した
充電率の差分値が所定値に満たないときは、完全充電に
おける蓄電池の容量の推定を行なわず、それまでの容量
推定値を用いる。
Further, when the difference value between the charging rate measured last time and the charging rate measured this time is less than a predetermined value, the capacity estimation of the storage battery in full charge is not performed and the capacity estimation value up to that point is used.

【0021】[0021]

【作用】蓄電池の電流が所定値以下(無負荷状態)にな
ると蓄電池の電圧が徐徐に回復し一定期間における電圧
上昇値から収束する無負荷電圧を推定し充電率を測定す
る。そして前回測定した充電率と今回測定した充電率の
差分値てその間の蓄電池の電流の時間積分値を除算し、
完全充電における蓄電池の容量(アンペアアワ―)を推
定する。その後、推定された完全充電における蓄電池の
容量に今回測定した充電率を乗算し、無負荷状態におけ
る蓄電池の残存容量をアンペアアワ―で推定する。
When the current of the storage battery becomes equal to or lower than a predetermined value (no load state), the voltage of the storage battery gradually recovers and the no load voltage which converges from the voltage increase value in a certain period is estimated and the charging rate is measured. Then, divide the time integration value of the current of the storage battery between the charging rate measured last time and the charging rate measured this time,
Estimate the capacity (ampere hours) of the storage battery at full charge. After that, the estimated capacity of the storage battery in full charge is multiplied by the charging rate measured this time, and the remaining capacity of the storage battery in the no-load state is estimated by ampere hour.

【0022】更に、前記無負荷状態における蓄電池の残
存容量を推定した後の蓄電池の電流の時間積分値を前記
残存容量から減算し、充放電状態における蓄電池の残存
容量を推定する。
Further, the time integrated value of the current of the storage battery after estimating the remaining capacity of the storage battery in the no-load state is subtracted from the remaining capacity to estimate the remaining capacity of the storage battery in the charge / discharge state.

【0023】[0023]

【実施例】図1〜図3に本発明の1実施例のフロ―チャ
―トを示す。図1及び図2は車両停止時の無負荷電圧の
時間変化に基づく残存容量推定フロ―であり、図3は走
行中の残存容量推定フロ―である。図1は図6のステッ
プ11までと同じであり、ステップ11で充電率Cocv が求
められ、図2へと続く。図2において、ステップ12では
前回求めたCocv の値がCnew としてセ―ブされてお
り、この内容をColdにセ―ブし、今回求めたCOCV の
値をCnew としてセ―ブする。前回COCV を求めて以
降、今回のCOCV 測定までの間にバッテリから充放電し
た電流の時間積分値AHd の値とから、その時点でのバ
ッテリの完全充電でのアンペアアワ―値AHfullはステ
ップ13にて
1 to 3 show a flow chart of an embodiment of the present invention. 1 and 2 are a remaining capacity estimation flow based on a temporal change of the no-load voltage when the vehicle is stopped, and FIG. 3 is a remaining capacity estimation flow during traveling. FIG. 1 is the same as that up to step 11 in FIG. 6, the charge rate Cocv is obtained in step 11, and the process continues to FIG. 2. In FIG. 2, the value of Cocv obtained last time is saved as Cnew in step 12, and the contents are saved in Cold, and the value of COCV obtained this time is saved as Cnew. From the time of the previous calculation of COCV to the current measurement of COCV, the ampere hour value AHfull at full charge of the battery at that time is calculated in step 13 from the time integrated value AHd of the current charged and discharged from the battery.

【0024】[0024]

【数4】 AHfull=AHd /{(Cold −Cnew )/100 } …(4) で求められる。アンペアアワ―AHfull、およびAHd
の符号は放電側を正としている。ステップ14では、次回
の充電率測定までの間の電流の時間積分値を求めるた
め、AHd の値を零クリアする。ステップ15では、
(4)式で求めたバッテリの完全充電でのアンペアアワ
―値AHfullと、今回測定した充電率COCV (=Cnew
)とから、バッテリの残存エネルギ量AHOCV は
## EQU4 ## AHfull = AHd / {(Cold-Cnew) / 100} (4) Ampere hour-AHfull and AHd
Is positive on the discharge side. In step 14, the value of AHd is cleared to zero in order to obtain the time integral value of the current until the next charging rate measurement. In step 15,
The ampere hour value AHfull at the full charge of the battery obtained by the equation (4) and the charging rate COCV (= Cnew) measured this time
), The residual energy AHOCV of the battery is

【0025】[0025]

【数5】 AHOCV =AHfull×COCV /100 …(5) で求められる。(4)式、(5)式の 100という数値は
Cnew 、Cold の値をパ―セント表示するためのもの
で、完全充電を1、完全放電をゼロとする比率であらわ
す場合には不要である。(5)式で求めたAHOCV の値
を残存容量AHr として表示回路に送って、停車時の残
存エネルギ測定および表示を終了する。
## EQU5 ## AHOCV = AHfull.times.COCV / 100 (5) The numerical value of 100 in the equations (4) and (5) is for displaying the values of Cnew and Cold in percent, and is not necessary when the ratio of 1 for full charge and 0 for complete discharge is used. . The value of AHOCV obtained by the equation (5) is sent to the display circuit as the remaining capacity AHr, and the remaining energy measurement and display when the vehicle is stopped is completed.

【0026】走行中は、サンプリング時間dt 毎に、図
3のフロ―チャ―トにしたがって残存容量を推定する。
まず、ステップ21で、停車時の残存容量AHOCV 測定以
降の、バッテリの充放電電流の時間積分値を
During running, the remaining capacity is estimated for each sampling time dt according to the flowchart of FIG.
First, in step 21, the time integrated value of the charging / discharging current of the battery after the measurement of the remaining capacity AHOCV when the vehicle is stopped is calculated.

【0027】[0027]

【数6】 AHd =AHd +I×dt …(6) で求める。Iはサンプリング時間dt 間の充放電電流の
平均値である。ステップ22では、停車時に求めたAHOC
V と(6)式で求めたAHd とから
## EQU6 ## AHd = AHd + I.times.dt (6) I is the average value of the charging / discharging current during the sampling time dt. In step 22, AHOC obtained when the vehicle was stopped
From V and AHd calculated by equation (6)

【0028】[0028]

【数7】 AHr =AHOCV −AHd …(7) で残存容量AHr を求め、表示回路に送る。(6)式で
求めたAHd の値は次回停車時の測定にも用いられる。
## EQU7 ## The remaining capacity AHr is obtained by AHr = AHOCV-AHd (7) and sent to the display circuit. The value of AHd obtained by the equation (6) is also used for the measurement at the next stop.

【0029】車両の停車時には無負荷電圧の時間変化と
充放電電流の時間積とに基づいて、短時間で高精度にバ
ッテリ残存エネルギを推定する。走行中には停車時に求
めた残存エネルギから、以降の走行で消費したエネルギ
を減算し、残存エネルギを求める。次回停車時には再び
無負荷電圧の時間変化と充放電電流の時間積とに基づい
て、残存エネルギを推定する。無負荷電圧の時間変化と
充放電電流の時間積とに基づいて求められるアンペアア
ワ―値は計算方法から、「前回停止時の測定から今回停
止時の測定までの間の走行においての充放電と同様な充
放電を今後も続けた場合にどれだけアンペアアワ―を取
り出せるか」である。すなわち、その後の走行が、前回
の走行と同様のパタ―ンであることを前提として残存容
量を推定していることになる。このため、同様の走行パ
タ―ンなら、高精度の推定値が得られ、走行パタ―ンが
異なる場合には精度が下がる。しかし、従来例とつぎの
点で相違している。
When the vehicle is stopped, the remaining battery energy is estimated with high accuracy in a short time based on the time change of the no-load voltage and the time product of the charging / discharging current. During traveling, the energy consumed in the subsequent traveling is subtracted from the residual energy obtained when the vehicle is stopped to obtain the residual energy. When the vehicle is next stopped, the residual energy is estimated again based on the time change of the no-load voltage and the time product of the charging / discharging current. From the calculation method, the ampere hour value obtained based on the time change of the no-load voltage and the time product of the charging / discharging current is calculated as follows: `` Similar to the charging / discharging during running from the measurement at the last stop to the measurement at this stop. How much ampere hours can be taken out if continuous charging and discharging are continued in the future? " In other words, the remaining capacity is estimated on the assumption that the subsequent traveling is the same pattern as the previous traveling. Therefore, if the traveling patterns are the same, a highly accurate estimated value is obtained, and if the traveling patterns are different, the accuracy is reduced. However, it differs from the conventional example in the following points.

【0030】従来例と同様、長い坂を登る前後で停止し
て無負荷電圧の時間変化に基づく推定を行ない、その後
平坦路の走行をおこなった場合を考える。登坂後の推定
は、登坂中と同様の大電流放電を続けた場合に正確であ
る。したがってその後平坦路を走行する場合には残存エ
ネルギを少なく見積もってしまうことになる。しかしそ
の後走行中は、単に充放電電流の積算値を減算するだけ
であるから、単に初期値がずれているだけであり、従来
例のように平坦路走行中の減算量を大きくしてしまうこ
とがない。
Similar to the conventional example, let us consider a case where the vehicle is stopped before and after climbing a long hill, the estimation based on the time change of the no-load voltage is performed, and then the vehicle travels on a flat road. The estimation after climbing is accurate when the same high current discharge as during climbing is continued. Therefore, when the vehicle travels on a flat road thereafter, the remaining energy will be underestimated. However, during traveling thereafter, the integrated value of the charging / discharging current is simply subtracted, so the initial value is simply deviated, and the subtraction amount during traveling on a flat road is increased as in the conventional example. There is no.

【0031】また、従来例の項で述べたように公称容量
のような固定値に充電率を乗算して残存容量を推定する
と、バッテリ容量が減少したとき誤差を生じバッテリ上
がりによる立ち往生の危険がある。これに対し、本実施
例によれば同一充電率でもバッテリ容量が小さければ表
示される値は小さくなる。また、同一のバッテリでも電
気自動車と電動車椅子は走パタ―ンが異なるし、同じ電
気自動車でもユ―ザによる運転の癖もあると思われる。
本実施例によれば、それらの走行の特徴に対しての補正
が自動的になされる。バッテリの温度変化による充放電
電流と残存容量の変化の関係も車両停止時の測定により
自動的に補正される。
Further, as described in the section of the conventional example, when the remaining capacity is estimated by multiplying the fixed value such as the nominal capacity by the charging rate, an error occurs when the battery capacity decreases, and there is a risk of getting stuck due to the battery going up. is there. On the other hand, according to the present embodiment, the displayed value is small if the battery capacity is small even at the same charge rate. In addition, even with the same battery, electric vehicles and electric wheelchairs have different running patterns, and even with the same electric vehicle, there seems to be a tendency for users to drive.
According to the present embodiment, the correction for those driving characteristics is automatically performed. The relationship between the charge / discharge current and the change in the remaining capacity due to the temperature change of the battery is also automatically corrected by the measurement when the vehicle is stopped.

【0032】前記文献の推定方法では、バッテリの充電
率を求め残存容量としている。バッテリの容量のほぼ安
定した期間についてはそれでも実用上問題はない。しか
し、バッテリ寿命が近づいてバッテリ容量が減少しはじ
めると、充電率と残存エネルギの比例関係がくずれ、走
行可能距離の推定が困難になってくる。本実施例によれ
ば残存エネルギが求められるので、このような場合でも
走行可能距離の推定が容易である。また、前記文献の推
定方法では、走行中の充電率を求めるため、充放電電流
の積算値と、停車時の推定充電率とから、充放電電流に
よる充電率変化の係数を推定するなど複雑な補正計算を
行なっているが、本実施例のように停車時に残存エネル
ギの量に換算してしまえば、走行中は単に消費したエネ
ルギを減算するだけで残存エネルギが推定できる。ま
た、計算方法からバッテリのサイズにかかわらず推定が
可能である。
In the estimation method of the above-mentioned document, the charging rate of the battery is obtained and used as the remaining capacity. Even so, there is no practical problem for the period when the battery capacity is almost stable. However, when the battery life approaches and the battery capacity starts to decrease, the proportional relationship between the charging rate and the remaining energy is lost, and it becomes difficult to estimate the travelable distance. According to this embodiment, the remaining energy is obtained, so that the travelable distance can be easily estimated even in such a case. Further, in the estimation method of the document, in order to obtain the charging rate during traveling, it is complicated to estimate the coefficient of change in the charging rate due to the charging / discharging current from the integrated value of the charging / discharging current and the estimated charging rate when the vehicle is stopped. Although the correction calculation is performed, if it is converted into the amount of residual energy when the vehicle is stopped as in the present embodiment, the remaining energy can be estimated by simply subtracting the consumed energy during traveling. In addition, the calculation method enables estimation regardless of the battery size.

【0033】これらにより、ユ―ザは自分の通常の走行
スタイルであとどれだけ走行できるかを把握でき、通常
の走行距離を走れるだけのエネルギが残っていれば、充
電不用であることがわかるし、バッテリ交換も通常の走
行距離プラスアルファ―だけ走行できるアンペアアワ―
のエネルギが充電できるあいだは交換しないでよいこと
がわかる。
From these, the user can know how much he can run in his normal running style, and if there is enough energy to run the normal running distance, it can be understood that charging is unnecessary. , Battery replacement can also run only normal mileage plus alpha-ampere hours
It can be seen that it is not necessary to exchange it while the energy of the battery can be charged.

【0034】また、新品のバッテリは使いはじめて充放
電をしばらく繰りかえしていると、最初よりも容量が増
加する。注意深いユ―ザは、充電率表示の場合でも充電
率の変化がゆるやかになることから、容量が増加したこ
とを知ることができるかもしれない。しかし、どれだけ
増えたかの定量的把握は困難である。本発明によれば残
存エネルギを表示するので誰でも容量増加を定量的に把
握できる。したがってバッテリの残存容量増加をいかし
た運用が可能となる。たとえば、通常の使用で2日に一
回の充電が必要で、あと1日走行するにはわずかに容量
が不足であったのが、3日に一回の充電ですむというよ
うになったことをユ―ザは知ることができる。充電回数
が減ればバッテリ寿命は伸びるし、ユ―ザの充電の手間
も軽減される。
When a new battery is used and charged and discharged repeatedly for a while, the capacity of the new battery becomes larger than that at the beginning. A careful user may be able to know that the capacity has increased because the charging rate changes slowly even when displaying the charging rate. However, it is difficult to quantitatively grasp how much it has increased. According to the present invention, since the remaining energy is displayed, anyone can quantitatively grasp the capacity increase. Therefore, it becomes possible to operate by taking advantage of the increase in the remaining capacity of the battery. For example, it was necessary to recharge once every two days for normal use, and the capacity was slightly insufficient to run for another day, but now it only needs to be recharged once every three days. The user can know. If the number of times of charging is reduced, the battery life is extended and the time and effort required for charging the user are reduced.

【0035】以上のように、本実施例によれば、ユ―ザ
のバッテリ状態の把握が容易になり、電動車両を使いや
すくなると同時に、ランニングコストを下げることがで
きる。
As described above, according to this embodiment, the user's battery status can be easily grasped, the electric vehicle can be used easily, and the running cost can be reduced.

【0036】上記実施例では、無負荷電圧の時間変化に
基づく充電率推定値の走行前後における変化量と、走行
中の充放電電流の時間積分値に基づいて残存エネルギを
推定している。従って、それらの値がごく微小な場合に
は推定精度が下がる。これを避けるにはそれらの値が微
小な場合を避ければよく、それには例えば次のような方
法がある。
In the above embodiment, the remaining energy is estimated based on the amount of change in the charging rate estimated value based on the change over time of the no-load voltage before and after running, and the time integrated value of the charging / discharging current during running. Therefore, when those values are very small, the estimation accuracy is lowered. In order to avoid this, it is sufficient to avoid the case where these values are minute, and there are the following methods, for example.

【0037】図2のフロ―チャ―トのステップ12の前に
充放電電流の時間積分値の大きさのチェックを行ない、
その値以下であれば図3の走行中の処理を行なわせる。
これにより、ごく短時間の走行後の停止で、充放電電流
の時間積分値が小さい場合に精度の低い値を表示するこ
とを避けることができる。
Before step 12 of the flowchart of FIG. 2, the magnitude of the time integral value of the charge / discharge current is checked,
If it is less than that value, the processing during traveling in FIG. 3 is performed.
This makes it possible to avoid displaying a low-accuracy value when the time-integrated value of the charge / discharge current is small after stopping for a very short time after traveling.

【0038】図2のフロ―チャ―トのステップ12の後で
Cold とCnew の差の絶対値が所定値以下であればステ
ップ13をスキップしてステップ14以下の処理を行なわせ
る。ステップ13で求めているAHfullは完全充電におけ
る容量の変化に対する補正のためであるから、充電後や
長時間の走行後などにおこなえば充分であり、比較レベ
ルはかなり大きく選んでよい。これにより走行中に降板
を含み充電電流の時間積分値が放電側の時間積分値にた
いして無視できないなど精度の低い場合に完全充電容量
を更新するのを防くことができる。
After step 12 in the flowchart of FIG. 2, if the absolute value of the difference between Cold and Cnew is less than or equal to a predetermined value, step 13 is skipped and steps 14 and subsequent steps are performed. Since AHfull obtained in step 13 is for correcting the change in capacity during full charge, it is sufficient to perform it after charging or after running for a long time, and the comparison level may be selected to be considerably large. As a result, it is possible to prevent the full charge capacity from being updated when the time integration value of the charging current is low and the accuracy is not negligible with respect to the time integration value on the discharge side including the descending plate during traveling.

【0039】[0039]

【発明の効果】本発明によれば、短時間で高精度に残存
エネルギを推定し、バッテリユ―ザの使い勝手の良い蓄
電池の残存容量推定方法を提供することができる。
As described above, according to the present invention, it is possible to provide a method for estimating the remaining energy of a storage battery which is highly accurate in a short time with high accuracy and which is convenient for the battery user.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄電池の残存容量推定方法の実施例の
作用を説明するためのフロ―チャ―ト
FIG. 1 is a flowchart for explaining the operation of an embodiment of a method for estimating the remaining capacity of a storage battery according to the present invention.

【図2】図1の続きのフロ―チャ―トFIG. 2 is a flowchart following FIG. 1.

【図3】本発明の蓄電池の残存容量推定方法の実施例の
作用を説明するためのフロ―チャ―ト
FIG. 3 is a flowchart for explaining the operation of the embodiment of the method for estimating the remaining capacity of a storage battery according to the present invention.

【図4】蓄電池の残存容量推定装置のハ―ドウエア構成
FIG. 4 is a hardware configuration diagram of a storage battery remaining capacity estimation device.

【図5】バッテリの負荷が無負荷になったときの時間の
経過に伴う電圧回復特性図
FIG. 5 is a voltage recovery characteristic diagram over time when the load of the battery is no load.

【図6】従来の蓄電池の残存容量推定方法を説明するた
めのフロ―チャ―ト
FIG. 6 is a flowchart for explaining a conventional method for estimating the remaining capacity of a storage battery.

【符号の説明】[Explanation of symbols]

1…バッテリ 5…電流検出回路 2…電動機 6…電圧検出回路 3…制御装置 7…マイクロコンピュ―タ 4…電流検出器 8…表示回路 1 ... Battery 5 ... Current detection circuit 2 ... Electric motor 6 ... Voltage detection circuit 3 ... Control device 7 ... Microcomputer 4 ... Current detector 8 ... Display circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池の電流が所定値以下のとき、一定
期間における前記蓄電池の電圧変化から充電率を測定
し、前回測定した充電率と今回測定した充電率の差分値
とその間の前記蓄電池の電流の時間積分値とから完全充
電における蓄電池の容量を推定し、推定された完全充電
における蓄電池の容量と今回測定した充電率とから前記
蓄電池の残存容量を推定することを特徴とする蓄電池の
残存容量推定方法。
1. When the current of the storage battery is less than or equal to a predetermined value, the charging rate is measured from the voltage change of the storage battery in a certain period, and the difference value between the charging rate measured last time and the charging rate measured this time and the storage battery The capacity of the storage battery in full charge is estimated from the time integral value of the current, and the remaining capacity of the storage battery is estimated from the estimated capacity of the storage battery in full charge and the charging rate measured this time. Capacity estimation method.
【請求項2】 請求項1に記載の蓄電池の残存容量推定
方法において、更に、前記残存容量を推定した後の前記
蓄電池の電流の時間積分値と前記残存容量とから充放電
中における蓄電池の残存容量を推定することを特徴とす
る蓄電池の残存容量推定方法。
2. The method for estimating the remaining capacity of a storage battery according to claim 1, further comprising the remaining capacity of the storage battery during charging / discharging from the time integrated value of the current of the storage battery after estimating the remaining capacity and the remaining capacity. A method for estimating the remaining capacity of a storage battery, which comprises estimating the capacity.
【請求項3】 請求項1に記載の蓄電池の残存容量推定
方法において、前記蓄電池の電流の時間積分値が所定値
に満たないときは、完全充電における蓄電池の容量の推
定を行なわず、前回の残存容量の推定値と該時間積分値
とから蓄電池の残存容量を推定することを特徴とする蓄
電池の残存容量推定方法。
3. The method for estimating the remaining capacity of a storage battery according to claim 1, wherein when the time integrated value of the current of the storage battery is less than a predetermined value, the capacity of the storage battery in full charge is not estimated and A method for estimating the remaining capacity of a storage battery, comprising estimating the remaining capacity of the storage battery from the estimated value of the remaining capacity and the time integrated value.
【請求項4】 請求項1に記載の蓄電池の残存容量推定
方法において、前回測定した充電率と今回測定した充電
率の差分値が所定値に満たないときは、完全充電におけ
る蓄電池の容量の推定を行なわず、それまでの容量推定
値を用いることを特徴とする蓄電池の残存容量推定方
法。
4. The method for estimating the remaining capacity of a storage battery according to claim 1, wherein when the difference value between the charging rate measured last time and the charging rate measured this time is less than a predetermined value, estimation of the capacity of the storage battery in full charge is performed. The method for estimating the remaining capacity of a storage battery is characterized by using the estimated capacity value up to that point without performing the above.
JP06162568A 1994-07-15 1994-07-15 Method of estimating remaining capacity of storage battery Expired - Fee Related JP3126591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06162568A JP3126591B2 (en) 1994-07-15 1994-07-15 Method of estimating remaining capacity of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06162568A JP3126591B2 (en) 1994-07-15 1994-07-15 Method of estimating remaining capacity of storage battery

Publications (2)

Publication Number Publication Date
JPH0829505A true JPH0829505A (en) 1996-02-02
JP3126591B2 JP3126591B2 (en) 2001-01-22

Family

ID=15757067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06162568A Expired - Fee Related JP3126591B2 (en) 1994-07-15 1994-07-15 Method of estimating remaining capacity of storage battery

Country Status (1)

Country Link
JP (1) JP3126591B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221249A (en) * 1998-11-25 2000-08-11 Toyota Motor Corp Detecting apparatus for charging state of battery
JP2004226393A (en) * 2002-11-27 2004-08-12 Fuji Electric Device Technology Co Ltd Cell residual capacity measuring device
EP1220413A4 (en) * 1999-09-09 2006-02-08 Toyota Motor Co Ltd Apparatus for battery capacity measurement and for remaining capacity calculation
JP2007327971A (en) * 2002-11-27 2007-12-20 Fuji Electric Device Technology Co Ltd Measuring device of remaining battery life
US7317300B2 (en) 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
US7554296B2 (en) 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
EP1975636A3 (en) * 2007-03-26 2011-03-16 Sanyo Electric Co., Ltd. Fully-charged battery capacity detection method
WO2011118039A1 (en) * 2010-03-26 2011-09-29 三菱電機株式会社 Charge state estimation apparatus
JP2013156202A (en) * 2012-01-31 2013-08-15 Sanyo Electric Co Ltd Method for calculating residual capacity of secondary cell and battery pack
JP2013178166A (en) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery
WO2014132403A1 (en) * 2013-02-28 2014-09-04 日立オートモティブシステムズ株式会社 Device for assessing extent of degradation in secondary cell
JP2022135506A (en) * 2021-03-05 2022-09-15 株式会社日立製作所 Mobile body and power control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215152B2 (en) * 2001-08-13 2009-01-28 日立マクセル株式会社 Battery capacity detection method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221249A (en) * 1998-11-25 2000-08-11 Toyota Motor Corp Detecting apparatus for charging state of battery
EP1220413A4 (en) * 1999-09-09 2006-02-08 Toyota Motor Co Ltd Apparatus for battery capacity measurement and for remaining capacity calculation
JP2004226393A (en) * 2002-11-27 2004-08-12 Fuji Electric Device Technology Co Ltd Cell residual capacity measuring device
JP2007327971A (en) * 2002-11-27 2007-12-20 Fuji Electric Device Technology Co Ltd Measuring device of remaining battery life
US7317300B2 (en) 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
US7554297B2 (en) 2003-06-23 2009-06-30 Denso Corporation Automotive battery state monitor apparatus
US7554296B2 (en) 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
EP1975636A3 (en) * 2007-03-26 2011-03-16 Sanyo Electric Co., Ltd. Fully-charged battery capacity detection method
US7944178B2 (en) 2007-03-26 2011-05-17 Sanyo Electric Co., Ltd. Fully-charged battery capacity detection method
JP4818468B1 (en) * 2010-03-26 2011-11-16 三菱電機株式会社 Charge state estimation device
CN102822690B (en) * 2010-03-26 2015-07-22 三菱电机株式会社 Charge state estimation apparatus
EP2551686A1 (en) * 2010-03-26 2013-01-30 Mitsubishi Electric Corporation Charge state estimation apparatus
EP2551686A4 (en) * 2010-03-26 2013-05-29 Mitsubishi Electric Corp Charge state estimation apparatus
WO2011118039A1 (en) * 2010-03-26 2011-09-29 三菱電機株式会社 Charge state estimation apparatus
US9013151B2 (en) 2010-03-26 2015-04-21 Mitsubishi Electric Corporation State-of-charge estimation apparatus
KR101315654B1 (en) * 2010-03-26 2013-10-08 미쓰비시덴키 가부시키가이샤 Charge state estimation apparatus
AU2010349140B2 (en) * 2010-03-26 2014-03-06 Mitsubishi Electric Corporation Charge state estimation apparatus
JP2013156202A (en) * 2012-01-31 2013-08-15 Sanyo Electric Co Ltd Method for calculating residual capacity of secondary cell and battery pack
JP2013178166A (en) * 2012-02-28 2013-09-09 Sanyo Electric Co Ltd Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery
WO2014132403A1 (en) * 2013-02-28 2014-09-04 日立オートモティブシステムズ株式会社 Device for assessing extent of degradation in secondary cell
CN105339802A (en) * 2013-02-28 2016-02-17 日立汽车***株式会社 Device for assessing extent of degradation in secondary cell
JPWO2014132403A1 (en) * 2013-02-28 2017-02-02 日立オートモティブシステムズ株式会社 Secondary battery deterioration level judgment device
JP2022135506A (en) * 2021-03-05 2022-09-15 株式会社日立製作所 Mobile body and power control device

Also Published As

Publication number Publication date
JP3126591B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
EP0225364B1 (en) Monitoring state of battery charge
JP4786058B2 (en) Power storage device remaining capacity detection device
US7456612B2 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and vehicle
US5864237A (en) Battery condition detection method
KR100606876B1 (en) Method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
US10295600B2 (en) Monitoring charge stored in a battery
US6392415B2 (en) Method for determining the state of charge of lead-acid rechargeable batteries
JP4649101B2 (en) Secondary battery status detection device and status detection method
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
JP3006298B2 (en) Battery remaining capacity meter
WO2007074614A1 (en) Charged state estimation device and charged state estimation method of secondary battery
WO2008068446A1 (en) Battery management system
JPH0829505A (en) Method for estimating residual capacity of battery
US11313912B2 (en) Battery power limits estimation based on RC model
JP3453821B2 (en) Battery remaining capacity measurement device
JP2003035755A (en) Method for detecting stored power in battery
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP3304507B2 (en) Battery remaining capacity meter
WO2005116675A1 (en) Secondary battery residual-capacity estimating method and apparatus
JP3200364B2 (en) Battery remaining capacity measurement device for electric vehicles
JP3192005B2 (en) A method for measuring the remaining life of storage batteries for electric vehicles
JPH1138107A (en) Method for estimating residual capacity of secondary battery
JP2004245673A (en) Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees