JP2013178166A - Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery - Google Patents

Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery Download PDF

Info

Publication number
JP2013178166A
JP2013178166A JP2012042253A JP2012042253A JP2013178166A JP 2013178166 A JP2013178166 A JP 2013178166A JP 2012042253 A JP2012042253 A JP 2012042253A JP 2012042253 A JP2012042253 A JP 2012042253A JP 2013178166 A JP2013178166 A JP 2013178166A
Authority
JP
Japan
Prior art keywords
secondary battery
charge
remaining capacity
discharge
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012042253A
Other languages
Japanese (ja)
Inventor
Naofumi Enomoto
尚文 榎本
Tomomi Kaino
友美 貝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012042253A priority Critical patent/JP2013178166A/en
Publication of JP2013178166A publication Critical patent/JP2013178166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery residual capacity correction method for correcting residual capacity without showing as if a secondary battery is charged even when charge/discharge of the secondary battery is stopped, and to provide a secondary battery residual capacity calculation method and a pack battery.SOLUTION: When battery voltage of a secondary battery is reduced as shown by a thick solid line in Fig.6A by self-discharge or the like during discharge stop from time T20 to time T21, release voltage of the secondary battery detected during the discharge stop is applied to discharge characteristics indicting relation between the release voltage of the secondary battery and relative residual capacity to calculate the relative residual capacity indicated by a thin solid line in the Fig.6A and calculate second residual capacity by multiplying the calculated relative residual capacity by full charge capacity. When the second residual capacity is smaller than the residual capacity of the secondary battery calculated without considering the self-discharge or the like, the residual capacity is substituted by the second residual capacity to set the second residual capacity as residual capacity after correcting the secondary battery.

Description

本発明は、二次電池の開放電圧(即ち開放端子電圧、又は無負荷電圧)に基づいて残容量を補正する二次電池の残容量補正方法、二次電池の残容量算出方法、並びに補正及び算出した残容量のデータを生成するパック電池に関する。   The present invention relates to a method for correcting a remaining capacity of a secondary battery, a method for calculating a remaining capacity of the secondary battery, a correction method for correcting the remaining capacity based on the open circuit voltage (that is, open terminal voltage or no-load voltage) of the secondary battery, The present invention relates to a battery pack that generates data of calculated remaining capacity.

従来、パーソナルコンピュータ(PC)等の電子機器に搭載される二次電池の残容量(RC=Remaining Capacity )は、満充電容量(FCC=Full Charge Capacity )即ち満充電状態における二次電池の電気量(電流値×時間)又は電力量(電力値×時間)の夫々に対して、充電/放電電流又は充電/放電電力の積算値(以下、充放電量という)を加算/減算して算出されている。いわゆる残容量は、FCCに対する相対残容量(RSOC=Relative State Of Charge )として表されることもある。このようにRCの算出の元になるFCCは、二次電池の使用に伴う劣化に応じて低下するにも関わらず、二次電池の実際の使用状態において満充電状態(以下、単に満充電ともいう)から放電終止状態になるまで放電(又は放電終止状態から満充電状態になるまで充電)されることが殆どないため、正確なFCCを算出する機会に乏しいのが実情である。   Conventionally, the remaining capacity (RC = Remaining Capacity) of a secondary battery mounted on an electronic device such as a personal computer (PC) is the full charge capacity (FCC = Full Charge Capacity), that is, the amount of electricity of the secondary battery in a fully charged state. Calculated by adding / subtracting the charge / discharge current or the integrated value of charge / discharge power (hereinafter referred to as charge / discharge amount) for each of (current value × time) or power amount (power value × time). Yes. The so-called remaining capacity may be expressed as a relative remaining capacity with respect to FCC (RSOC = Relative State Of Charge). In this way, the FCC from which the RC is calculated is reduced in accordance with deterioration due to the use of the secondary battery, but the fully charged state (hereinafter simply referred to as full charge) in the actual usage state of the secondary battery. In fact, there is little opportunity to calculate an accurate FCC, since there is almost no discharge (or charge from the discharge end state to the fully charged state) until the end of discharge state.

そこで、二次電池の電池電圧が所定のRSOCに対応する低電圧(RSOCがN%であることを示す既知の電圧;Nは整数)より低下した場合に、RSOCをN%に補正する技術(例えば、特許文献1参照)を利用して、満充電のときから上記既知の電圧を検出するまでに積算した「放電量−充電量」を「1−N/100」で除して得た容量を、二次電池のFCCとして学習する方法が用いられている。   Therefore, when the battery voltage of the secondary battery falls below a low voltage corresponding to a predetermined RSOC (a known voltage indicating that the RSOC is N%; N is an integer), a technique for correcting the RSOC to N% ( For example, using “Patent Document 1”), the capacity obtained by dividing “discharge amount−charge amount” accumulated from the time of full charge until the above known voltage is detected by “1-N / 100”. Is used as the FCC of the secondary battery.

また特許文献2では、第1及び第2時点における二次電池の無負荷電圧(開放電圧)から算出したRSOCの変化量と、第1及び第2時点の間における充放電量の変化量とから、二次電池のFCCを算出(学習)する技術が開示されている。このようにして算出(学習)したFCCを、算出(若しくは検出)したRSOCに乗じてRCが算出され、更に、RCを算出したときからの充放電量をRCに加算/減算することによって新たなRCが算出される。   Moreover, in patent document 2, from the variation | change_quantity of the RSOC calculated from the no-load voltage (open circuit voltage) of the secondary battery in the 1st and 2nd time point, and the variation | change_quantity of the charge / discharge amount between the 1st and 2nd time points. A technique for calculating (learning) the FCC of a secondary battery is disclosed. RC is calculated by multiplying the FCC calculated (learned) in this way by the calculated (or detected) RSOC, and further adding / subtracting the amount of charge / discharge from the time of calculating RC to RC. RC is calculated.

一方、放電効率が100%以下となるような大電流で二次電池が放電する場合、二次電池の満充電容量が実質的に低下することが知られている(例えば特許文献3参照)。二次電池を充電するときにも同様のことが起こる。この点を残容量の算出に反映させるため、特許文献3では、放電電流(I)及び該放電電流を検出する時間間隔(Δt)の積を放電効率の逆数で重み付けした値を、そのときのRC(残容量)から逐次減算することにより、RCを算出する技術が開示されている。この場合、RSOCは、算出したRCをFCCで除算することによって算出される。   On the other hand, it is known that when the secondary battery is discharged with a large current such that the discharge efficiency is 100% or less, the full charge capacity of the secondary battery is substantially reduced (see, for example, Patent Document 3). The same thing happens when charging a secondary battery. In order to reflect this point in the calculation of the remaining capacity, in Patent Document 3, a value obtained by weighting the product of the discharge current (I) and the time interval (Δt) for detecting the discharge current by the reciprocal of the discharge efficiency is used. A technique for calculating RC by sequentially subtracting from RC (remaining capacity) is disclosed. In this case, the RSOC is calculated by dividing the calculated RC by the FCC.

特開平5−87896号公報JP-A-5-87896 特開2008−261669号公報JP 2008-261669 A 特開2009−42182号公報JP 2009-42182 A

しかしながら、放電効率が100%以下となる電流で二次電池が放電する場合、特許文献3に開示された技術を用いて放電期間の終わり際に算出されたRC,RSOCが、放電停止後に検出された開放電圧に基づいて算出されるRC,RSOCより小さくなるため、あたかも充電によってRC及びRSOCが回復したかのように見える問題があった。この問題は、二次電池の充放電中の内部抵抗による電圧降下が、充放電停止後に解消されることが一因であると考えられる。   However, when the secondary battery is discharged at a current with a discharge efficiency of 100% or less, RC and RSOC calculated at the end of the discharge period using the technique disclosed in Patent Document 3 are detected after the discharge is stopped. Since RC and RSOC calculated based on the open circuit voltage are smaller, there is a problem that RC and RSOC appear to be recovered by charging. This problem is considered to be caused by the fact that the voltage drop due to the internal resistance during charging / discharging of the secondary battery is eliminated after the charging / discharging is stopped.

本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、二次電池の充放電が停止しているにも関わらず、あたかも充電されたかのように見せることなく残容量を補正する二次電池の残容量補正方法、二次電池の残容量算出方法及びパック電池を提供することにある。   The present invention has been made in view of such circumstances, and the purpose of the present invention is to reduce the remaining capacity without making it appear as if the secondary battery is charged, even though charging / discharging of the secondary battery is stopped. To provide a method for correcting the remaining capacity of a secondary battery to be corrected, a method for calculating the remaining capacity of a secondary battery, and a battery pack.

本発明に係る二次電池の残容量補正方法は、残容量が予め算出されている二次電池の開放電圧に基づいて前記二次電池の残容量を補正する方法において、前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び検出した開放電圧に基づいて、前記二次電池の相対残容量を算出し、算出した相対残容量に前記二次電池の満充電容量を乗ずることにより、前記二次電池の第2の残容量を算出し、算出した第2の残容量が前記二次電池の補正前の残容量より小さいか否かを判定し、小さい場合、算出した第2の残容量を前記二次電池の補正後の残容量とすることを特徴とする。   The method for correcting the remaining capacity of the secondary battery according to the present invention includes a method for correcting the remaining capacity of the secondary battery based on an open circuit voltage of the secondary battery whose remaining capacity is calculated in advance. Based on the discharge characteristics indicating the relationship between the voltage and the relative remaining capacity with respect to the full charge capacity, and the detected open-circuit voltage, the relative remaining capacity of the secondary battery is calculated, and the calculated relative remaining capacity is set to the full capacity of the secondary battery. By multiplying the charge capacity, the second remaining capacity of the secondary battery is calculated, and it is determined whether or not the calculated second remaining capacity is smaller than the remaining capacity before correction of the secondary battery. The calculated second remaining capacity is used as the corrected remaining capacity of the secondary battery.

本発明に係る二次電池の残容量算出方法は、二次電池の充放電電流に充放電効率を予め対応付けておき、前記充放電電流を時系列的に検出し、検出した充放電電流を、該充放電電流に対応する充放電効率に応じた重み付けを行って積算した結果に基づいて、前記二次電池の残容量を算出する方法において、検出した充放電電流の大きさが所定の大きさより小さいか否かを判定し、小さい場合、請求項1に記載の二次電池の残容量補正方法により補正した残容量を、前記二次電池の残容量とすることを特徴とする。   In the secondary battery remaining capacity calculation method according to the present invention, the charge / discharge efficiency of the secondary battery is associated with charge / discharge efficiency in advance, the charge / discharge current is detected in time series, and the detected charge / discharge current is calculated. In the method of calculating the remaining capacity of the secondary battery based on the result obtained by performing weighting according to the charge / discharge efficiency corresponding to the charge / discharge current and integrating the detected charge / discharge current, the detected charge / discharge current has a predetermined magnitude. If it is smaller, the remaining capacity corrected by the method for correcting the remaining capacity of the secondary battery according to claim 1 is set as the remaining capacity of the secondary battery.

本発明に係る二次電池の残容量算出方法は、検出した充放電電流を積算して前記二次電池の満充電状態からの充放電量を算出し、算出した充放電量に前記二次電池の満充電容量及び前記充放電効率の積を加えた容量で前記二次電池の残容量を除して得られる値により、前記重み付けを行うことを特徴とする。   The method for calculating the remaining capacity of the secondary battery according to the present invention calculates the charge / discharge amount from the fully charged state of the secondary battery by integrating the detected charge / discharge currents, and calculates the charge / discharge amount to the secondary battery. The weighting is performed by a value obtained by dividing the remaining capacity of the secondary battery by a capacity obtained by adding the product of the full charge capacity and the charge / discharge efficiency.

本発明に係る二次電池の残容量算出方法は、前記残容量補正方法により前記二次電池の残容量を補正した場合、補正後の残容量から前記二次電池の満充電容量を減じて得られる容量を、前記二次電池の充放電量とすることを特徴とする。   The secondary battery remaining capacity calculation method according to the present invention is obtained by subtracting the full charge capacity of the secondary battery from the corrected remaining capacity when the remaining capacity of the secondary battery is corrected by the remaining capacity correction method. The capacity obtained is the charge / discharge amount of the secondary battery.

本発明に係るパック電池は、残容量が予め算出された二次電池と、該二次電池の開放電圧を検出する検出手段とを備え、算出された残容量を検出した開放電圧に基づいて補正して、補正後の残容量のデータを生成するパック電池において、前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び前記検出手段が検出した開放電圧に基づいて、前記二次電池の相対残容量を算出する手段と、該手段が算出した相対残容量に前記二次電池の満充電容量を乗ずることにより、前記二次電池の第2の残容量を算出する算出手段と、該算出手段が算出した第2の残容量が前記二次電池の補正前の残容量より小さいか否かを判定する判定手段と、該判定手段が小さいと判定した場合、前記算出手段が算出した第2の残容量を前記二次電池の補正後の残容量とするようにしてあることを特徴とする。   The battery pack according to the present invention includes a secondary battery whose remaining capacity is calculated in advance, and a detection unit that detects an open circuit voltage of the secondary battery, and corrects based on the calculated open circuit voltage. In the battery pack that generates the corrected remaining capacity data, the discharge characteristics indicating the relationship between the open circuit voltage of the secondary battery and the relative remaining capacity with respect to the full charge capacity, and the open circuit voltage detected by the detection means And calculating a relative remaining capacity of the secondary battery, and multiplying the relative remaining capacity calculated by the means by the full charge capacity of the secondary battery to obtain a second remaining capacity of the secondary battery. A calculating means for calculating, a determining means for determining whether the second remaining capacity calculated by the calculating means is smaller than the remaining capacity before correction of the secondary battery, and when determining that the determining means is small, Second remaining capacity calculated by the calculating means Characterized in that are set as the residual capacity corrected for the secondary battery.

本発明に係るパック電池は、前記二次電池の充放電電流に充放電効率を予め対応付けてあり、前記充放電電流を時系列的に検出する第2の検出手段と、該第2の検出手段が検出した充放電電流を、該充放電電流に対応する充放電効率に応じた重み付けを行って積算する積算手段と、該積算手段の積算結果に基づいて、前記二次電池の残容量を算出する手段とを備えることを特徴とする。   In the battery pack according to the present invention, charge / discharge efficiency is associated with charge / discharge current of the secondary battery in advance, and the second detection means detects the charge / discharge current in time series, and the second detection An integration unit that integrates the charge / discharge current detected by the unit by weighting according to the charge / discharge efficiency corresponding to the charge / discharge current, and the remaining capacity of the secondary battery based on the integration result of the integration unit And means for calculating.

本発明に係るパック電池は、前記第2の検出手段が検出した充放電電流を積算して前記二次電池の満充電状態からの充放電量を算出する第2の算出手段を備え、前記積算手段は、前記第2の算出手段が算出した充放電量に前記二次電池の満充電容量及び前記充放電効率の積を加えた容量で前記二次電池の残容量を除して得られる値により、前記重み付けを行うようにしてあることを特徴とする。   The battery pack according to the present invention includes second calculation means for calculating a charge / discharge amount from a fully charged state of the secondary battery by integrating the charge / discharge current detected by the second detection means, and The means is a value obtained by dividing the remaining capacity of the secondary battery by the capacity obtained by adding the product of the full charge capacity and the charge / discharge efficiency of the secondary battery to the charge / discharge amount calculated by the second calculation means. Thus, the weighting is performed.

本発明に係るパック電池は、前記第2の算出手段は、前記判定手段が小さいと判定した場合、前記二次電池の補正後の残容量から満充電容量を減じて得られる容量を、前記二次電池の充放電量とするようにしてあることを特徴とする。   In the battery pack according to the present invention, when the second calculation means determines that the determination means is small, the capacity obtained by subtracting the full charge capacity from the corrected remaining capacity of the secondary battery is calculated as the second battery. The charge / discharge amount of the secondary battery is used.

本発明にあっては、検出した二次電池の開放電圧を、開放電圧及び相対残容量の関係を示す放電特性に適用して相対残容量を算出し、算出した相対残容量に満充電容量を乗じて得られる第2の残容量が、予め算出されている補正前の残容量より小さい場合に、補正前の残容量を第2の残容量に置き換えることにより、第2の残容量を補正後の残容量とする。
これにより、開放電圧に基づいて算出された第2の残容量によって二次電池の残容量が補正される際に、補正後の残容量が補正前の残容量より大きくなることが防止される。特に、二次電池を充放電せずに保管し続けて電池電圧及び残容量が低下した場合に、低下した電池電圧に応じて残容量が適切に補正される。
In the present invention, the detected residual voltage of the secondary battery is applied to the discharge characteristics indicating the relationship between the open voltage and the relative remaining capacity to calculate the relative remaining capacity, and the calculated relative remaining capacity is set to the full charge capacity. When the second remaining capacity obtained by multiplication is smaller than the pre-correction remaining capacity calculated in advance, the second remaining capacity is corrected by replacing the remaining capacity before correction with the second remaining capacity. Remaining capacity.
Thereby, when the remaining capacity of the secondary battery is corrected by the second remaining capacity calculated based on the open circuit voltage, the corrected remaining capacity is prevented from becoming larger than the uncorrected remaining capacity. In particular, when the secondary battery continues to be stored without being charged / discharged and the battery voltage and the remaining capacity decrease, the remaining capacity is appropriately corrected according to the decreased battery voltage.

本発明にあっては、時系列的に検出した二次電池の充放電電流、即ち正/負の符号付きで検出した充電電流/放電電流を、検出した充放電電流に対応する充放電効率に応じた重み付けを行って積算し、積算した結果に基づいて二次電池の残容量(RC)を算出する。具体的には、それ自体公知の方法(特許文献3に詳しい)を用いた以下の式(1)によって、時刻tの時間ΔT後におけるRC(t+ΔT)を逐次算出する。
RC(t+ΔT)
=RC(t)+∫(充放電電流/充放電効率)Δt・・・・・・・(1)
ここでΔtは充放電電流を検出する時間間隔を表し、充放電効率は充放電電流の大きさの大/小に応じて小/大に変化する。
In the present invention, the charging / discharging current of the secondary battery detected in time series, that is, the charging current / discharging current detected with a positive / negative sign is converted into the charging / discharging efficiency corresponding to the detected charging / discharging current. A corresponding weighting is performed and integration is performed, and the remaining capacity (RC) of the secondary battery is calculated based on the integration result. Specifically, RC (t + ΔT) after time ΔT at time t is sequentially calculated by the following equation (1) using a method known per se (detailed in Patent Document 3).
RC (t + ΔT)
= RC (t) + ∫ (charge / discharge current / charge / discharge efficiency) Δt (1)
Here, Δt represents a time interval for detecting the charge / discharge current, and the charge / discharge efficiency changes to small / large according to the magnitude of the charge / discharge current.

式(1)によって残容量を算出する間に検出した充放電電流の大きさが所定の電流より小さいことから、充電も放電もされていないことが示される場合は、二次電池の開放電圧を検出し、検出した開放電圧に基づいて算出した第2の残容量で二次電池の残容量を置き換えて補正する。
これにより、充放電効率の大小が考慮された見せかけの(見かけ上の)残容量が時間ΔTおきに算出され続け、その間に充放電が停止した場合に、開放電圧に基づいて二次電池の残容量が補正される。このため、充放電が開始又は再開された時から見せかけの残容量が適切に算出されるようになる。
When the charging / discharging current detected during the calculation of the remaining capacity by the equation (1) is smaller than the predetermined current, it is indicated that neither charging nor discharging is performed. It detects and correct | amends by replacing the remaining capacity of a secondary battery with the 2nd remaining capacity calculated based on the detected open circuit voltage.
As a result, the apparent (apparent) remaining capacity taking into consideration the magnitude of the charge / discharge efficiency is continuously calculated every time ΔT, and when the charge / discharge is stopped during that time, the remaining capacity of the secondary battery is determined based on the open circuit voltage. The capacity is corrected. For this reason, the apparent remaining capacity is appropriately calculated from the time when charging / discharging is started or restarted.

本発明にあっては、二次電池の符号付きの充放電電流を満充電状態から単純に積算して算出した符号付きの充放電量(充電量−放電量)と、残容量を算出する時の充放電電流に対応する充放電効率を満充電容量(FCC)に掛け合わせた結果とを加算する。そして加算結果で二次電池の残容量(RC)を除して得られる値によって重み付けした充放電電流を積算することにより、残容量を算出する。具体的には、式(1)の右辺の第2項で積算される充放電電流に対して、以下の式(2)から算出される値で重み付けを行う。
重みの値=RC/(FCC×充放電効率+充放電量)・・・・・・(2)
これにより、例えば充放電電流を積算する際の重み付けの値として、従来式(1)で用いられていた充放電効率の逆数に代えて、その時々の充放電効率で充放電可能な最大容量(即ちFCC×充放電効率)が加味された式(2)から算出される値が用いられる。このため、充放電中に充放電電流が変化した場合であっても、残容量が正確に算出される。
In the present invention, when calculating the charge / discharge amount (charge amount-discharge amount) with the sign and the remaining capacity calculated by simply integrating the charge / discharge current with the sign of the secondary battery from the fully charged state. The result obtained by multiplying the full charge capacity (FCC) by the charge / discharge efficiency corresponding to the charge / discharge current is added. Then, the remaining capacity is calculated by integrating the charge / discharge current weighted by the value obtained by dividing the remaining capacity (RC) of the secondary battery by the addition result. Specifically, the charging / discharging current integrated in the second term on the right side of Expression (1) is weighted with a value calculated from Expression (2) below.
Weight value = RC / (FCC × charge / discharge efficiency + charge / discharge amount) (2)
Thus, for example, as a weighting value when integrating the charge / discharge current, instead of the reciprocal of the charge / discharge efficiency used in the conventional formula (1), the maximum capacity (that can be charged / discharged at the current charge / discharge efficiency ( That is, a value calculated from the equation (2) in consideration of FCC × charge / discharge efficiency is used. For this reason, even if it is a case where charging / discharging electric current changes during charging / discharging, remaining capacity is calculated correctly.

本発明にあっては、二次電池の残容量(RC)を補正した場合、満充電状態からの充放電電流を単純に積算して算出していた符号付きの充放電量(充電量−放電量;充電量及び放電量は正の容量)を、二次電池の補正後の残容量から満充電容量(FCC)を減算した容量に置き換えて式(2)に適用する。具体的に言うと、満充電状態から放電のみが行われる場合は、式(2)中の「充放電量」が「−放電量」となるから、そのうちの「放電量」を「FCC−補正後のRC」に置き換える。
つまり、開放電圧に基づいて算出した残容量をFCCから減じた容量は、その開放電圧と同じ電池電圧になるまで満充電状態から100%の放電効率で放電したときの放電量と同等であるから、補正後の残容量に対応するように式(2)の充放電量を調整する。
これにより、二次電池の開放電圧を検出して残容量が低下する方向に補正される場合に、二次電池の残容量と充放電量との関係が、二次電池の開放電圧に応じて一意に決まる関係となるように調整される。
In the present invention, when the remaining capacity (RC) of the secondary battery is corrected, a signed charge / discharge amount (charge amount-discharge) calculated by simply integrating the charge / discharge current from the fully charged state. The amount; the charge amount and the discharge amount are positive capacities) is replaced with a capacity obtained by subtracting the full charge capacity (FCC) from the corrected remaining capacity of the secondary battery, and applied to Equation (2). More specifically, when only discharging is performed from the fully charged state, the “charge / discharge amount” in the equation (2) becomes “−discharge amount”. Replace with “RC after”.
In other words, the capacity obtained by subtracting the remaining capacity calculated based on the open circuit voltage from the FCC is equivalent to the discharge amount when discharging at 100% discharge efficiency from the fully charged state until the same battery voltage as the open circuit voltage is reached. Then, the charge / discharge amount of equation (2) is adjusted so as to correspond to the corrected remaining capacity.
As a result, when the open circuit voltage of the secondary battery is detected and the remaining capacity is corrected to decrease, the relationship between the remaining capacity of the secondary battery and the charge / discharge amount depends on the open circuit voltage of the secondary battery. It is adjusted to be a uniquely determined relationship.

本発明によれば、二次電池の開放電圧に基づいて算出した第2の残容量が、二次電池の補正前の残容量より小さい場合に、第2の残容量を二次電池の補正後の残容量とするため、補正後の残容量が補正前の残容量より大きくなることが防止される。
従って、二次電池の充放電が停止しているにも関わらず、あたかも充電されたかのように見せることなく残容量を補正することが可能となる。
According to the present invention, when the second remaining capacity calculated based on the open-circuit voltage of the secondary battery is smaller than the remaining capacity before correction of the secondary battery, the second remaining capacity is adjusted after correction of the secondary battery. Therefore, the remaining capacity after correction is prevented from becoming larger than the remaining capacity before correction.
Therefore, it is possible to correct the remaining capacity without making it appear as if it has been charged, even though charging / discharging of the secondary battery is stopped.

本発明の実施の形態1に係るパック電池の構成例を示すブロック図である。It is a block diagram which shows the structural example of the battery pack which concerns on Embodiment 1 of this invention. 電池ブロックの開放電圧(OCV)と相対残容量(RSOC)との関係を例示する放電特性のグラフである。It is a graph of the discharge characteristic which illustrates the relationship between the open circuit voltage (OCV) of a battery block, and a relative remaining capacity (RSOC). 二次電池の積算放電量に応じて算出されるRC及びRSOCを例示する説明図である。It is explanatory drawing which illustrates RC and RSOC calculated according to the integrated discharge amount of a secondary battery. 放電電流に対する放電効率の変化を例示するグラフである。It is a graph which illustrates the change of the discharge efficiency with respect to a discharge current. Aは放電中及び放電の停止後における一の電池ブロックの電池電圧及び相対残容量(RSOC)の時間変化を模式的に示すグラフであり、Bは放電電流の時間変化を示すグラフである。A is a graph schematically showing the time change of the battery voltage and the relative remaining capacity (RSOC) of one battery block during and after the discharge is stopped, and B is a graph showing the time change of the discharge current. Aは放電停止中及び放電の開始後における一の電池ブロックの電池電圧及び相対残容量(RSOC)の時間変化を模式的に示すグラフであり、Bは放電電流の時間変化を示すグラフである。A is a graph schematically showing the time change of the battery voltage and the relative remaining capacity (RSOC) of one battery block during and after the discharge is stopped, and B is a graph showing the time change of the discharge current. 二次電池の残容量を算出するCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which calculates the remaining capacity of a secondary battery. 本発明の実施の形態2に係るパック電池で放電中の放電効率の変化に応じて算出されるRC及びRSOCを例示する説明図である。It is explanatory drawing which illustrates RC and RSOC calculated according to the change of the discharge efficiency in the battery pack which concerns on Embodiment 2 of this invention during discharge. 放電中の放電効率が変化した後に積算される充放電電流に対する重み付けを説明する説明図である。It is explanatory drawing explaining the weighting with respect to the charging / discharging electric current integrated after the discharge efficiency in discharge changes. RCの補正後に算出されるRC及びRSOCを例示する説明図である。It is explanatory drawing which illustrates RC and RSOC calculated after RC correction | amendment. 二次電池の充放電電流を検出して放電量を積算するCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which detects the charging / discharging electric current of a secondary battery, and integrates discharge amount. 二次電池の残容量を算出するCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which calculates the remaining capacity of a secondary battery.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
図1は、本発明の実施の形態1に係るパック電池の構成例を示すブロック図である。図中10はパック電池であり、パック電池10は、パーソナルコンピュータ(PC)、携帯端末等の電気機器20に着脱可能に装着される。パック電池10は、例えばリチウムイオン電池からなる電池セル111,112,113,121,122,123,131,132,133を3個ずつ順に並列接続してなる電池ブロック11,12,13を、この順番に直列接続してなる二次電池1を備える。二次電池1は、電池ブロック13の正極及び電池ブロック11の負極が夫々正極端子及び負極端子となるようにしてある。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration example of a battery pack according to Embodiment 1 of the present invention. In the figure, reference numeral 10 denotes a battery pack. The battery pack 10 is detachably attached to an electric device 20 such as a personal computer (PC) or a portable terminal. The battery pack 10 includes, for example, battery blocks 11, 12, and 13 that are formed by connecting three battery cells 111, 112, 113, 121, 122, 123, 131, 132, and 133, which are made of, for example, lithium ion batteries. A secondary battery 1 that is connected in series in order is provided. The secondary battery 1 is configured such that the positive electrode of the battery block 13 and the negative electrode of the battery block 11 become a positive electrode terminal and a negative electrode terminal, respectively.

電池ブロック11,12,13の電圧は、夫々独立してA/D変換部4のアナログ入力端子に与えられ、デジタルの電圧値に変換されてA/D変換部4のデジタル出力端子から、マイクロコンピュータからなる制御部5に与えられる。A/D変換部4のアナログ入力端子には、二次電池1に密接して配置されており、サーミスタを含む回路によって二次電池1の電池温度を検出する温度検出器3の検出出力と、二次電池1の負極端子側の充放電路に介装されており、二次電池1の充電電流及び放電電流を検出する抵抗器からなる電流検出器2の検出出力とが与えられている。これらの検出出力は、デジタルの検出値に変換されてA/D変換部4のデジタル出力端子から制御部5に与えられる。   The voltages of the battery blocks 11, 12, and 13 are each independently applied to the analog input terminal of the A / D conversion unit 4, converted into a digital voltage value, and from the digital output terminal of the A / D conversion unit 4 It is given to the control unit 5 comprising a computer. The analog input terminal of the A / D conversion unit 4 is arranged in close contact with the secondary battery 1, and the detection output of the temperature detector 3 that detects the battery temperature of the secondary battery 1 by a circuit including a thermistor, A detection output of a current detector 2, which is interposed in a charging / discharging path on the negative electrode terminal side of the secondary battery 1 and includes a resistor for detecting a charging current and a discharging current of the secondary battery 1, is given. These detection outputs are converted into digital detection values and given to the control unit 5 from the digital output terminal of the A / D conversion unit 4.

二次電池1の正極端子側の充放電路には、充電電流及び放電電流を夫々遮断するPチャネル型のMOSFET71,72からなる遮断器7が介装されている。MOSFET71,72は、ドレイン電極同士を突き合わせて直列に接続してある。MOSFET71,72夫々のドレイン電極及びソース電極間に並列接続されているダイオードは、寄生ダイオード(ボディダイオード)である。MOSFET71,72は、Nチャネル型であってもよい。   The charge / discharge path on the positive electrode terminal side of the secondary battery 1 is provided with a circuit breaker 7 composed of P-channel type MOSFETs 71 and 72 that block the charge current and the discharge current, respectively. The MOSFETs 71 and 72 are connected in series with their drain electrodes butted together. A diode connected in parallel between the drain electrode and the source electrode of each of the MOSFETs 71 and 72 is a parasitic diode (body diode). MOSFETs 71 and 72 may be N-channel type.

制御部5は、CPU51を有し、CPU51は、プログラム等の情報を記憶するROM52、一時的に発生した情報を記憶するRAM53、各種時間を並列的に計時するタイマ54、及びパック電池10内の各部に対して入出力を行うI/Oポート55と互いにバス接続されている。I/Oポート55は、A/D変換部4のデジタル出力端子、MOSFET71,72夫々のゲート電極、及び通信部9に接続されている。通信部9は、電気機器20が有する制御・電源部(充電部)21と通信する。ROM52は、フラッシュメモリからなる不揮発性メモリである。ROM52には、プログラムの他に、例えば満充電容量の学習値(学習容量)、及び充電電流の初期値(即ち設定電流)が記憶される。   The control unit 5 includes a CPU 51, which includes a ROM 52 that stores information such as programs, a RAM 53 that stores temporarily generated information, a timer 54 that measures various times in parallel, and a battery pack 10. The I / O port 55 for inputting / outputting each unit is connected to each other by a bus. The I / O port 55 is connected to the digital output terminal of the A / D conversion unit 4, the gate electrodes of the MOSFETs 71 and 72, and the communication unit 9. The communication unit 9 communicates with a control / power supply unit (charging unit) 21 included in the electrical device 20. The ROM 52 is a non-volatile memory composed of a flash memory. In addition to the program, the ROM 52 stores, for example, a learning value for the full charge capacity (learning capacity) and an initial value for the charging current (that is, a set current).

CPU51は、ROM52に予め格納されている制御プログラムに従って、演算及び入出力等の処理を実行する。例えば、CPU51は、250ms周期で電池ブロック11,12,13の電圧値と、二次電池1の充放電電流の検出値とを取り込み、取り込んだ電圧値及び検出値に基づいて二次電池1の充電電流若しくは充電電力又は放電電流若しくは放電電力を積算し、積算によって算出した充電量又は放電量をRAM53に記憶する。充放電電流,充放電電力を夫々積算した場合の充放電量の単位は、Ah,Whとなる。電圧値及び充放電電流の検出値の取り込み周期は250msに限定されない。CPU51は、また、残容量、相対残容量、充電電流等のデータを生成し、生成したデータを通信部9を介して電気機器20に送信する。   The CPU 51 executes processing such as calculation and input / output according to a control program stored in advance in the ROM 52. For example, the CPU 51 captures the voltage values of the battery blocks 11, 12, and 13 and the detection value of the charging / discharging current of the secondary battery 1 at a cycle of 250 ms, and the secondary battery 1 of the secondary battery 1 based on the captured voltage value and detection value. Charge current or charge power or discharge current or discharge power is integrated, and the charge amount or discharge amount calculated by the integration is stored in the RAM 53. The unit of charge / discharge amount when charge / discharge current and charge / discharge power are integrated is Ah, Wh. The fetch period of the voltage value and the detected value of the charge / discharge current is not limited to 250 ms. The CPU 51 also generates data such as remaining capacity, relative remaining capacity, and charging current, and transmits the generated data to the electrical device 20 via the communication unit 9.

遮断器7は、通常の充放電時にI/Oポート55からMOSFET71,72のゲート電極にL(ロウ)レベルのオン信号が与えられることにより、MOSFET71,72夫々のドレイン電極及びソース電極間が導通するようになっている。二次電池1の充電電流を遮断する場合、I/Oポート55からMOSFET71のゲート電極にH(ハイ)レベルのオフ信号が与えられることにより、MOSFET71のドレイン電極及びソース電極間の導通が遮断される。同様に二次電池1の放電電流を遮断する場合、I/Oポート55からMOSFET72のゲート電極にH(ハイ)レベルのオフ信号が与えられることにより、MOSFET72のドレイン電極及びソース電極間の導通が遮断される。MOSFET71,72をNチャネル型とした場合は、上記のL/Hレベルを反転させたH/Lレベルのオン信号/オフ信号をゲート電極に与えればよい。二次電池1が適当に充電された状態にある場合、遮断器7のMOSFET71,72は共にオンしており、二次電池1は放電及び充電が可能な状態となっている。   The breaker 7 is electrically connected between the drain electrode and the source electrode of each of the MOSFETs 71 and 72 when an ON signal of L (low) level is given from the I / O port 55 to the gate electrodes of the MOSFETs 71 and 72 during normal charge / discharge. It is supposed to be. When the charging current of the secondary battery 1 is cut off, the conduction between the drain electrode and the source electrode of the MOSFET 71 is cut off by applying an H (high) level off signal from the I / O port 55 to the gate electrode of the MOSFET 71. The Similarly, when the discharge current of the secondary battery 1 is cut off, an H (high) level off signal is applied from the I / O port 55 to the gate electrode of the MOSFET 72, thereby causing conduction between the drain electrode and the source electrode of the MOSFET 72. Blocked. When the MOSFETs 71 and 72 are N-channel type, an on / off signal of H / L level obtained by inverting the above L / H level may be given to the gate electrode. When the secondary battery 1 is in a properly charged state, the MOSFETs 71 and 72 of the circuit breaker 7 are both turned on, and the secondary battery 1 is in a state where it can be discharged and charged.

電気機器20は、制御・電源部21に接続された端末部22を備える。制御・電源部21は、図示しない商用電源より電力を供給されて端末部22を駆動すると共に、二次電池1の充放電路に充電電流を供給する。制御・電源部21は、また、商用電源から電力の供給が絶たれた場合、二次電池1の充放電路から供給される放電電流により、端末部22を駆動する。制御・電源部21が充電する二次電池1がリチウムイオン電池の場合は、例えば、定電流(MAX電流0.5〜1C程度)・定電圧(MAX4.2〜4.4V/電池セル程度)にて充電が行われる。   The electric device 20 includes a terminal unit 22 connected to a control / power supply unit 21. The control / power supply unit 21 is supplied with power from a commercial power source (not shown) to drive the terminal unit 22 and supplies a charging current to the charging / discharging path of the secondary battery 1. The control / power supply unit 21 also drives the terminal unit 22 by the discharge current supplied from the charge / discharge path of the secondary battery 1 when the supply of power from the commercial power supply is cut off. When the secondary battery 1 charged by the control / power supply unit 21 is a lithium ion battery, for example, a constant current (MAX current of about 0.5 to 1 C) and a constant voltage (MAX 4.2 to 4.4 V / battery cell) Is charged.

電圧が最大の電池ブロックの電池電圧が満充電検出開始電圧以上、且つ充電電流が所定値以下の状態が一定時間以上継続した場合、CPU51が、二次電池1が満充電状態にある(満充電)と判定する。また例えば、電圧が最大の電池ブロックにおいて、電池電圧が一定電圧以上となったときに一定期間(例えば60分、又は15分〜90分)だけMOSFET71をオフさせて開放電圧(OCV=Open Circuit Voltage )を検出し、検出した開放電圧が一定電圧以上である場合、満充電と判定するようにしてもよい。開放電圧による満充電の判定に代えて、充電中の電圧が最大の電池ブロックで電池電圧が所定電圧以上である場合に、満充電と判定するようにしてもよい。   When the battery voltage of the battery block having the maximum voltage is equal to or higher than the full charge detection start voltage and the state where the charging current is equal to or lower than the predetermined value continues for a certain time or longer, the CPU 51 indicates that the secondary battery 1 is fully charged (full charge ). Also, for example, in the battery block with the maximum voltage, when the battery voltage becomes equal to or higher than a certain voltage, the MOSFET 71 is turned off for a certain period (for example, 60 minutes, or 15 minutes to 90 minutes) to open circuit voltage (OCV = Open Circuit Voltage ), And when the detected open circuit voltage is equal to or higher than a certain voltage, it may be determined that the battery is fully charged. Instead of determining full charge by the open-circuit voltage, it may be determined that the battery is fully charged when the battery voltage being charged is the maximum and the battery voltage is equal to or higher than a predetermined voltage.

制御・電源部21及び通信部9間では、制御・電源部21をマスタに、通信部9を含む制御部5をスレーブにしてSMBus(System Management Bus )方式等の通信方式による通信が行われる。SMBus方式の場合、シリアルクロック(SCL)は制御・電源部21から供給され、シリアルデータ(SDA)は制御・電源部21及び通信部9間で双方向に授受される。本実施の形態1では、制御・電源部21が通信部9を2秒周期でポーリングして通信部9が送信しようとするデータの内容を読み出す。ポーリング周期の2秒は、制御・電源部21側の設定による。   Communication between the control / power supply unit 21 and the communication unit 9 is performed by a communication method such as an SMBus (System Management Bus) method using the control / power supply unit 21 as a master and the control unit 5 including the communication unit 9 as a slave. In the case of the SMBus system, the serial clock (SCL) is supplied from the control / power supply unit 21, and the serial data (SDA) is transferred between the control / power supply unit 21 and the communication unit 9 in both directions. In the first embodiment, the control / power supply unit 21 polls the communication unit 9 at a cycle of 2 seconds and reads the content of data that the communication unit 9 intends to transmit. The polling cycle of 2 seconds depends on the setting on the control / power supply unit 21 side.

このポーリングにより、例えば、二次電池1の残容量及び相対残容量のデータが、通信部9を介して制御・電源部21に2秒周期で受け渡され、電気機器20が有する図示しない表示器に相対残容量の値(%)として表示される。また、制御部5にて設定された充電電流の初期値、即ち充電電流のデータは、残容量のデータと同様に通信部9を介して制御・電源部21に送信される。制御・電源部21では、制御部5から送信された充電電流に基づいて、二次電池1を定電流・定電圧充電する。   By this polling, for example, the remaining capacity and relative remaining capacity data of the secondary battery 1 are transferred to the control / power supply section 21 via the communication section 9 in a cycle of 2 seconds, and the display device (not shown) included in the electric device 20 Is displayed as a value (%) of the relative remaining capacity. Further, the initial value of the charging current set by the control unit 5, that is, the charging current data is transmitted to the control / power supply unit 21 via the communication unit 9 in the same manner as the remaining capacity data. The control / power supply unit 21 charges the secondary battery 1 with a constant current / constant voltage based on the charging current transmitted from the control unit 5.

次に、一の電池ブロックの満充電容量(FCC)を、二次電池1のFCCとして算出する方法について説明する。
図2は、電池ブロック11,12,13の開放電圧(OCV)と相対残容量(RSOC)との関係を例示する放電特性のグラフである。図中横軸は、FCCに対するRCの比として定義されるRSOC(%)を表し、縦軸はOCV(V)を表す。本実施の形態1では、電池ブロック11,12,13が満充電状態となる電圧が4.2Vであり、放電終止電圧が3Vである。
Next, a method for calculating the full charge capacity (FCC) of one battery block as the FCC of the secondary battery 1 will be described.
FIG. 2 is a graph of discharge characteristics illustrating the relationship between the open circuit voltage (OCV) and the relative remaining capacity (RSOC) of the battery blocks 11, 12, and 13. In the figure, the horizontal axis represents RSOC (%) defined as the ratio of RC to FCC, and the vertical axis represents OCV (V). In the first embodiment, the voltage at which the battery blocks 11, 12, 13 are fully charged is 4.2V, and the end-of-discharge voltage is 3V.

FCCは、例えば特許文献2に詳しい公知の方法によって算出する。つまり、図2に示すグラフを関数又はテーブルとしてROM52又はRAM53に記憶しておき、任意の2つの時点で検出した一の電池ブロックのOCVを、記憶した関数又はテーブルに適用してRSOCを各別に算出し、算出したRSOCの差分(ΔRSOC)と、前記時点間におけるRCの変化量(ΔRC)とを以下の式(3)に適用してFCCを算出する。適当な電池ブロックについて式(3)による算出を適時繰り返すことにより、二次電池1のFCCを学習することができる。学習したFCCは、ROM52又はRAM53に記憶する。   The FCC is calculated by, for example, a known method detailed in Patent Document 2. In other words, the graph shown in FIG. 2 is stored as a function or table in the ROM 52 or RAM 53, and the OCV of one battery block detected at any two points in time is applied to the stored function or table, and the RSOC is separately set. The FCC is calculated by applying the calculated RSOC difference (ΔRSOC) and the RC change amount (ΔRC) between the time points to the following equation (3). The FCC of the secondary battery 1 can be learned by repeating the calculation according to the expression (3) as appropriate for an appropriate battery block. The learned FCC is stored in the ROM 52 or the RAM 53.

FCC=ΔRC/(ΔRSOC/100)・・・・・・・・・・・(3)
ここでは、時点1,時点2で検出した一の電池ブロックのOCVをOCV1,OCV2とするとき、図2よりΔRSOCが「RSOC1−RSOC2」として算出される。また、前記時点1,時点2間におけるΔRCは、その間の充放電電流を積算することによって算出される。但し、ここでの充電電流及び放電電流は、互いに符号が異なる値として検出されるものである。
FCC = ΔRC / (ΔRSOC / 100) (3)
Here, when the OCV of one battery block detected at time 1 and time 2 is OCV1 and OCV2, ΔRSOC is calculated as “RSOC1−RSOC2” from FIG. Further, ΔRC between the time point 1 and the time point 2 is calculated by integrating the charging / discharging current between the time points. However, the charging current and the discharging current here are detected as values having different signs.

次に、二次電池1について算出(学習)したFCCに基づいて、それ自体公知の方法により、二次電池1のRCを算出する方法について説明する。
RCの算出に先立ち、先ず二次電池1の電池ブロック11,12,13のOCVが各別に検出されて、RCの算出の基になる電池ブロックが特定される。この場合、各OCVがより正確に検出されるようにするため、二次電池1が充電も放電もされていない期間が所定時間(例えば1時間)以上継続したときにOCVが検出される。二次電池1が充電も放電もされていないことを確認するには、充放電電流(の絶対値)が所定電流より小さいことを確認すればよい。
Next, a method for calculating the RC of the secondary battery 1 by a method known per se based on the FCC calculated (learned) for the secondary battery 1 will be described.
Prior to calculation of RC, first, OCVs of the battery blocks 11, 12, and 13 of the secondary battery 1 are detected separately, and a battery block that is a basis for calculation of RC is specified. In this case, in order to detect each OCV more accurately, the OCV is detected when a period in which the secondary battery 1 is not charged or discharged continues for a predetermined time (for example, 1 hour) or more. In order to confirm that the secondary battery 1 is not charged or discharged, it is only necessary to confirm that the charge / discharge current (absolute value thereof) is smaller than a predetermined current.

以上のようにして特定された電池ブロックのOCVを、上述のとおりROM52又はRAM53に記憶された関数又はテーブルに適用することにより、特定された電池ブロックのRSOCが算出される。このRSOCと、式(3)によって算出(学習)されたFCCとを以下の式(4)に適用することによって算出されるRCを、二次電池1のRCとする。
RC=RSOC×FCC・・・・・・・・・・・・・・・・・・・(4)
By applying the OCV of the battery block specified as described above to the function or table stored in the ROM 52 or RAM 53 as described above, the RSOC of the specified battery block is calculated. The RC calculated by applying this RSOC and the FCC calculated (learned) by Expression (3) to the following Expression (4) is defined as RC of the secondary battery 1.
RC = RSOC x FCC (4)

さて、二次電池1のFCC(Ah)に対する放電電流(A)の比で表される放電レート(時間率の逆数)が大きいほど、FCCに対する放電可能な電気容量(放電容量)の比で表される放電効率が低下することが知られている。
図3は、二次電池1の積算放電量に応じて算出されるRC及びRSOCを例示する説明図である。図の横軸は、「−充放電量」に相当する積算放電量(放電量−充電量)を表す。縦軸はRC及びRSOCを表し、RCがFCCから0に低下するのに応じて、RSOCが100%から0%に低下する。
Now, the larger the discharge rate (reciprocal of the time rate) expressed by the ratio of the discharge current (A) to the FCC (Ah) of the secondary battery 1, the greater the ratio of the dischargeable electric capacity (discharge capacity) to the FCC. It is known that the discharge efficiency is reduced.
FIG. 3 is an explanatory diagram illustrating RC and RSOC calculated according to the accumulated discharge amount of the secondary battery 1. The horizontal axis of the figure represents the integrated discharge amount (discharge amount-charge amount) corresponding to “−charge / discharge amount”. The vertical axis represents RC and RSOC. As RC decreases from FCC to 0, RSOC decreases from 100% to 0%.

二次電池1が100%の放電効率で放電する場合、図3に実線で示すように、積算放電量がFCCに達したときにRC,RSOCが0,0%となる。これに対し、二次電池1が放電効率η(0<η<1)で放電した場合、図3に破線で示すように、積算放電量がFCC×ηに達したときにRC,RSOCが0,0%となる。換言すれば、同じ積算放電量に対して放電効率が小さいほどRC,RSOCが小さくなる。また、二次電池1について算出されるRC,RSOCは、放電効率が1及びη夫々の場合に、傾きが−1及び−1/ηの直線に沿って低下する。   When the secondary battery 1 is discharged at a discharge efficiency of 100%, as shown by the solid line in FIG. 3, when the integrated discharge amount reaches the FCC, RC and RSOC become 0.0%. On the other hand, when the secondary battery 1 is discharged at a discharge efficiency η (0 <η <1), RC and RSOC are 0 when the accumulated discharge amount reaches FCC × η, as indicated by a broken line in FIG. , 0%. In other words, the smaller the discharge efficiency for the same integrated discharge amount, the smaller the RC and RSOC. Further, RC and RSOC calculated for the secondary battery 1 decrease along straight lines having inclinations of −1 and −1 / η when the discharge efficiency is 1 and η, respectively.

放電効率は、放電レートのみならず、二次電池1の電池温度によっても変動する。
図4は、放電電流に対する放電効率の変化を例示するグラフである。図の横軸は放電電流(mA)を表し、縦軸は放電効率(%)を表す。図中実線及び破線の夫々は、電池温度が20℃及び10℃の場合の放電効率の変化を示す。電池温度が20℃の場合、放電電流が100mAから200mAの間では放電効率が100%であり、放電電流が200mAから増加するに連れて放電効率が徐々に低下する。これに対し、電池温度が10℃の場合、放電電流が100mAで既に放電効率が90%まで低下し、電池温度が20℃の場合よりも放電電流の増加に対する放電効率の低下の割合が大きい。本実施の形態1では、電池温度をパラメータとして、放電電流に対する放電効率の値が予めROM52に記憶される。
The discharge efficiency varies not only with the discharge rate but also with the battery temperature of the secondary battery 1.
FIG. 4 is a graph illustrating the change in discharge efficiency with respect to the discharge current. In the figure, the horizontal axis represents discharge current (mA), and the vertical axis represents discharge efficiency (%). Each of the solid line and the broken line in the figure shows the change in discharge efficiency when the battery temperature is 20 ° C. and 10 ° C. When the battery temperature is 20 ° C., the discharge efficiency is 100% when the discharge current is between 100 mA and 200 mA, and the discharge efficiency gradually decreases as the discharge current increases from 200 mA. On the other hand, when the battery temperature is 10 ° C., the discharge efficiency is already reduced to 90% at a discharge current of 100 mA, and the rate of decrease in discharge efficiency relative to the increase in discharge current is larger than when the battery temperature is 20 ° C. In the first embodiment, the value of the discharge efficiency with respect to the discharge current is stored in the ROM 52 in advance using the battery temperature as a parameter.

ところで、二次電池1が、満充電状態から100%の放電効率で緩やかに放電した場合、各電池ブロック11,12,13の電池電圧は、時間の経過と共に低下するRSOCに応じて、図2の放電特性と同じ曲線を描いて低下して行く。但し、二次電池1の内部抵抗による電圧降下が無視できない場合は、放電中の電池電圧が、図2の放電特性に対応する電圧よりも低い電圧として検出される。以下では簡単のため、各電池ブロック11,12,13の電圧のばらつきが無視できるものとし、一の電池ブロックについて説明する。
図5のAは放電中及び放電の停止後における一の電池ブロックの電池電圧及び相対残容量(RSOC)の時間変化を模式的に示すグラフであり、Bは放電電流の時間変化を示すグラフである。A,Bの横軸は時間を表し、Aの縦軸は電池電圧及び相対残容量を表し、Bの縦軸は放電電流を表す。
By the way, when the secondary battery 1 is gradually discharged from the fully charged state with a discharge efficiency of 100%, the battery voltage of each of the battery blocks 11, 12, and 13 is shown in FIG. Draws the same curve as the discharge characteristics. However, when the voltage drop due to the internal resistance of the secondary battery 1 cannot be ignored, the battery voltage during discharge is detected as a voltage lower than the voltage corresponding to the discharge characteristics of FIG. In the following, for the sake of simplicity, it is assumed that variations in the voltages of the battery blocks 11, 12, and 13 can be ignored, and one battery block will be described.
FIG. 5A is a graph schematically showing the time change of the battery voltage and the relative remaining capacity (RSOC) of one battery block during and after the discharge is stopped, and B is a graph showing the time change of the discharge current. is there. The horizontal axes of A and B represent time, the vertical axis of A represents the battery voltage and the relative remaining capacity, and the vertical axis of B represents the discharge current.

例えば満充電状態の二次電池1が比較的大きな一定の放電電流で時刻T10からT11まで放電した場合、上述した内部抵抗の電圧降下による影響を受けるため、図5Aに太い実線で示される電池電圧は、図2の放電特性に対応して太い一点鎖線で示される曲線上の点の電圧よりも低い電圧として検出される。また、この間の放電効率が100%より小さい場合、細い実線で示されるRSOCは、放電効率が100%の場合に対応して細い一点鎖線で示される直線上の点のRSOCよりも低い値として算出される。   For example, when the fully charged secondary battery 1 is discharged from time T10 to T11 with a relatively large constant discharge current, the battery voltage shown by the thick solid line in FIG. Is detected as a voltage lower than the voltage at the point on the curve indicated by the thick dashed line corresponding to the discharge characteristics of FIG. Further, when the discharge efficiency during this period is smaller than 100%, the RSOC indicated by a thin solid line is calculated as a value lower than the RSOC of the point on the straight line indicated by the thin dashed line corresponding to the case where the discharge efficiency is 100%. Is done.

その後、時刻T11で放電が停止した場合、一の電池ブロックの内部抵抗に電圧降下が生じなくなるため、電池電圧は、図2の放電特性に対応する電圧まで上昇する。この電圧はOCVに相当しており、OCVに基づいて算出されるRSOCは、時刻T10からT11までの上記放電電流による放電量と同じだけの放電量を100%の放電効率で放電した場合のRSOCと略同一となる。従って、例えば時刻T11の直前に30%に低下していたRSOCが、時刻T11で急に40%に補正されることが起こり得る。その後、時刻T11からT12までの間、無視できるほどの放電電流で長い時間をかけて二次電池1が放電した場合、電池電圧が3Vに低下するまでの間に、RSOCが40%から0%に向けて低下して行く。   Thereafter, when the discharge stops at time T11, the voltage drop does not occur in the internal resistance of one battery block, so the battery voltage rises to a voltage corresponding to the discharge characteristics of FIG. This voltage corresponds to the OCV, and the RSOC calculated based on the OCV is the RSOC when the discharge amount equal to the discharge amount due to the discharge current from time T10 to T11 is discharged with 100% discharge efficiency. Is almost the same. Therefore, for example, it may happen that RSOC that has been reduced to 30% just before time T11 is suddenly corrected to 40% at time T11. Thereafter, when the secondary battery 1 is discharged over a long time with a negligible discharge current from time T11 to T12, the RSOC is reduced from 40% to 0% until the battery voltage drops to 3V. Going down towards.

上述のように補正によってRSOCが急増する場合、式(4)によって算出されるRCも急増し、二次電池1が充電されていないにも関わらず、劣化したRSOCが不自然に復活するように見えるため、使用者にとって好ましいものではない。
一方では、OCVに基づくRSOCの補正が有効に作用する場合がある。本実施の形態1では、以下に示すようなRSOCの補正を行う。
図6のAは放電停止中及び放電の開始後における一の電池ブロックの電池電圧及び相対残容量(RSOC)の時間変化を模式的に示すグラフであり、Bは放電電流の時間変化を示すグラフである。A,Bの横軸は時間を表し、Aの縦軸は電池電圧及び相対残容量を表し、Bの縦軸は放電電流を表す。
As described above, when the RSOC rapidly increases due to the correction, the RC calculated by the equation (4) also increases rapidly so that the deteriorated RSOC is restored unnaturally even though the secondary battery 1 is not charged. Since it is visible, it is not preferable for the user.
On the other hand, RSOC correction based on OCV may work effectively. In the first embodiment, the following RSOC correction is performed.
6A is a graph schematically showing the time change of the battery voltage and the relative remaining capacity (RSOC) of one battery block during and after the discharge is stopped, and B is a graph showing the time change of the discharge current. It is. The horizontal axes of A and B represent time, the vertical axis of A represents the battery voltage and the relative remaining capacity, and the vertical axis of B represents the discharge current.

図6において、時刻T20からT21までの間では、二次電池1が放電していない。その間の経過時間が比較的短い場合、電池電圧は、図6Aに太い一点鎖線で示される満充電電圧に維持されており、RSOCは、細い一点鎖線で示される100%に維持されている。その後、時刻T21からT23までの間、放電効率が100%となる一定の放電電流(図6Bでは実線及び一点鎖線で示す)で二次電池1が放電した場合、図2の放電特性に対応して太い一点鎖線で示される曲線に沿って、電池電圧が3Vに低下するまでの間に、細い一点鎖線で示されるRSOCが100%から0%に向けて低下して行く。   In FIG. 6, the secondary battery 1 is not discharged between time T20 and T21. When the elapsed time in the meantime is relatively short, the battery voltage is maintained at the full charge voltage indicated by the thick dashed-dotted line in FIG. 6A, and the RSOC is maintained at 100% indicated by the thin dashed-dotted line. After that, when the secondary battery 1 is discharged at a constant discharge current (indicated by a solid line and a one-dot chain line in FIG. 6B) at which the discharge efficiency becomes 100% from time T21 to T23, the discharge characteristics of FIG. The RSOC indicated by the thin alternate long and short dash line decreases from 100% to 0% until the battery voltage decreases to 3 V along the curve indicated by the thick and long alternate long and short dash line.

これに対し、時刻T20からT21までの経過時間が比較的長い場合、自己放電及び/又は回路の暗電流による影響を受けるため、電池電圧は、図6Aに太い実線で示されるように時間の経過と共に緩やかに低下する。その後、時刻T21から、時刻T23より前の時刻T22までの間、上記と同じ一定の放電電流で二次電池1が放電した場合、図2の放電特性に対応して太い実線で示される曲線に沿って、電池電圧が3Vに低下するまでの間に、細い一点鎖線で示されるRSOCが0%まで下がりきらない(図中の両矢印参照)。このため、時刻T22に至るまでに、例えば端末部22でシャットダウンの準備をすることができなくなる。   On the other hand, when the elapsed time from time T20 to T21 is relatively long, the battery voltage is affected by self-discharge and / or dark current of the circuit, so that the battery voltage has elapsed over time as shown by a thick solid line in FIG. 6A. It gradually decreases with time. After that, when the secondary battery 1 is discharged with the same constant discharge current as described above from time T21 to time T22 before time T23, a curve indicated by a thick solid line corresponding to the discharge characteristics of FIG. Along with this, until the battery voltage drops to 3 V, the RSOC indicated by the thin alternate long and short dash line does not fall down to 0% (see the double arrow in the figure). For this reason, by the time T22, for example, the terminal unit 22 cannot prepare for shutdown.

そこで、本実施の形態1では、時刻T20からT21までの放電停止中に、一の電池ブロックの電池電圧をOCVとして検出し、検出したOCVに基づくRSOC(又はRC)が、他の処理にて逐次算出されているRSOC(又はRC)より小さい場合に、RSOC(及び/又はRC)を適時補正する。これにより、RSOCは、図6Aに細い実線で示すように時間の経過と共に低下して、太い実線で示される電池電圧に随時対応するものとなる。つまり、時刻T21からT22までの間では、細い実線で示されるRSOCが、細い一点鎖線で示されるRSOCを「T22−T23」だけ横軸方向に平行移動させたものとなるため、電池電圧が3Vとなる時刻T22で、RSOCが0%となるようにすることができる。   Therefore, in the first embodiment, the battery voltage of one battery block is detected as OCV during the discharge stop from time T20 to T21, and the RSOC (or RC) based on the detected OCV is determined by other processing. If it is smaller than the RSOC (or RC) calculated sequentially, the RSOC (and / or RC) is corrected in a timely manner. As a result, the RSOC decreases with time as indicated by a thin solid line in FIG. 6A and corresponds to the battery voltage indicated by the thick solid line as needed. That is, during the period from time T21 to T22, the RSOC indicated by the thin solid line is obtained by translating the RSOC indicated by the thin alternate long and short dash line by “T22-T23” in the horizontal axis direction, so that the battery voltage is 3V. At time T22, the RSOC can be set to 0%.

以下では、上述したパック電池10の制御部5の動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM52に予め格納された制御プログラムに従ってCPU51により実行される。
図7は、二次電池1の残容量を算出するCPU51の処理手順を示すフローチャートである。図7の処理が起動される周期は、例えば250m秒であるが、これに限定されるものではない。
Below, operation | movement of the control part 5 of the pack battery 10 mentioned above is demonstrated using the flowchart which shows it. The following processing is executed by the CPU 51 according to a control program stored in advance in the ROM 52.
FIG. 7 is a flowchart showing a processing procedure of the CPU 51 for calculating the remaining capacity of the secondary battery 1. The period at which the process of FIG. 7 is activated is, for example, 250 milliseconds, but is not limited thereto.

図7の処理で用いられる計時中フラグ及び補正フラグは、RAM53に記憶されており、所定の初期化処理にて0にクリアされる。計時中フラグは、既に計時を開始していることを示すフラグであり、補正フラグは、後述する実施の形態2で説明する他の処理に対して、残容量(RC)を補正したことを通知するフラグである。例えば前記他の処理にて算出されたRCが、ROM52又はRAM53に記憶されている。その他の演算過程のデータについては、適宜RAM53に記憶される。加えて、図2に示したグラフに対応するテーブル値が、ROM52又はRAM53に記憶されている。   The timekeeping flag and the correction flag used in the process of FIG. 7 are stored in the RAM 53 and cleared to 0 by a predetermined initialization process. The timekeeping flag is a flag indicating that timekeeping has already started, and the correction flag notifies other processing described in the second embodiment described later that the remaining capacity (RC) has been corrected. It is a flag to do. For example, the RC calculated in the other process is stored in the ROM 52 or the RAM 53. Other calculation process data is stored in the RAM 53 as appropriate. In addition, table values corresponding to the graph shown in FIG. 2 are stored in the ROM 52 or the RAM 53.

図7の処理が起動された場合、CPU51は、A/D変換部4を介して電流検出器2の電圧を取り込み、取り込んだ電圧を電流に換算して充放電電流を検出する(S11)。実際には、複数回取り込んだ電圧に基づいて充放電電流を検出するようにしてもよい。その後、CPU51は、検出した充放電電流が、例えば−50mA(放電電流の領域)より大きく、且つ50mA(充電電流の領域)より小さいか否かを判定し(S12)、この範囲内にない場合(S12:NO)、その後は何も実行せずに図7の処理を終了する。   When the process of FIG. 7 is activated, the CPU 51 captures the voltage of the current detector 2 via the A / D converter 4, converts the captured voltage into a current, and detects a charge / discharge current (S11). Actually, the charge / discharge current may be detected based on the voltage taken a plurality of times. Thereafter, the CPU 51 determines whether or not the detected charge / discharge current is larger than, for example, −50 mA (discharge current region) and smaller than 50 mA (charge current region) (S12). (S12: NO) After that, nothing is executed, and the process of FIG. 7 is terminated.

尚、ステップS12で充放電電流と比較すべき電流値は、50mA及び−50mAに限定されるものではない。   Note that the current value to be compared with the charge / discharge current in step S12 is not limited to 50 mA and −50 mA.

検出した充放電電流が−50mAより大きく、且つ50mAより小さい場合(S12:YES)、充放電が行われていないと判定して差し支えないため、CPU51は、充放電が行われていない時間を既に計時中であるか否かを確認するために、計時中フラグが1にセットされているか否かを判定する(S13)。1にセットされていない場合(S13:NO)、CPU51は、タイマ54を用いて計時を開始する(S14)と共に、計時中フラグを1にセットして(S15)図7の処理を終了する。   When the detected charging / discharging current is larger than −50 mA and smaller than 50 mA (S12: YES), it may be determined that charging / discharging has not been performed. In order to confirm whether or not the time is being measured, it is determined whether or not the time-keeping flag is set to 1 (S13). If it is not set to 1 (S13: NO), the CPU 51 starts measuring time using the timer 54 (S14), sets the time-measurement flag to 1 (S15), and ends the processing of FIG.

ステップS13で計時中フラグが1にセットされている場合(S13:YES)、即ち既に計時が開始されている場合、CPU51は、計時を開始してから例えば1時間が経過したか否かを判定し(S16)、経過していない場合(S16:NO)、一旦図7の処理を終了する。1時間が経過した場合(S16:YES)、CPU51は、次回の計時に備えて計時中フラグを0にクリアした(S17)後、A/D変換部4を介して各電池ブロック11,12,13のOCVを検出する(S18;請求項に記載の検出手段)。   When the timekeeping flag is set to 1 in step S13 (S13: YES), that is, when timekeeping has already started, the CPU 51 determines whether, for example, one hour has elapsed since the time measurement was started. If it has not elapsed (S16: NO), the process of FIG. 7 is once terminated. When one hour has elapsed (S16: YES), the CPU 51 clears the timekeeping flag to 0 for the next timekeeping (S17), and then each battery block 11, 12, 13 OCVs are detected (S18; detection means according to claim).

その後、CPU51は、例えばOCVが最小(又は最大)の電池ブロックを特定し、特定した電池ブロックのOCVを、ROM52又はRAM53に記憶した図2に対応するテーブルに適用することによって電池ブロックのRSOCを算出する(S19;請求項に記載の相対残容量を算出する手段)。そして、CPU51は、算出したRSOCとROM52又はRAM53に記憶されたFCCの学習値とを式(4)に適用することにより、OCVに基づく補正のための残容量として第2RC(請求項に記載の第2の残容量)を算出する(S20;請求項に記載の算出手段)。   Thereafter, the CPU 51 specifies the battery block having the minimum (or maximum) OCV, for example, and applies the OCV of the specified battery block to the table corresponding to FIG. Calculate (S19; means for calculating the relative remaining capacity described in the claims). Then, the CPU 51 applies the calculated RSOC and the learned value of the FCC stored in the ROM 52 or the RAM 53 to the equation (4), whereby the second RC (described in the claims) (Second remaining capacity) is calculated (S20; calculation means according to claim).

次いで、CPU51は、算出した第2RCが、上述した他の処理で算出されてROM52又はRAM53に記憶されているRCよりも小さいか否かを判定し(S21;請求項に記載の判定手段)、小さい場合(S21:YES)、ROM52又はRAM53に記憶されているRCを第2RCに置き換える(S22)と共に、RCを補正したことを示す補正フラグを1にセットして(S23)、図7の処理を終了する。第2RCが、記憶されているRCより小さくない場合(S21:NO)、RCを補正せずに図7の処理を終了する。   Next, the CPU 51 determines whether or not the calculated second RC is smaller than the RC calculated in the other processing described above and stored in the ROM 52 or the RAM 53 (S21; determination means according to claim), If it is smaller (S21: YES), the RC stored in the ROM 52 or RAM 53 is replaced with the second RC (S22), and a correction flag indicating that the RC has been corrected is set to 1 (S23), and the processing of FIG. Exit. If the second RC is not smaller than the stored RC (S21: NO), the process of FIG. 7 is terminated without correcting the RC.

以上のように本実施の形態1によれば、OCVが最小(又は最大)の電池ブロックのOCVを、OCV及びRSOCの関係を示す放電特性に適用してRSOCを算出し、算出したRSOCにFCCを乗じて得られる第2RCが、他の処理で算出されている補正前のRCより小さい場合に、補正前のRCを第2RCに置き換えることにより、第2RCを補正後のRCとする。
これにより、開放電圧(OCV)に基づいて算出された第2の残容量(第2RC)によって二次電池の残容量が補正される際に、補正後の残容量(RC)が補正前の残容量より大きくなることが防止される。特に、二次電池を充放電せずに保管し続けて電池電圧及び残容量が低下した場合に、低下した電池電圧に応じて残容量が適切に補正される。
従って、二次電池の充放電が停止しているにも関わらず、あたかも充電されたかのように見せることなく残容量を補正することが可能となる。
As described above, according to the first embodiment, the OCV of the battery block with the minimum (or maximum) OCV is applied to the discharge characteristics indicating the relationship between the OCV and the RSOC, and the RSOC is calculated. When the second RC obtained by multiplying is smaller than the uncorrected RC calculated by other processing, the second RC is made the corrected RC by replacing the uncorrected RC with the second RC.
Thus, when the remaining capacity of the secondary battery is corrected by the second remaining capacity (second RC) calculated based on the open circuit voltage (OCV), the corrected remaining capacity (RC) is changed to the remaining capacity before correction. It is prevented from becoming larger than the capacity. In particular, when the secondary battery continues to be stored without being charged / discharged and the battery voltage and the remaining capacity decrease, the remaining capacity is appropriately corrected according to the decreased battery voltage.
Therefore, it is possible to correct the remaining capacity without making it appear as if it has been charged, even though charging / discharging of the secondary battery is stopped.

(実施の形態2)
実施の形態1が、それ自体公知の方法で算出した二次電池1の残容量(RC)を、一の電池ブロックのOCVに基づいて補正する形態であるのに対し、実施の形態2は、二次電池1の充放電電流を該充放電電流に応じた重み付けを行って積算した結果に基づいて、二次電池1のRCを算出する形態である。
(Embodiment 2)
In the first embodiment, the remaining capacity (RC) of the secondary battery 1 calculated by a method known per se is corrected based on the OCV of one battery block, whereas the second embodiment In this embodiment, the RC of the secondary battery 1 is calculated based on the result of integrating the charge / discharge current of the secondary battery 1 by weighting according to the charge / discharge current.

さて、充放電中の時刻tにおける残容量RC(t)に対し、時間ΔT後(但し、ΔT≧Δt)における残容量RC(t+ΔT)は、上述の式(1)を一般化した以下の式(5)によって算出することができる。
RC(t+ΔT)
=RC(t)+∫{(充放電電流/充放電効率)Δt}・・・・・・(5)
ここで、充放電電流は、正/負の符号付きで検出される充電電流/放電電流であり、「1/充放電効率」は、積算されるべき充放電電流に対する重みの値に相当する。
Now, with respect to the remaining capacity RC (t) at time t during charging / discharging, the remaining capacity RC (t + ΔT) after time ΔT (where ΔT ≧ Δt) is obtained by generalizing the above-described expression (1). It can be calculated by (5).
RC (t + ΔT)
= RC (t) + ∫ {(charge / discharge current / charge / discharge efficiency) Δt} (5)
Here, the charge / discharge current is a charge current / discharge current detected with a positive / negative sign, and “1 / charge / discharge efficiency” corresponds to a weight value for the charge / discharge current to be integrated.

式(5)の右辺の第2項にて、時間ΔTの間における充放電電流が重みを付けて積算される。充放電電流が一定の場合は充放電効率も一定となるから、式(5)が以下の式(6)に変形される。
RC(t+ΔT)=RC(t)−Δ積算放電量/充放電効率・・・(6)
ここで、Δ積算放電量は、図3で説明した積算放電量(放電量−充電量)の時間ΔTにおける変化分である。
In the second term on the right side of Equation (5), the charge / discharge current during time ΔT is weighted and integrated. When the charging / discharging current is constant, the charging / discharging efficiency is also constant. Therefore, the equation (5) is transformed into the following equation (6).
RC (t + ΔT) = RC (t) −ΔIntegrated discharge amount / Charge / discharge efficiency (6)
Here, the Δ accumulated discharge amount is a change in time ΔT of the accumulated discharge amount (discharge amount−charge amount) described in FIG.

また、「RC(t+ΔT)−RC(t)」をΔRCと置き換えると、式(6)が以下の式(7)に変形される。
ΔRC=−Δ積算放電量/充放電効率・・・・・・・・・・・・・(7)
Further, when “RC (t + ΔT) −RC (t)” is replaced with ΔRC, the equation (6) is transformed into the following equation (7).
ΔRC = -ΔIntegrated discharge amount / Charge / discharge efficiency (7)

更に式(7)を変形して、次の式(8)が得られる。
ΔRC/Δ積算放電量=−1/充放電効率・・・・・・・・・・・(8)
充放電効率が放電効率ηである場合、式(8)の左右両辺は、図3に破線で示す直線の傾きを表しているから、式(6)を用いて二次電池1の満充電状態(RC=FCC)からRCを逐次算出するということは、図3の破線に沿って低下するRCを算出することを意味する。
Further, equation (7) is modified to obtain the following equation (8).
ΔRC / ΔIntegrated discharge amount = -1 / Charge / discharge efficiency (8)
When the charge / discharge efficiency is the discharge efficiency η, the left and right sides of the equation (8) represent the slope of the straight line shown by the broken line in FIG. 3, and therefore the fully charged state of the secondary battery 1 using the equation (6) Sequentially calculating RC from (RC = FCC) means calculating RC that decreases along the broken line in FIG.

次に、放電中に放電電流が変化することにより、放電効率が変化する場合について説明する。
図8は、本発明の実施の形態2に係るパック電池10で放電中の放電効率の変化に応じて算出されるRC及びRSOCを例示する説明図である。図の横軸は積算放電量を表し、縦軸はRC及びRSOCを表す。二次電池1が満充電状態から放電効率η1で放電を開始した場合、二次電池1について算出されるRC,RSOCは、図8に実線で示されるように、傾きが−1/η1で横軸上の切片がFCC×η1である直線に沿って低下する。
Next, the case where the discharge efficiency changes due to the change in the discharge current during discharge will be described.
FIG. 8 is an explanatory diagram illustrating RC and RSOC calculated according to changes in discharge efficiency during discharge in the battery pack 10 according to the second embodiment of the present invention. The horizontal axis of the figure represents the integrated discharge amount, and the vertical axis represents RC and RSOC. When the secondary battery 1 starts discharging at a discharge efficiency η1 from the fully charged state, RC and RSOC calculated for the secondary battery 1 are horizontal with an inclination of −1 / η1 as shown by a solid line in FIG. The intercept on the axis drops along a straight line that is FCC × η1.

その後、放電効率がη1からη2に変化した場合、RC,RSOCは、傾きが−1/η2で横軸上の切片がFCC×αである直線に沿って低下する。一方、二次電池1が満充電状態から放電効率η2で放電した場合のRC,RSOCを示す直線は、図8に一点鎖線で示されるように、横軸上の切片がFCC×η2となるが、上記αはη2とは異なるものである。つまり、放電効率がη1からη2に変化した場合、二次電池1としては積算放電量がFCC×η2となるまで放電する容量があるにも関わらず、公知の方法によれば、積算放電量がFCC×αとなるまでしか放電できないものとして、RC,FCCが算出される。   Thereafter, when the discharge efficiency changes from η1 to η2, RC and RSOC decrease along a straight line having an inclination of −1 / η2 and an intercept on the horizontal axis of FCC × α. On the other hand, the straight line indicating RC and RSOC when the secondary battery 1 is discharged from the fully charged state with the discharge efficiency η2 has an intercept on the horizontal axis of FCC × η2, as indicated by a one-dot chain line in FIG. The above α is different from η2. That is, when the discharge efficiency changes from η1 to η2, the secondary battery 1 has a capacity to discharge until the cumulative discharge amount becomes FCC × η2, but according to a known method, the cumulative discharge amount is RC and FCC are calculated as those that can only be discharged until FCC × α.

そこで、本実施の形態2では、放電効率がη1からη2に変化した場合、式(6)の右辺の第2項で充放電電流を積算するときの重み付けを、「1/充放電効率」とは異なるものとすることにより、正確なRC,RSOCが算出されるようにする。
図9は、放電中の放電効率が変化した後に積算される充放電電流に対する重み付けを説明する説明図である。図の横軸は積算放電量を表し、縦軸はRC及びRSOCを表す。図9では、図8との違いに着目して説明する。
Therefore, in the second embodiment, when the discharge efficiency is changed from η1 to η2, the weight when integrating the charge / discharge current in the second term on the right side of Equation (6) is “1 / charge / discharge efficiency”. By making them different, accurate RC and RSOC are calculated.
FIG. 9 is an explanatory diagram for explaining the weighting for the charge / discharge current accumulated after the discharge efficiency during discharge changes. The horizontal axis of the figure represents the integrated discharge amount, and the vertical axis represents RC and RSOC. In FIG. 9, the description will be given focusing on the difference from FIG.

放電中に放電効率がη1からη2に変化した場合、積算放電量がFCC×η2となる時にRC,RSOCが丁度0(%)となるためには、放電効率がη2になった後に算出されるRC,RSOCが、図8に実線の下半分で示されるように、横軸上の切片がFCC×η2である直線に沿って低下すればよい。この直線上の点(積算放電量、RC)及び上記切片を通る直線の傾きは「−RC/(FCC×η2−積算放電量)」で表される。放電効率がη2からη3に変化した場合は、上記の傾きの分母をη3にすればよい。   When the discharge efficiency changes from η1 to η2 during discharge, RC and RSOC are just 0 (%) when the integrated discharge amount is FCC × η2, so that the discharge efficiency is calculated after η2 RC and RSOC may be lowered along a straight line whose intercept on the horizontal axis is FCC × η2, as indicated by the lower half of the solid line in FIG. The point on this straight line (cumulative discharge amount, RC) and the slope of the straight line passing through the intercept are represented by “−RC / (FCC × η2−cumulative discharge amount)”. When the discharge efficiency is changed from η2 to η3, the denominator of the slope may be set to η3.

つまり、式(6)を用いてRCを算出する際に、充放電電流の大きさに対応する充放電効率の変化に応じ、以下の式(9)から算出される値によって、積算されるべき充放電電流に対する重み付けを行う。
重みの値=RC/(FCC×充放電効率−積算放電量)・・・・・(9)
That is, when calculating RC using Equation (6), it should be integrated by the value calculated from Equation (9) below according to the change in charge / discharge efficiency corresponding to the magnitude of the charge / discharge current. The charge / discharge current is weighted.
Weight value = RC / (FCC × charge / discharge efficiency−integrated discharge amount) (9)

式(9)によって算出される重みの値を倍率とする場合、この倍率を式(6)に適用することにより、以下の式(10)が得られる。
RC(t+ΔT)=RC(t)−倍率×Δ積算放電量・・・・・(10)
When the weight value calculated by the equation (9) is a magnification, the following equation (10) is obtained by applying this magnification to the equation (6).
RC (t + ΔT) = RC (t) −magnification × Δintegrated discharge amount (10)

式(9)による充放電電流の重み付けは、一の電池ブロックのOCVに基づいて二次電池1のRCを補正した場合にも適用することができる。
図10は、RCの補正後に算出されるRC及びRSOCを例示する説明図である。図の横軸は積算放電量を表し、縦軸はRC及びRSOCを表す。例えば、満充電状態のまま放置又は保管された二次電池1の電池電圧が、自己放電等の影響で低下した場合、一の電池ブロックのOCVに基づいてRCがRC1に補正される。以下では、補正後に100%の放電効率で放電が開始されるものとする。
The weighting of the charging / discharging current according to the equation (9) can be applied even when the RC of the secondary battery 1 is corrected based on the OCV of one battery block.
FIG. 10 is an explanatory diagram illustrating RC and RSOC calculated after RC correction. The horizontal axis of the figure represents the integrated discharge amount, and the vertical axis represents RC and RSOC. For example, when the battery voltage of the secondary battery 1 left or stored in a fully charged state decreases due to the influence of self-discharge or the like, RC is corrected to RC1 based on the OCV of one battery block. In the following, it is assumed that discharge is started with a discharge efficiency of 100% after correction.

放電効率が100%(=1)の場合、式(9)による重みの値は「RC/(FCC−積算放電量)」となる、つまり、RCの補正後に算出されるRC,RSOCは、傾きが「−RC/(FCC−積算放電量)」の直線に沿って低下する。そしてこの直線は、積算放電量が0(ゼロ)の時のRCがRC1であるから、図10に一点鎖線で示すように、縦軸上の切片がRC1で、横軸上の切片がFCCとなる。つまり、0(ゼロ)から積算した積算放電量がFCCとなる時に、RC,RSOCが丁度0(%)となる。   When the discharge efficiency is 100% (= 1), the weight value according to the equation (9) is “RC / (FCC−integrated discharge amount)”. That is, RC and RSOC calculated after RC correction are slopes. Decreases along a straight line “−RC / (FCC−cumulative discharge amount)”. In this straight line, since the RC when the integrated discharge amount is 0 (zero) is RC1, the intercept on the vertical axis is RC1 and the intercept on the horizontal axis is FCC as shown by a one-dot chain line in FIG. Become. That is, RC and RSOC are just 0 (%) when the accumulated discharge amount accumulated from 0 (zero) is FCC.

上記の重み付けによるRCの算出は、積算放電量の増加に対するRCの低下の割合を意図的に小さくして辻褄を合わせるものと言える。一方、二次電池1のRCをRC1に補正した場合、二次電池1が既に「FCC−RC1」だけ放電したものと考えられるため、本実施の形態2では、その時に例えば0(ゼロ)となっている積算放電量を「FCC−RC1」に置き換える。これにより、式(9)による重み付けを行う場合であっても、RCの補正後に算出されるRC,RSOCは、図10に実線で示すように、二次電池1の実際の放電状態を反映したものとなる。   It can be said that the calculation of RC by the above weighting is intended to reduce the ratio of the decrease in RC with respect to the increase in the integrated discharge amount, and to match the wrinkles. On the other hand, when the RC of the secondary battery 1 is corrected to RC1, since it is considered that the secondary battery 1 has already been discharged by “FCC-RC1”, in the second embodiment, for example, 0 (zero) at that time The accumulated discharge amount is replaced with “FCC-RC1”. Thus, even when weighting is performed according to Equation (9), RC and RSOC calculated after RC correction reflect the actual discharge state of the secondary battery 1 as shown by the solid line in FIG. It will be a thing.

以下では、上述したパック電池10の制御部5の動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM52に予め格納された制御プログラムに従ってCPU51により実行される。
図11は、二次電池1の充放電電流を検出して放電量を積算するCPU51の処理手順を示すフローチャートであり、図12は、二次電池1の残容量を算出するCPU51の処理手順を示すフローチャートである。図11の処理が起動される周期は250m秒であるが、これに限定されるものではない。また、図12の処理が起動される周期は、図11の処理が起動される周期と同じ250m秒でもよいし、それよりも長い周期であってもよい。
Below, operation | movement of the control part 5 of the pack battery 10 mentioned above is demonstrated using the flowchart which shows it. The following processing is executed by the CPU 51 according to a control program stored in advance in the ROM 52.
FIG. 11 is a flowchart showing the processing procedure of the CPU 51 that detects the charge / discharge current of the secondary battery 1 and integrates the discharge amount. FIG. 12 shows the processing procedure of the CPU 51 that calculates the remaining capacity of the secondary battery 1. It is a flowchart to show. The period at which the process of FIG. 11 is activated is 250 milliseconds, but is not limited thereto. Further, the cycle in which the process in FIG. 12 is activated may be 250 msec, which is the same as the period in which the process in FIG.

図11,12の処理で用いられるカウンタ2及びカウンタ1は、RAM53に記憶されており、二次電池1の満充電の検出時に0にクリアされる。その他の演算過程のデータについては、適宜RAM53に記憶される。加えて、図4に示したグラフに対応するテーブル値が、ROM52又はRAM53に記憶されている。   The counter 2 and the counter 1 used in the processes of FIGS. 11 and 12 are stored in the RAM 53 and cleared to 0 when the full charge of the secondary battery 1 is detected. Other calculation process data is stored in the RAM 53 as appropriate. In addition, table values corresponding to the graph shown in FIG. 4 are stored in the ROM 52 or the RAM 53.

図11の処理が起動された場合、CPU51は、A/D変換部4を介して電流検出器2の電圧を取り込み、取り込んだ電圧を電流に換算して充放電電流を検出する(S31;請求項に記載の第2の検出手段)。その後、CPU51は、検出した充放電電流をRAM53に記憶する(S32)。ここで充放電電流を検出して記憶する代わりに、実施の形態1の図7に示す処理中のステップS11にて検出した充放電電流がRAM53に記憶されるようにしてもよい。   When the processing of FIG. 11 is activated, the CPU 51 takes in the voltage of the current detector 2 via the A / D conversion unit 4, converts the taken-in voltage into current, and detects the charge / discharge current (S31; claim) The second detection means according to the item). Thereafter, the CPU 51 stores the detected charging / discharging current in the RAM 53 (S32). Here, instead of detecting and storing the charge / discharge current, the charge / discharge current detected in step S11 during the process shown in FIG. 7 of the first embodiment may be stored in the RAM 53.

次いで、CPU51は、RAM53に記憶したカウンタ2の内容から、検出した充放電電流を減算して(S33;請求項に記載の第2の算出手段)カウンタ2を更新し、図11の処理を終了する。ここで減算される充放電電流は、充電電流/放電電流が正/負の符号付きで検出される電流であるから、ステップS33で更新されるカウンタ2は、初期値(0)に対して放電電流が加算されて行くものである。また、ステップS33が1時間に14400回実行されるから、カウンタ2の値を14400で除した値が、積算放電量となる。   Next, the CPU 51 updates the counter 2 by subtracting the detected charging / discharging current from the contents of the counter 2 stored in the RAM 53 (S33; second calculating means according to claim), and ends the processing of FIG. To do. Since the charging / discharging current subtracted here is a current detected with a positive / negative sign of the charging current / discharging current, the counter 2 updated in step S33 discharges with respect to the initial value (0). The current is added. Since step S33 is executed 14400 times per hour, the value obtained by dividing the value of counter 2 by 14400 is the integrated discharge amount.

次に図12の処理が起動された場合、CPU51は、RAM53に記憶した充放電電流を読み出す(S41)と共に、A/D変換部4を介して二次電池1の電池温度を検出し(S42)、検出した充放電電流及び電池温度を、ROM52又はRAM53に記憶した図4に対応するテーブルに適用することによって、充放電電流に応じた充放電効率(η)を特定する(S43)。   Next, when the process of FIG. 12 is started, the CPU 51 reads the charge / discharge current stored in the RAM 53 (S41) and detects the battery temperature of the secondary battery 1 via the A / D converter 4 (S42). ) By applying the detected charge / discharge current and battery temperature to the table corresponding to FIG. 4 stored in the ROM 52 or RAM 53, the charge / discharge efficiency (η) corresponding to the charge / discharge current is specified (S43).

その後、CPU51は、実施の形態1の図7に示す処理でセットされる補正フラグが、1にセットされているか否かを判定し(S44)、セットされている場合(S44:YES)、補正フラグを0にクリアした(S45)後に、RAM53に記憶したカウンタ2の内容を、「(FCC−RC)×14400」、即ち、満充電容量からRCを減算して14400倍した値に置き換える(S46)。これにより、RCが補正されたときに、カウンタ2も補正される。   Thereafter, the CPU 51 determines whether or not the correction flag set in the process shown in FIG. 7 of the first embodiment is set to 1 (S44). If it is set (S44: YES), the correction is performed. After the flag is cleared to 0 (S45), the contents of the counter 2 stored in the RAM 53 are replaced with “(FCC-RC) × 14400”, that is, a value obtained by subtracting RC from the full charge capacity and multiplying by 14400 (S46). ). Thereby, when RC is corrected, the counter 2 is also corrected.

ステップS46の処理を終えた場合、又はステップS44で補正フラグが1にセットされていない場合(S44:NO)、CPU51は、式(9)を用い、重みの値を倍率として算出する(S47)。ここでは、充放電効率がη、積算放電量が「カウンタ2/14400」であるから、倍率が「RC/(FCC×η−カウンタ2/14400)」によって算出される。RCはROM52又はRAM53に記憶されている残容量である。   When the process of step S46 is completed, or when the correction flag is not set to 1 in step S44 (S44: NO), the CPU 51 calculates the weight value as a magnification using equation (9) (S47). . Here, since the charge / discharge efficiency is η and the integrated discharge amount is “counter 2/14400”, the magnification is calculated by “RC / (FCC × η−counter 2/14400)”. RC is the remaining capacity stored in the ROM 52 or RAM 53.

その後、CPU51は、積算放電量(放電量−充電量)の変化分として、Δ積算放電量を「(カウンタ2−カウンタ1)/14400」によって算出する(S48)。ここでカウンタ1は、後述するように図12の処理が前回起動されたときのカウンタ2の値である。つまり、Δ積算放電量は、図12の処理が前回起動されてから今回起動されるまでの間における積算放電量の増分に相当する。   Thereafter, the CPU 51 calculates the Δ accumulated discharge amount as “(counter 2−counter 1) / 14400” as a change in the accumulated discharge amount (discharge amount−charge amount) (S48). Here, the counter 1 is the value of the counter 2 when the process of FIG. That is, the Δ accumulated discharge amount corresponds to an increment of the accumulated discharge amount from the time when the process of FIG.

次いで、CPU51は、ステップS47で算出した倍率を式(10)に適用し、ROM52又はRAM53に記憶したRCから「倍率×Δ積算放電量」を減算することによって、新たにRCを算出して(S49;請求項に記載の積算手段及び残容量を算出する手段)RCの記憶内容を更新する。その後、CPU51は、式(4)を用い、ROM52又はRAM53に記憶したRCを、ROM52又はRAM53に記憶されたFCCの学習値で除算することによって、RSOCを算出し(S50)、カウンタ2の内容をカウンタ1に保存して(S51)図12の処理を終了する。ステップS49,50で算出されたRC及び/又はRSOCは、その後、通信データに変換されて通信部9経由で制御・電源部21に送信される。   Next, the CPU 51 applies the magnification calculated in step S47 to the equation (10), and subtracts “magnification × Δintegrated discharge amount” from the RC stored in the ROM 52 or the RAM 53 to newly calculate RC ( S49: Accumulating means described in claims and means for calculating remaining capacity) The stored contents of RC are updated. Thereafter, the CPU 51 calculates the RSOC by dividing the RC stored in the ROM 52 or the RAM 53 by the FCC learning value stored in the ROM 52 or the RAM 53 using the equation (4) (S50), and the contents of the counter 2 are calculated. Is stored in the counter 1 (S51), and the processing of FIG. The RC and / or RSOC calculated in steps S49 and 50 are then converted into communication data and transmitted to the control / power supply unit 21 via the communication unit 9.

その他、実施の形態1に対応する箇所には同様の符号を付して、その詳細な説明を省略する。   In addition, the same code | symbol is attached | subjected to the location corresponding to Embodiment 1, and the detailed description is abbreviate | omitted.

以上のように本実施の形態1,2によれば、250m秒おきに、又はそれよりも長い時間ΔTおきに検出した二次電池の充放電電流を、検出した充放電電流に対応する充放電効率に応じた重み付けを行って積算し、積算した結果に基づいて二次電池のRCを算出する。RCを算出する間に検出した充放電電流の大きさから、充電も放電もされていないことが示される場合は、各電池ブロックのOCVを検出し、例えば最小(又は最大)のOCVに基づいて算出した第2RCで二次電池のRCを置き換えて補正する。
これにより、充放電効率の大小が考慮された見せかけの残容量(RC)が時間ΔTおきに算出され続け、その間に充放電が停止した場合に、開放電圧(OCV)に基づいて二次電池の残容量が補正される。従って、充放電が開始又は再開された時から見せかけの残容量を適切に算出することが可能となる。
As described above, according to the first and second embodiments, the charging / discharging current of the secondary battery detected every 250 milliseconds or every longer time ΔT is charged / discharged corresponding to the detected charging / discharging current. Weighting according to efficiency is performed and integration is performed, and RC of the secondary battery is calculated based on the integration result. When the charge / discharge current detected during the calculation of RC indicates that neither charging nor discharging is performed, the OCV of each battery block is detected, for example, based on the minimum (or maximum) OCV Correction is performed by replacing the RC of the secondary battery with the calculated second RC.
As a result, the apparent remaining capacity (RC) taking into account the magnitude of the charge / discharge efficiency continues to be calculated every time ΔT, and when the charge / discharge is stopped during that time, the secondary battery based on the open circuit voltage (OCV) The remaining capacity is corrected. Therefore, it is possible to appropriately calculate the apparent remaining capacity from the time when charging / discharging is started or restarted.

また、本実施の形態2によれば、二次電池の符号付きの充放電電流を満充電状態から単純に積算して算出した「−積算放電量(即ち、−カウンタ2/14400)」と、RCを算出する時の充放電電流に対応する充放電効率をFCCに掛け合わせた結果とを加算し、加算結果でRCを除して得られる値によって重み付けした充放電電流を積算することにより、見せかけのRCを算出する。
従って、充放電電流を積算する際の重み付けの値として、その時々の充放電効率で充放電可能な最大容量(即ちFCC×充放電効率)が加味された値が用いられるため、充放電中に充放電電流が変化した場合であっても、見せかけの残容量を正確に算出することが可能となる。
In addition, according to the second embodiment, “−integrated discharge amount (that is, −counter 2/14400)” calculated by simply integrating the charge / discharge current with a sign of the secondary battery from the fully charged state, By adding the result obtained by multiplying the FCC by the charge / discharge efficiency corresponding to the charge / discharge current when calculating RC, and adding the charge / discharge current weighted by the value obtained by dividing RC by the addition result, Calculate the apparent RC.
Therefore, since a value that takes into account the maximum capacity (that is, FCC × charge / discharge efficiency) that can be charged / discharged at the current charge / discharge efficiency is used as the weighting value when integrating the charge / discharge current, during charge / discharge Even if the charge / discharge current changes, the apparent remaining capacity can be accurately calculated.

更に、本実施の形態2によれば、二次電池のRCを補正した場合、カウンタ2を「(FCC−補正後のRC)×14400」に置き換える。つまり、それまで充放電電流を単純に積算して算出していた符号付きの「積算放電量(=カウンタ2/14400)」を、FCCから補正後のRCを減算した容量に置き換える。
従って、残容量が低下する方向に補正される場合に、二次電池の残容量と充放電量との関係が、二次電池の開放電圧に応じて一意に決まる関係となるように調整することが可能となる。
Furthermore, according to the second embodiment, when the RC of the secondary battery is corrected, the counter 2 is replaced with “(FCC−RC after correction) × 14400”. That is, the signed “integrated discharge amount (= counter 2/14400)” that has been calculated by simply integrating the charge / discharge current until then is replaced with the capacity obtained by subtracting the corrected RC from the FCC.
Therefore, when the remaining capacity is corrected in the decreasing direction, the relationship between the remaining capacity of the secondary battery and the charge / discharge amount is adjusted so as to be uniquely determined according to the open-circuit voltage of the secondary battery. Is possible.

尚、実施の形態2にあっては、式(9)で算出される重みの値(倍率)の範囲に制限を設けていないが、例えば放電が進行して積算放電量が増大している状態で、放電電流が増加して放電効率が大幅に低下したような場合に、倍率が大きくなり過ぎることがある。このような場合は、倍率の上限を例えば4程度に制限してもよい。また、算出された倍率が負になる場合は、例えば倍率を1に補正して残容量の算出の破綻を防ぐことが好ましい。   In the second embodiment, there is no limit on the range of the weight value (magnification) calculated by the equation (9), but for example, the discharge progresses and the integrated discharge amount increases. When the discharge current is increased and the discharge efficiency is greatly reduced, the magnification may be excessively increased. In such a case, the upper limit of the magnification may be limited to about 4, for example. Further, when the calculated magnification becomes negative, it is preferable to correct the magnification to 1, for example, to prevent failure of the remaining capacity calculation.

今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 二次電池
11,12,13 電池ブロック
10 パック電池
2 電流検出器
4 A/D変換部
5 制御部
51 CPU
52 ROM
53 RAM
54 タイマ
9 通信部
20 電気機器
21 制御・電源部
DESCRIPTION OF SYMBOLS 1 Secondary battery 11, 12, 13 Battery block 10 Pack battery 2 Current detector 4 A / D conversion part 5 Control part 51 CPU
52 ROM
53 RAM
54 Timer 9 Communication Unit 20 Electrical Equipment 21 Control / Power Supply Unit

Claims (8)

残容量が予め算出されている二次電池の開放電圧に基づいて前記二次電池の残容量を補正する方法において、
前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び検出した開放電圧に基づいて、前記二次電池の相対残容量を算出し、
算出した相対残容量に前記二次電池の満充電容量を乗ずることにより、前記二次電池の第2の残容量を算出し、
算出した第2の残容量が前記二次電池の補正前の残容量より小さいか否かを判定し、
小さい場合、算出した第2の残容量を前記二次電池の補正後の残容量とすること
を特徴とする二次電池の残容量補正方法。
In the method of correcting the remaining capacity of the secondary battery based on the open voltage of the secondary battery whose remaining capacity is calculated in advance,
Based on the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity relative to the full charge capacity, and the detected open voltage, the relative remaining capacity of the secondary battery is calculated,
Calculating the second remaining capacity of the secondary battery by multiplying the calculated relative remaining capacity by the full charge capacity of the secondary battery;
It is determined whether the calculated second remaining capacity is smaller than the remaining capacity before correction of the secondary battery,
In the case of being small, the calculated second remaining capacity is set as the remaining capacity after correction of the secondary battery.
二次電池の充放電電流に充放電効率を予め対応付けておき、前記充放電電流を時系列的に検出し、検出した充放電電流を、該充放電電流に対応する充放電効率に応じた重み付けを行って積算した結果に基づいて、前記二次電池の残容量を算出する方法において、
検出した充放電電流の大きさが所定の大きさより小さいか否かを判定し、
小さい場合、請求項1に記載の二次電池の残容量補正方法により補正した残容量を、前記二次電池の残容量とすること
を特徴とする二次電池の残容量算出方法。
The charge / discharge efficiency of the secondary battery is associated with charge / discharge efficiency in advance, the charge / discharge current is detected in time series, and the detected charge / discharge current is determined according to the charge / discharge efficiency corresponding to the charge / discharge current. In a method for calculating the remaining capacity of the secondary battery based on the result of weighting and integrating,
Determine whether the detected charge / discharge current magnitude is smaller than a predetermined magnitude,
In the case of being small, the remaining capacity corrected by the method for correcting the remaining capacity of the secondary battery according to claim 1 is set as the remaining capacity of the secondary battery.
検出した充放電電流を積算して前記二次電池の満充電状態からの充放電量を算出し、
算出した充放電量に前記二次電池の満充電容量及び前記充放電効率の積を加えた容量で前記二次電池の残容量を除して得られる値により、前記重み付けを行うこと
を特徴とする請求項2に記載の二次電池の残容量算出方法。
Calculating the amount of charge / discharge from the fully charged state of the secondary battery by integrating the detected charge / discharge current,
The weighting is performed by a value obtained by dividing the remaining capacity of the secondary battery by a capacity obtained by adding the product of the full charge capacity and the charge / discharge efficiency of the secondary battery to the calculated charge / discharge amount. The method for calculating the remaining capacity of the secondary battery according to claim 2.
前記残容量補正方法により前記二次電池の残容量を補正した場合、補正後の残容量から前記二次電池の満充電容量を減じて得られる容量を、前記二次電池の充放電量とすること
を特徴とする請求項3に記載の二次電池の残容量算出方法。
When the remaining capacity of the secondary battery is corrected by the remaining capacity correction method, the capacity obtained by subtracting the full charge capacity of the secondary battery from the corrected remaining capacity is set as the charge / discharge amount of the secondary battery. The method for calculating the remaining capacity of the secondary battery according to claim 3.
残容量が予め算出された二次電池と、該二次電池の開放電圧を検出する検出手段とを備え、算出された残容量を検出した開放電圧に基づいて補正して、補正後の残容量のデータを生成するパック電池において、
前記二次電池の開放電圧と満充電容量に対する相対残容量との関係を示す放電特性、及び前記検出手段が検出した開放電圧に基づいて、前記二次電池の相対残容量を算出する手段と、
該手段が算出した相対残容量に前記二次電池の満充電容量を乗ずることにより、前記二次電池の第2の残容量を算出する算出手段と、
該算出手段が算出した第2の残容量が前記二次電池の補正前の残容量より小さいか否かを判定する判定手段と、
該判定手段が小さいと判定した場合、前記算出手段が算出した第2の残容量を前記二次電池の補正後の残容量とするようにしてあること
を特徴とするパック電池。
A secondary battery whose remaining capacity is calculated in advance, and a detecting means for detecting an open voltage of the secondary battery, the calculated remaining capacity is corrected based on the detected open voltage, and the corrected remaining capacity In a battery pack that generates
Means for calculating the relative remaining capacity of the secondary battery based on the discharge characteristics indicating the relationship between the open voltage of the secondary battery and the relative remaining capacity with respect to the full charge capacity, and the open voltage detected by the detecting means;
Calculating means for calculating a second remaining capacity of the secondary battery by multiplying the relative remaining capacity calculated by the means by the full charge capacity of the secondary battery;
Determining means for determining whether the second remaining capacity calculated by the calculating means is smaller than the remaining capacity before correction of the secondary battery;
A pack battery characterized in that, when it is determined that the determination means is small, the second remaining capacity calculated by the calculation means is set as the corrected remaining capacity of the secondary battery.
前記二次電池の充放電電流に充放電効率を予め対応付けてあり、
前記充放電電流を時系列的に検出する第2の検出手段と、
該第2の検出手段が検出した充放電電流を、該充放電電流に対応する充放電効率に応じた重み付けを行って積算する積算手段と、
該積算手段の積算結果に基づいて、前記二次電池の残容量を算出する手段とを備えること
を特徴とする請求項5に記載のパック電池。
The charge / discharge efficiency is associated with the charge / discharge current of the secondary battery in advance,
Second detection means for detecting the charge / discharge current in time series;
Integrating means for integrating the charge / discharge current detected by the second detection means by performing weighting according to the charge / discharge efficiency corresponding to the charge / discharge current;
The battery pack according to claim 5, further comprising: a unit that calculates a remaining capacity of the secondary battery based on an integration result of the integration unit.
前記第2の検出手段が検出した充放電電流を積算して前記二次電池の満充電状態からの充放電量を算出する第2の算出手段を備え、
前記積算手段は、前記第2の算出手段が算出した充放電量に前記二次電池の満充電容量及び前記充放電効率の積を加えた容量で前記二次電池の残容量を除して得られる値により、前記重み付けを行うようにしてあること
を特徴とする請求項6に記載のパック電池。
A second calculating means for calculating the charge / discharge amount from the fully charged state of the secondary battery by integrating the charge / discharge current detected by the second detecting means;
The integrating means is obtained by dividing the remaining capacity of the secondary battery by a capacity obtained by adding the product of the full charge capacity and the charge / discharge efficiency of the secondary battery to the charge / discharge amount calculated by the second calculating means. The battery pack according to claim 6, wherein the weighting is performed according to a value obtained.
前記第2の算出手段は、前記判定手段が小さいと判定した場合、前記二次電池の補正後の残容量から満充電容量を減じて得られる容量を、前記二次電池の充放電量とするようにしてあること
を特徴とする請求項7に記載のパック電池。
When the second calculation means determines that the determination means is small, a capacity obtained by subtracting the full charge capacity from the corrected remaining capacity of the secondary battery is used as the charge / discharge amount of the secondary battery. The battery pack according to claim 7, wherein the battery pack is configured as described above.
JP2012042253A 2012-02-28 2012-02-28 Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery Pending JP2013178166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042253A JP2013178166A (en) 2012-02-28 2012-02-28 Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042253A JP2013178166A (en) 2012-02-28 2012-02-28 Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery

Publications (1)

Publication Number Publication Date
JP2013178166A true JP2013178166A (en) 2013-09-09

Family

ID=49269935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042253A Pending JP2013178166A (en) 2012-02-28 2012-02-28 Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery

Country Status (1)

Country Link
JP (1) JP2013178166A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223852A (en) * 2015-05-28 2016-12-28 京セラ株式会社 Power storage device
CN106950501A (en) * 2017-03-09 2017-07-14 福建飞毛腿动力科技有限公司 A kind of dump energy computational methods of Li-ion batteries piles
US10338147B2 (en) 2016-10-31 2019-07-02 Semiconductor Components Industries, Llc Methods and apparatus for determining a relative state of charge of a battery
CN111231758A (en) * 2019-10-11 2020-06-05 中国第一汽车股份有限公司 Battery capacity estimation method and device, electronic equipment and medium
EP4277076A1 (en) * 2022-05-09 2023-11-15 Samsung Electronics Co., Ltd. Method and device with estimating battery state
CN117517979A (en) * 2023-12-19 2024-02-06 浙江地芯引力科技有限公司 Battery parameter updating method and device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (en) * 1994-07-15 1996-02-02 Toshiba Corp Method for estimating residual capacity of battery
JP2001186669A (en) * 1999-12-27 2001-07-06 Sony Corp Battery device and method of detecting residual capacity of battery
JP2009042182A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Calculating method of remaining capacity of battery
JP2009216403A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Residual amount estimating device for secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (en) * 1994-07-15 1996-02-02 Toshiba Corp Method for estimating residual capacity of battery
JP2001186669A (en) * 1999-12-27 2001-07-06 Sony Corp Battery device and method of detecting residual capacity of battery
JP2009042182A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Calculating method of remaining capacity of battery
JP2009216403A (en) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd Residual amount estimating device for secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223852A (en) * 2015-05-28 2016-12-28 京セラ株式会社 Power storage device
US10338147B2 (en) 2016-10-31 2019-07-02 Semiconductor Components Industries, Llc Methods and apparatus for determining a relative state of charge of a battery
US10520553B2 (en) 2016-10-31 2019-12-31 Semiconductor Components Industries, Llc Methods and system for a battery
CN106950501A (en) * 2017-03-09 2017-07-14 福建飞毛腿动力科技有限公司 A kind of dump energy computational methods of Li-ion batteries piles
CN106950501B (en) * 2017-03-09 2019-06-25 福建飞毛腿动力科技有限公司 A kind of remaining capacity calculation method of Li-ion batteries piles
CN111231758A (en) * 2019-10-11 2020-06-05 中国第一汽车股份有限公司 Battery capacity estimation method and device, electronic equipment and medium
EP4277076A1 (en) * 2022-05-09 2023-11-15 Samsung Electronics Co., Ltd. Method and device with estimating battery state
CN117517979A (en) * 2023-12-19 2024-02-06 浙江地芯引力科技有限公司 Battery parameter updating method and device, electronic equipment and storage medium
CN117517979B (en) * 2023-12-19 2024-04-05 浙江地芯引力科技有限公司 Battery parameter updating method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5174104B2 (en) Secondary battery charging method and battery pack
EP2492702B1 (en) Power supply apparatus
JP2013156202A (en) Method for calculating residual capacity of secondary cell and battery pack
US20130080094A1 (en) Device for Depth of Energy Prediction of a Battery and a Method for the Same
JP2013178166A (en) Residual capacity correction method of secondary battery, residual capacity calculation method of secondary battery and pack battery
CN109671997B (en) Electronic device and charging method
JP5897701B2 (en) Battery state estimation device
JP5843051B2 (en) Pack battery and secondary battery discharge control method
JP2013135510A (en) Determination method of charging current and battery pack
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
EP3444625A1 (en) Electricity storage device, electricity storage system, and power supply system
JPH11329512A (en) Secondary battery capacity deterioration judging method and its judging device
JP4817647B2 (en) Secondary battery life judgment method.
JP2011043460A (en) Characteristic detection method of secondary battery, and secondary battery device
JP2012242135A (en) Residual capacity calculation method, pre-shipment adjustment method of packed battery, residual capacity calculation device, and packed battery
JP2018048916A (en) Circuit for detecting remaining life of rechargeable battery, electronic apparatus and automobile using the same, and method for detecting charge state
CN111527644A (en) Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method
US20120098498A1 (en) Battery pack, semiconductor device, portable apparatus and method of reporting full charge
JP2005345369A (en) Device and method for displaying battery remaining quantity
JP2013250159A (en) Residual capacity calculation method for secondary battery, and pack battery
JP2004191152A (en) Remaining life estimating device and method for secondary battery
KR101473156B1 (en) The way of forecasting the life cycle of rechargeable secondary batteries
JP4329543B2 (en) Battery level measuring device
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2011233414A (en) Method for generating remaining capacity data of secondary battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329