JP3433008B2 - Method for producing hydrogen storage alloy for alkaline storage battery - Google Patents

Method for producing hydrogen storage alloy for alkaline storage battery

Info

Publication number
JP3433008B2
JP3433008B2 JP16575396A JP16575396A JP3433008B2 JP 3433008 B2 JP3433008 B2 JP 3433008B2 JP 16575396 A JP16575396 A JP 16575396A JP 16575396 A JP16575396 A JP 16575396A JP 3433008 B2 JP3433008 B2 JP 3433008B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
ions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16575396A
Other languages
Japanese (ja)
Other versions
JPH1012233A (en
Inventor
忠司 伊勢
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16575396A priority Critical patent/JP3433008B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to EP97927419A priority patent/EP0945907B1/en
Priority to EP06076209A priority patent/EP1713139A1/en
Priority to PCT/JP1997/002146 priority patent/WO1997050135A1/en
Priority to CNB971972249A priority patent/CN1179434C/en
Priority to DE69736393T priority patent/DE69736393T2/en
Priority to KR1019980710482A priority patent/KR100305176B1/en
Priority to US09/214,111 priority patent/US6255018B1/en
Publication of JPH1012233A publication Critical patent/JPH1012233A/en
Application granted granted Critical
Publication of JP3433008B2 publication Critical patent/JP3433008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
水素吸蔵合金の製造方法に関し、詳しくは水素吸蔵合金
の酸処理方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy for an alkaline storage battery, and more particularly to an improvement in an acid treatment method for a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極活物質として使用す
るニッケル・水素蓄電池では、水素吸蔵合金の活性度の
優劣により電池性能が左右される。このため、この種の
蓄電池では、粉砕し微細化した水素吸蔵合金粉末が用い
られている。微細な水素吸蔵合金粉末であると、電気化
学反応に関与する反応面積が大きくなり、また電極基板
への充填密度が高まるので、高エネルギー密度化を図り
易いからである。
2. Description of the Related Art In a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode active material, the battery performance depends on the superiority or inferiority of the activity of the hydrogen storage alloy. Therefore, in this type of storage battery, pulverized and finely divided hydrogen storage alloy powder is used. This is because if the fine hydrogen storage alloy powder is used, the reaction area involved in the electrochemical reaction is increased and the packing density in the electrode substrate is increased, so that high energy density can be easily achieved.

【0003】しかし、水素吸蔵合金は極めて活性な物質
であり、粉砕時や貯蔵時に酸化され表面に酸化皮膜を形
成する。この酸化被膜は、合金の電気導電性を低下させ
るとともに、電気化学的反応性を劣化させる。そこで、
従来より合金の電気化学的活性を回復させるための方法
が種々提案されている。
However, the hydrogen storage alloy is an extremely active substance and is oxidized during pulverization or storage to form an oxide film on the surface. This oxide film reduces the electrical conductivity of the alloy as well as the electrochemical reactivity. Therefore,
Conventionally, various methods have been proposed for recovering the electrochemical activity of alloys.

【0004】その中の一つに水素吸蔵合金の表面を酸性
水溶液で表面処理する酸処理法(特開平4−17905
5号公報、特開平7−73878号公報、特開平7−1
53460号公報等)がある。この酸処理法は、処理操
作が簡単でかつ酸化皮膜等の除去効果に優れるという特
徴を有し、この方法の適用により比較的簡便に水素吸蔵
合金の電気化学的活性を回復させることができる。しか
し、この方法によっても、高率放電特性やサイクル特性
を十分に高めることができない。よって、更なる改良が
期待されている。
One of them is an acid treatment method in which the surface of the hydrogen storage alloy is surface-treated with an acidic aqueous solution (JP-A-4-17905).
5, JP-A-7-73878, and JP-A 7-1.
53460 gazette). This acid treatment method is characterized in that the treatment operation is simple and the effect of removing an oxide film and the like is excellent, and by applying this method, the electrochemical activity of the hydrogen storage alloy can be relatively easily restored. However, even with this method, high rate discharge characteristics and cycle characteristics cannot be sufficiently improved. Therefore, further improvement is expected.

【0005】[0005]

【発明が解決しようとする課題】本発明は、水素吸蔵合
金を酸性溶液で表面処理する酸処理法において、水素吸
蔵合金電極の高率放電特性やサイクル特性を一層高める
ことのできる処理条件を確立することを目的とする。
DISCLOSURE OF THE INVENTION The present invention establishes treatment conditions capable of further enhancing the high rate discharge characteristics and cycle characteristics of a hydrogen storage alloy electrode in an acid treatment method of surface treating a hydrogen storage alloy with an acidic solution. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、水素吸蔵
合金に対する酸処理法を鋭意研究した結果、酸処理液に
金属イオンを含有させることにより、水素吸蔵合金の電
気化学的活性が顕著に高まることを見出し、以下の構成
の本発明を完成させた。
Means for Solving the Problems As a result of intensive studies on the acid treatment method for hydrogen storage alloys, the present inventors have found that the electrochemical activity of the hydrogen storage alloy is remarkable by incorporating metal ions in the acid treatment liquid. The present invention having the following constitution was completed.

【0007】本発明の第1の態様は、期pH値が0.
5〜3.0である酸溶液に金属イオンまたはビスマスイ
オンを添加した酸処理液(以下金属イオン含有酸処理液
という)を用いて水素吸蔵合金を表面処理し、pH4〜
6の域において当該金属イオン又はビスマスイオンを当
該水素吸蔵合金表面に析出させるアルカリ蓄電池用水素
吸蔵合金の製造方法であることを特徴とする。
A first aspect of the present invention, the initial pH value 0.
5 to 3.0 in acid solution with metal ions or bismuth
Acid treatment solution containing ON (hereinafter referred to as metal ion-containing acid treatment solution)
Surface treatment of the hydrogen storage alloy with
In the region of 6, the metal ion or bismuth ion
A method for producing a hydrogen storage alloy for an alkaline storage battery, wherein the hydrogen storage alloy is deposited on the surface of the hydrogen storage alloy .

【0008】本発明の第2の態様は、上記第1の態様の
アルカリ蓄電池用水素吸蔵合金の製造方法において、前
記金属イオンが、ニッケルイオン、コバルトイオンより
なる群から1種以上選択されたものであることを特徴と
する。
A second aspect of the present invention is the method for producing a hydrogen storage alloy for alkaline storage batteries according to the first aspect , wherein the metal ion is at least one selected from the group consisting of nickel ion and cobalt ion. It is characterized by being selected.

【0009】本発明の第3の態様は、上記第1または第
2の態様のアルカリ蓄電池用水素吸蔵合金の製造方法に
おいて、前記金属イオン含有酸処理液には、更にpH4
〜6の範囲内においてpH緩衝作用を発揮する物質が添
加されていることを特徴とする。
A third aspect of the present invention is the above-mentioned first or first aspect .
In the method for producing a hydrogen storage alloy for alkaline storage batteries according to the second aspect, the metal ion-containing acid treatment liquid further has a pH of 4
Substances added to exert Oite pH buffering action in the range 6 of
It is characterized by being added .

【0010】本発明の第4の態様は、上記第3の態様の
アルカリ蓄電池用水素吸蔵合金の製造方法において、
記pH緩衝作用を発揮する物質が、アルミニウムイオン
であることを特徴とする。
[0010] A fourth aspect of the present invention is the manufacturing method of the third aspect of the <br/> for alkaline storage battery hydrogen storage alloy, before
Aluminum ion is a substance that exerts a pH buffering effect.
And characterized in that.

【0011】[0011]

【実施の形態】以下では、本発明方法を適用した水素吸
蔵合金と、従来方法を適用した水素吸蔵合金との電気化
学的特性を比較検討することを通して、本発明水素吸蔵
合金の製造方法の内容を明らかにする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the contents of the method for producing a hydrogen storage alloy of the present invention will be described by comparing and examining the electrochemical characteristics of the hydrogen storage alloy to which the method of the present invention is applied and the hydrogen storage alloy to which the conventional method is applied. To clarify.

【0012】(水素吸蔵合金粉末の作製)市販のミッシ
ュメタル(Mm;La,Ce,Nd,Pr等の希土類元
素の混合物)、ニッケル(Ni)、コバルト(Co)、
アルミニウム(Al)、マンガン(Mn)を原材料と
し、それぞれが元素比で1:3.4 :0.8 :0.2 :0.6 の
割合となるように混合し、高周波溶解炉を用いて組成式
MmNi3.4 Co0.8 Al0. 2 Mn0.6 の水素吸蔵合金
鋳塊を作製した。この合金鋳塊に対し、1000℃・1
0時間のアニール処理を行った。
(Preparation of Hydrogen Storage Alloy Powder) Commercially available misch metal (Mm; mixture of rare earth elements such as La, Ce, Nd, Pr), nickel (Ni), cobalt (Co),
Aluminum (Al), and manganese (Mn) and a raw material, 1 each elementary ratio: 3.4: 0.8: 0.2 were mixed so that 0.6 ratio of the composition formula using a high frequency melting furnace MmNi 3.4 Co 0.8 Al 0 . were prepared of 2 Mn 0.6 hydrogen storage alloy ingot. 1000 ℃ ・ 1 for this alloy ingot
Annealing treatment was performed for 0 hours.

【0013】前記合金鋳塊1Kgに対し水1リットルを
用いて、ボールミル粉砕し、前記合金鋳塊を平均粒径5
0μmの水素吸蔵合金となした。この合金を合金Aとす
る。
Ball crushing was performed by using 1 liter of water for 1 kg of the alloy ingot and the alloy ingot had an average particle size of 5
The hydrogen storage alloy was 0 μm. This alloy is designated as alloy A.

【0014】(酸処理) 初期pHが0.5、1、2、3、4の5通りの塩酸液を
調整し、各々の塩酸液に水酸化ニッケルを1重量%溶解
して、ニッケルイオンを含む塩酸溶液(金属イオン含有
酸処理液)を調製した。他方、初期pH1の塩酸液を4
つ用意し、各々に水酸化コバルト、水酸化銅、水酸化ビ
スマスの何れか1つを、1重量%溶解し、溶存する金属
イオンが異なる4通りの金属イオン含有酸処理液を調
製した。更に、初期pH1の塩酸液に水酸化ニッケルと
水酸化アルミニウムをそれぞれ1重量%溶解した金属イ
オン含有酸処理液を調製した。なお、以下で「金属イオ
ン」というときは、ビスマスイオンを含めた意味で使用
されている。
(Acid treatment) Five kinds of hydrochloric acid solutions having an initial pH of 0.5, 1, 2, 3, 4 were prepared, and 1% by weight of nickel hydroxide was dissolved in each hydrochloric acid solution to remove nickel ions. A hydrochloric acid solution containing the same (a metal ion-containing acid treatment solution) was prepared. On the other hand, add hydrochloric acid solution with an initial pH of 4
One of cobalt hydroxide, copper hydroxide, and bismuth hydroxide was dissolved in each of them by 1% by weight to prepare four kinds of metal ion-containing acid treatment solutions having different dissolved metal ions and the like . Furthermore, a metal ion-containing acid treatment liquid was prepared by dissolving 1% by weight of nickel hydroxide and 1% by weight of aluminum hydroxide in a hydrochloric acid solution having an initial pH of 1. Note that in the following,
"," Means bismuth ions
Has been done.

【0015】表1に、上記で調製した各処理液を一覧表
示する。なお、初期pHとは、水素吸蔵合金を処理する
前の処理液pHをいう。
Table 1 shows a list of the treatment solutions prepared above. The initial pH means the pH of the treatment liquid before treating the hydrogen storage alloy.

【0016】次に、上記各処理液を用いて前記合金Aに
対し表面処理を行った。表面処理は、合金Aに対し等重
量の処理液を加え、攪拌混合機で処理液pHが7になる
まで攪拌する方法により行った。酸処理後の合金は精製
水で洗い乾燥して以下の実験に用いた。表1に示すよう
に、本発明にかかる金属イオン含有酸処理液で表面処理
したものを、No.1〜9とする。
Next, surface treatment was performed on the alloy A using each of the treatment solutions described above. The surface treatment was performed by adding an equal weight of the treatment liquid to Alloy A and stirring the mixture with a stirring mixer until the pH of the treatment liquid reached 7. The alloy after the acid treatment was washed with purified water and dried, and used in the following experiments. As shown in Table 1, No. 1 was surface-treated with the metal ion-containing acid treatment liquid according to the present invention. 1 to 9.

【0017】他方、比較例として、金属イオンを含まな
い初期pH1の塩酸液で表面処理した合金(No.1
1)、酸処理を全く行わない合金(No.12)、及び
合金Aに電解メッキ法により3wt%のニッケルメッキを
施し、かつ酸処理液での表面処理を行わない合金(N
o.10)を別途に用意した。このニッケルメッキ合金
は、金属イオンの効果を検証するためのものである。
On the other hand, as a comparative example, an alloy surface-treated with a hydrochloric acid solution containing no metal ions and having an initial pH of 1 (No. 1).
1), an alloy which is not subjected to any acid treatment (No. 12), and an alloy which is plated with 3 wt% of nickel on the alloy A by an electrolytic plating method and is not surface-treated with an acid treatment solution (N.
o. 10) was prepared separately. This nickel-plated alloy is for verifying the effect of metal ions.

【0018】なお、便宜上、以後の説明では酸処理を全
く行わなかった合金No.10、12も「処理済合金」
に含める。
For the sake of convenience, in the following description, alloy No. No. 10 and 12 are also "treated alloys"
Include in.

【0019】(実験)上記各処理済合金を負極活物質と
し、以下の方法により試験セル及びニッケル・水素蓄電
池を作製し、各種処理済合金の電気化学的特性(高率放
電特性およびサイクル特性)を測定した。そして、測定
結果に基づいて、処理液の違いと電気化学的特性の関係
を明らかにした。
(Experiment) Using each of the above treated alloys as a negative electrode active material, a test cell and a nickel-hydrogen storage battery were prepared by the following method, and the electrochemical characteristics (high rate discharge characteristics and cycle characteristics) of each treated alloy were prepared. Was measured. Then, based on the measurement results, the relationship between the difference in the treatment liquid and the electrochemical characteristics was clarified.

【0020】〈高率放電特性の測定方法〉高率放電特性
を測定するための試験セルを、次のようにして作製し
た。各種合金粉末1gに、導電剤としてカルボニルニッ
ケル1.2g、結着剤としてポリテトラフルオロエチレ
ン粉末0.2gとを加えて混練し合金ペーストを調製す
る。この合金ペーストをニッケルメッシュで包み、プレ
ス加工して水素吸蔵合金電極(負極)を作製した。この
水素吸蔵合金電極と、この電極より十分に容量の大きい
公知の焼結式ニッケル電極(正極)とを容器内に配置
し、電解液として水酸化カリウムを過剰量入れた後、容
器を密閉して試験セルとする。
<Method for Measuring High Rate Discharge Characteristics> A test cell for measuring high rate discharge characteristics was prepared as follows. To 1 g of each alloy powder, 1.2 g of carbonyl nickel as a conductive agent and 0.2 g of polytetrafluoroethylene powder as a binder were added and kneaded to prepare an alloy paste. This alloy paste was wrapped in nickel mesh and pressed to produce a hydrogen storage alloy electrode (negative electrode). This hydrogen storage alloy electrode and a known sintered nickel electrode (positive electrode) having a sufficiently larger capacity than this electrode were placed in a container, and an excessive amount of potassium hydroxide was added as an electrolytic solution, and then the container was closed. To make a test cell.

【0021】この試験セルを用い、水素吸蔵合金1g当
たり50mAの電流値(50mA/g−合金)で8時間
充電し、1時間休止した後、200mA/g−合金の電
流値で放電終止電圧が1.0Vに達するまで放電し、こ
の時の放電容量(CH)を測定した。この後、放電を1
時間休止して試験セルの電圧を回復させたのち、更に5
0mA/g−合金の電流値で放電終止電圧が1.0Vに
達するまで放電し、この時の放電容量(CL)を測定し
た。CH及びCLを用い、数1に従って各処理済合金の
電気化学的活性度(%)を算出し、この値を高率放電特
性値とした。
Using this test cell, the battery was charged at a current value of 50 mA per gram of hydrogen storage alloy (50 mA / g-alloy) for 8 hours, and after resting for 1 hour, the discharge end voltage was at a current value of 200 mA / g-alloy. The battery was discharged until it reached 1.0 V, and the discharge capacity (CH) at this time was measured. After this, discharge 1
After resting for a while to recover the voltage of the test cell,
Discharge was performed at a current value of 0 mA / g-alloy until the discharge end voltage reached 1.0 V, and the discharge capacity (CL) at this time was measured. Using CH and CL, the electrochemical activity (%) of each treated alloy was calculated according to Equation 1, and this value was taken as the high rate discharge characteristic value.

【0022】[0022]

【数1】 高率放電特性値(活性度%)=CH/(CH+CL) ×100 … 数1[Equation 1]   High rate discharge characteristic value (% activity) = CH / (CH + CL) × 100 ...

【0023】〈サイクル特性の測定方法〉サイクル特性
は、ニッケル・水素蓄電池を用い測定した。ニッケル・
水素蓄電池の作製方法は次の通りである。合金粉末に、
結着剤としてポリテトラフルオロエチレン粉末を、合金
重量に対し5wt%加え混練し合金ペーストを調製す
る。このペーストをパンチングメタルからなる集電体の
両面に塗着した後、プレスして水素吸蔵合金電極を作製
する。次いで、この電極(負極)と、この電極より容量
の小さい公知の焼結式ニッケル電極(正極)とを、セパ
レータを介して巻回し、渦巻型電極体となし、外装缶に
挿入し、さらにこの外装缶に30wt%水酸化カリウム
水溶液を注液し、外装缶を密閉する。このようにして、
理論容量1000mAhの円筒形ニッケル・水素蓄電池
を作製した。
<Measuring method of cycle characteristics> The cycle characteristics were measured using a nickel-hydrogen storage battery. nickel·
The method for manufacturing the hydrogen storage battery is as follows. Alloy powder,
Polytetrafluoroethylene powder is added as a binder in an amount of 5 wt% with respect to the weight of the alloy, and the mixture is kneaded to prepare an alloy paste. This paste is applied to both sides of a collector made of punching metal and then pressed to prepare a hydrogen storage alloy electrode. Next, this electrode (negative electrode) and a known sintered nickel electrode (positive electrode) having a smaller capacity than this electrode are wound via a separator to form a spirally wound electrode body, which is then inserted into an outer can. A 30 wt% potassium hydroxide aqueous solution is poured into the outer can to seal the outer can. In this way
A cylindrical nickel-hydrogen storage battery with a theoretical capacity of 1000 mAh was produced.

【0024】上記ニッケル・水素蓄電池に対し、先ず、
100mAで16時間充電し、1時間休止した後、20
0mAで放電終止電圧が1.0Vになるまで放電し、更
に1時間休止するというサイクルを室温で3サイクル繰
り返す方法により、活性化処理を行った。この活性化処
理後の蓄電池に対し、1500mAで48分充電し、1
時間休止した後、1500mAで放電終止電圧が1.0
Vになるまで放電し、更に1時間休止するというサイク
ルを繰り返し、放電容量が500mAh以下に達するま
でのサイクル回数を測定した。このサイクル回数をサイ
クル特性値(電池寿命値)として、各合金のサイクル特
性を評価した。
First, for the nickel-hydrogen storage battery,
After charging for 16 hours at 100mA and resting for 1 hour, 20
The activation treatment was performed by repeating a cycle of discharging at 0 mA until the discharge end voltage became 1.0 V and then resting for 1 hour at room temperature for 3 cycles. Charge the storage battery after this activation treatment at 1500 mA for 48 minutes, and
After resting for 1 hour, the discharge end voltage is 1.0 at 1500 mA.
The cycle of discharging until reaching V and further resting for 1 hour was repeated, and the number of cycles until the discharge capacity reached 500 mAh or less was measured. The cycle characteristics of each alloy were evaluated using the number of cycles as the cycle characteristic value (battery life value).

【0025】各種合金における結果を、合金処理条件と
ともに表1に示す。また、図1に水素吸蔵合金を金属イ
オン含有酸処理液で処理した場合(No.9を例とす
る)における溶液pHの変化を模式的に示す。
The results for various alloys are shown in Table 1 together with alloy treatment conditions. Further, FIG. 1 schematically shows a change in solution pH when a hydrogen storage alloy is treated with a metal ion-containing acid treatment liquid (for example, No. 9).

【0026】[0026]

【表1】 [Table 1]

【0027】表1から次のことが明らかとなる。本発明
にかかる金属イオン含有酸処理液で表面処理したNo.
1〜9は、何れも比較例である合金No.10〜11に
比べ、高率放電特性及びサイクル特性ともに優れてい
た。但し、No.1〜5の比較から明らかな如く、処理
液の初期pHが4のNo.5は、No.1〜4に比べて
電池特性が顕著に悪くなった。このことから、処理液の
初期pHは3以下とする必要がある。また、初期pHが
同じで、金属イオンの種類のみが異なるNo.2、N
o.6〜9の各々の結果の比較から、銅イオン又はビス
マスイオンを含有する処理液よりも、ニッケルイオン又
はコバルトイオンを含有する処理液の方が、良好な電池
特性が得られた。更に、ニッケルイオンとアルミニウム
イオンを含有するNo.9において、一層良好な結果が
得られた。このことから、処理液に含ませる金属イオン
としては、好ましくはニッケルイオン及びコバルトイオ
ンを用いるのがよい。また、より好ましくはアルミニウ
ムイオンを他の金属イオンと併用して用いるのがよいこ
とが判る。
The following is clear from Table 1. No. 1 surface-treated with the metal ion-containing acid treatment liquid according to the present invention.
Alloy Nos. 1 to 9 are comparative examples. Compared with Nos. 10 to 11, both high rate discharge characteristics and cycle characteristics were excellent. However, No. As is clear from the comparison of Nos. 1 to 5, No. No. 5 is No. The battery characteristics were remarkably deteriorated as compared with Nos. 1 to 4. From this, the initial pH of the treatment liquid needs to be 3 or less. Moreover, the initial pH was the same, and only the kinds of metal ions were different. 2, N
o. From the comparison of the results of 6 to 9, it was found that the treatment liquid containing nickel ions or cobalt ions had better battery characteristics than the treatment liquid containing copper ions or bismuth ions. Further, No. 1 containing nickel ion and aluminum ion. In 9, even better results were obtained. Therefore, nickel ions and cobalt ions are preferably used as the metal ions contained in the treatment liquid. Further, it is more preferable to use aluminum ions in combination with other metal ions.

【0028】以上の結果を更に詳細に検討する。処理液
での表面処理を全く行わなかったNo.12と、金属イ
オンを含まない酸性処理液で表面処理したNo.11と
の比較、及びNo.11とこの酸性処理液に金属イオン
を含有させたNo.2、No.6〜9との比較から、合
金を酸性処理液で表面処理すると電気化学的特性が向上
するが、この酸性処理液に金属を溶解させた場合、一層
顕著に電気化学的特性が向上することが判る。他方、N
o.12とニッケルメッキしたNo.10との比較か
ら、メッキ法により合金表面に金属層を形成しても、殆
ど電池特性が向上しないことが判る。
The above results will be examined in more detail. No. No surface treatment with the treatment liquid was performed. 12 and No. 12 surface-treated with an acidic treatment liquid containing no metal ion. Comparison with No. 11, and No. 11 No. 11 in which this acidic treatment liquid contained metal ions. 2, No. From the comparison with Nos. 6 to 9, when the alloy is surface-treated with the acidic treatment liquid, the electrochemical characteristics are improved, but when the metal is dissolved in the acidic treatment liquid, the electrochemical characteristics are more remarkably improved. I understand. On the other hand, N
o. No. 12 and nickel plated No. From the comparison with No. 10, it is understood that even if the metal layer is formed on the alloy surface by the plating method, the battery characteristics are hardly improved.

【0029】図1に示すごとく、水素吸蔵合金を強酸
(当初pH0.5)で洗浄した場合、表面処理の進行に
つれ処理液pHが上昇する。このことを踏まえ、上記の
結果を考察する。
As shown in FIG. 1, when the hydrogen storage alloy is washed with a strong acid (initially pH 0.5), the pH of the treatment liquid rises as the surface treatment progresses. With this in mind, consider the above results.

【0030】合金を酸性処理液で表面処理した場合、処
理液pHが0.5〜4域においては、合金成分(希土類
元素、ニッケル、コバルト等、またはこれらの酸化物、
水酸化物)が処理液の水素イオンと反応し処理液中に溶
出するが、合金の各成分の溶解度や溶出速度は一様でな
いので、この溶出によって合金表面に凹凸が形成され、
合金の比表面積が増加し、また、金属酸化物等の溶出に
より合金表面にニッケルやコバルトの単離層が出現す
る。
When the alloy is surface-treated with an acidic treatment liquid, alloy components (rare earth elements, nickel, cobalt, etc., or their oxides) are treated in the treatment liquid pH range of 0.5 to 4.
(Hydroxide) reacts with hydrogen ions in the treatment solution and is eluted into the treatment solution, but the solubility and elution rate of each component of the alloy are not uniform, so this elution forms irregularities on the alloy surface,
The specific surface area of the alloy increases, and nickel or cobalt isolation layers appear on the surface of the alloy due to elution of metal oxides.

【0031】一方、合金成分と水素イオンの反応が進行
し処理液pHがpH4〜6域に上昇すると、金属の溶解
度が減少する。よって、処理液中に溶解していたニッケ
ルイオンやコバルトイオン等が、主に合金の凸部(単離
層部分)に再析出し沈着する。この析出・沈着により、
合金表面の金属単離層の厚みが増加する。この結果、水
素吸蔵合金の高率放電特性やサイクル特性が向上するこ
とになる。なぜなら、凹凸が多いほど、合金の比表面積
が大きくなり電気化学的反応面積が増加するので酸素ガ
ス吸収性能(サイクル特性)及び高率放電特性が良くな
る。また、合金表面の金属単離層(ニッケル層、コバル
ト層)はガス吸収反応及び放電反応の触媒性に富むの
で、さらに電極特性が向上する。
On the other hand, when the reaction between the alloy components and hydrogen ions proceeds and the pH of the treatment liquid rises to the pH range of 4 to 6, the solubility of the metal decreases. Therefore, nickel ions, cobalt ions, etc. dissolved in the treatment liquid are re-precipitated and deposited mainly on the convex portions (isolated layer portion) of the alloy. By this deposition / deposition,
The thickness of the metal isolation layer on the alloy surface increases. As a result, the high rate discharge characteristics and cycle characteristics of the hydrogen storage alloy are improved. This is because the more the irregularities are, the larger the specific surface area of the alloy is and the larger the electrochemical reaction area is, so that the oxygen gas absorption performance (cycle characteristics) and the high rate discharge characteristics are improved. In addition, the metal isolation layer (nickel layer, cobalt layer) on the surface of the alloy is rich in catalytic properties for gas absorption reaction and discharge reaction, so that electrode characteristics are further improved.

【0032】ここにおいて、本発明にかかる金属イオン
含有酸処理液は、コバルトやニッケルなどの金属イオン
が添加されているので、金属イオンが添加されていない
酸性溶液で表面処理する場合に比べ、pH4〜6域にお
ける金属イオンの析出量が多くなる。したがって、合金
表面の凹凸が大きくなり、また金属単離層(触媒層)の
厚みが一層厚くなる。その結果、高率放電特性やサイク
ル特性を一層顕著に向上させることができる。
Here, the metal ion-containing acid treatment solution according to the present invention is a metal ion such as cobalt or nickel.
Since There has been added, compared with the case of surface treatment with an acidic solution of metal ions is not added, the greater the amount of precipitation of the metal ions in pH4~6 zone. Therefore, the unevenness of the alloy surface becomes large, and the thickness of the metal isolation layer (catalyst layer) becomes even thicker. As a result, the high rate discharge characteristic and the cycle characteristic can be more remarkably improved.

【0033】なお、上述のことは、合金表面に金属を直
接メッキする方法を用いたNo.10と、No.12の
比較結果により裏付けられる。即ち、メッキ法を用いた
場合であっても合金表面に金属層を形成できるが、メッ
キ法では金属が合金表面に均一に付着するため、金属表
面の凹凸をむしろ縮小するように作用する。よって、高
率放電特性やサイクル特性の向上効果がないものと考え
られる。
It should be noted that, in the above description, No. 1 using the method of directly plating the surface of the alloy with metal. 10 and No. This is supported by 12 comparison results. That is, even if the plating method is used, a metal layer can be formed on the alloy surface, but since the metal uniformly adheres to the alloy surface by the plating method, it acts rather to reduce the unevenness of the metal surface. Therefore, it is considered that there is no effect of improving the high rate discharge characteristics and the cycle characteristics.

【0034】また、ニッケルイオンとアルミニウムイオ
ン含有の酸処理液を用いて表面処理した合金No.9で
最も良好な結果が得られたのは、次の理由によると考え
られる。即ち、アルミニウムイオンはpH4〜6域にお
いて、pH緩衝能を有するため、酸処理液のpHを4〜
6の範囲に長く留めるよう作用する。よって、処理液中
の金属イオンがより多く析出し合金表面に付着する結
果、合金の電気化学的特性が向上する。
Further, alloy No. No. 1 surface-treated with an acid treatment liquid containing nickel ions and aluminum ions was used. The reason why the best result was obtained in No. 9 is considered to be as follows. That is, since aluminum ions have a pH buffering ability in the pH range of 4 to 6, the pH of the acid treatment solution is set to 4 to 4.
It works to keep it in the range of 6 for a long time. Therefore, as a result of more metal ions in the treatment liquid being deposited and adhering to the surface of the alloy, the electrochemical characteristics of the alloy are improved.

【0035】[0035]

【発明の効果】以上から明らかなように、金属イオンを
含有する酸処理液を用いて水素吸蔵合金を表面処理する
本発明方法によると、水素イオンと合金成分との反応に
伴う処理液pHの上昇過程において、水素吸蔵合金の表
面が電気化学反応を好適に行える性状に改質される。よ
って、アルカリ蓄電池用水素吸蔵合金に本発明方法を適
用すれば、高率放電特性やサイクル特性を顕著に向上さ
せることができる。
As is apparent from the above, according to the method of the present invention for surface-treating a hydrogen storage alloy using an acid treatment liquid containing metal ions, the pH of the treatment liquid due to the reaction between hydrogen ions and alloy components is During the ascending process, the surface of the hydrogen storage alloy is modified so that the electrochemical reaction can be suitably performed. Therefore, when the method of the present invention is applied to the hydrogen storage alloy for alkaline storage batteries, high rate discharge characteristics and cycle characteristics can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面処理における酸処理液のpH上昇曲線を示
すグラフである。
FIG. 1 is a graph showing a pH rise curve of an acid treatment liquid in surface treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−73878(JP,A) 特開 平7−153460(JP,A) 特開 平7−320731(JP,A) 特開 平7−326353(JP,A) 特開 平4−110403(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 H01M 4/24 - 4/26 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-7-73878 (JP, A) JP-A-7-153460 (JP, A) JP-A-7-320731 (JP, A) JP-A-7- 326353 (JP, A) JP-A-4-110403 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/38 H01M 4/24-4/26

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】期pH値が0.5〜3.0である酸溶
液に金属イオンまたはビスマスイオンを添加した酸処理
液を用いて水素吸蔵合金を表面処理し、pH4〜6の域
において当該金属イオン又はビスマスイオンを当該水素
吸蔵合金表面に析出させることを特徴とするアルカリ蓄
電池用水素吸蔵合金の製造方法。
[Claim 1] initial pH value is 0.5 to 3.0 San溶
Acid treatment by adding metal ions or bismuth ions to the solution
Surface treatment of hydrogen storage alloy using liquid, pH range of 4-6
The metal ion or bismuth ion in the hydrogen
A method for producing a hydrogen storage alloy for an alkaline storage battery, which comprises depositing on a surface of the storage alloy .
【請求項2】 前記金属イオンが、ニッケルイオン、コ
バルトイオンよりなる群から1種以上選択されたもので
ある、請求項1記載のアルカリ蓄電池用水素吸蔵合金の
製造方法。
2. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the metal ions are selected from the group consisting of nickel ions and cobalt ions.
【請求項3】 前記金属イオンまたはビスマスイオンを
添加した酸処理液には、pH4〜6の範囲内においてp
H緩衝作用を発揮する物質が添加されている、請求項1
または2記載のアルカリ蓄電池用水素吸蔵合金の製造方
法。
3. The metal ion or bismuth ion
The pH of the added acid treatment liquid is within the range of 4 to 6.
A substance which exerts an H-buffering action is added.
Alternatively, the method for producing a hydrogen storage alloy for alkaline storage batteries according to the item 2.
【請求項4】 前記金属イオンまたはビスマスイオンを
添加した酸処理液は、pH4〜6の範囲内において緩衝
作用を発揮する物質としてのアルミニウムイオンを含有
する、請求項3記載のアルカリ蓄電池用水素吸蔵合金の
製造方法。
4. The metal ion or bismuth ion
The method for producing a hydrogen storage alloy for alkaline storage batteries according to claim 3, wherein the added acid treatment liquid contains aluminum ions as a substance exhibiting a buffering action within a pH range of 4 to 6.
JP16575396A 1996-06-26 1996-06-26 Method for producing hydrogen storage alloy for alkaline storage battery Expired - Fee Related JP3433008B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16575396A JP3433008B2 (en) 1996-06-26 1996-06-26 Method for producing hydrogen storage alloy for alkaline storage battery
EP06076209A EP1713139A1 (en) 1996-06-26 1997-06-20 Hydrogen-absorbing alloy electrode and process for making the same
PCT/JP1997/002146 WO1997050135A1 (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
CNB971972249A CN1179434C (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP97927419A EP0945907B1 (en) 1996-06-26 1997-06-20 Process for producing a hydrogen storing alloy electrode
DE69736393T DE69736393T2 (en) 1996-06-26 1997-06-20 Process for producing a hydrogen-absorbing alloy electrode
KR1019980710482A KR100305176B1 (en) 1996-06-26 1997-06-20 Method for manufacturing hydrogen storage alloy electrode and hydrogen storage alloy electrode
US09/214,111 US6255018B1 (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16575396A JP3433008B2 (en) 1996-06-26 1996-06-26 Method for producing hydrogen storage alloy for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH1012233A JPH1012233A (en) 1998-01-16
JP3433008B2 true JP3433008B2 (en) 2003-08-04

Family

ID=15818417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16575396A Expired - Fee Related JP3433008B2 (en) 1996-06-26 1996-06-26 Method for producing hydrogen storage alloy for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3433008B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945907B1 (en) * 1996-06-26 2006-07-26 SANYO ELECTRIC Co., Ltd. Process for producing a hydrogen storing alloy electrode
JPH10149824A (en) * 1996-11-20 1998-06-02 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JP3553752B2 (en) * 1997-01-30 2004-08-11 三洋電機株式会社 Method for producing hydrogen storage alloy electrode
JP2001093522A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy particles and preparation

Also Published As

Publication number Publication date
JPH1012233A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
JPH08148145A (en) Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3825619B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, nickel-hydrogen storage battery, and method of manufacturing hydrogen storage alloy
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3548004B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3651324B2 (en) Alkaline storage battery, hydrogen storage alloy powder used therefor, and manufacturing method thereof
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
US6270547B1 (en) Hydrogen absorbing alloy electrode and process for fabricating same
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees