JPH0828998A - Absorption type air conditioner - Google Patents

Absorption type air conditioner

Info

Publication number
JPH0828998A
JPH0828998A JP6163733A JP16373394A JPH0828998A JP H0828998 A JPH0828998 A JP H0828998A JP 6163733 A JP6163733 A JP 6163733A JP 16373394 A JP16373394 A JP 16373394A JP H0828998 A JPH0828998 A JP H0828998A
Authority
JP
Japan
Prior art keywords
absorption
temperature
heating
refrigeration cycle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6163733A
Other languages
Japanese (ja)
Other versions
JP2902305B2 (en
Inventor
Hisahiro Satou
寿洋 佐藤
Shigeru Yoshimura
茂 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6163733A priority Critical patent/JP2902305B2/en
Publication of JPH0828998A publication Critical patent/JPH0828998A/en
Application granted granted Critical
Publication of JP2902305B2 publication Critical patent/JP2902305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a superior raising in starting in cooling operation during summer season in a continuous manner and to prevent absorption liquid from being deposited even it a surrounding temperature of an absorption refrigeration cycle is reduced during winter season. CONSTITUTION:In the case that a cooling operation is stopped, gas combustion at a gas burner 11 is terminated and a solution pump 47 is operated until a temperature of absorption liquid within a boiler 14 is lowered to 100 deg.C. This first diluting operation is operated with a result that a certain difference in concentration of absorption liquid may be left and then a subsequent raising in starting of heating operation. The absorption liquid under this state does not produce any crystallization even if a surrounding air temperature lowers in summer season However, when the surrounding air temperature lowers, in winter season, a temperature of the absorption liquid also lowers, causing a fear of crystallization. In this case, when the surrounding air temperature is lower than 5 deg.C during shutdown, it is judged that the season is not a time when the cooling operation is frequency applied and the solution pump 47 is operated for two minutes with a refrigerant valve 39 and a refrigerant changing-over valve 55 are being opened and then a concentration of the absorption liquid is substantially kept uniform. With such an arrangement even in winter crystallization can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍サイクルを
用いて室内の冷房が可能な吸収式空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption air conditioner capable of cooling a room using an absorption refrigeration cycle.

【0002】[0002]

【従来の技術】吸収式冷凍サイクルの基本的な構成は、
吸収液を加熱し、吸収液の一部を気化させる再生器と、
この再生器で発生した気化冷媒を冷却して液化する凝縮
器と、この凝縮器で液化した液化冷媒を低圧下で蒸発さ
せる蒸発器と、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器とから構成され、吸収器で気化冷媒
を吸収した吸収液は、溶液ポンプによって再生器へ送ら
れる。そして、蒸発器で冷媒が蒸発する際、蒸発器から
熱媒体回路を介して室内熱交換器へ送られる熱媒体(水
等)から潜熱を奪う。そして、熱が奪われて冷却された
熱媒体は、室内熱交換器に送られて室内空気と熱交換
し、室内を冷房する。
2. Description of the Related Art The basic structure of an absorption refrigeration cycle is
A regenerator that heats the absorption liquid and vaporizes a part of the absorption liquid,
A condenser that cools and liquefies the vaporized refrigerant generated in the regenerator, an evaporator that evaporates the liquefied refrigerant liquefied in the condenser under low pressure, and an absorbent that absorbs the vaporized refrigerant evaporated in the evaporator. The absorption liquid, which is composed of an absorber and has absorbed the vaporized refrigerant in the absorber, is sent to the regenerator by the solution pump. When the refrigerant evaporates in the evaporator, latent heat is taken from the heat medium (water or the like) sent from the evaporator to the indoor heat exchanger via the heat medium circuit. Then, the heat medium that has been deprived of heat and cooled is sent to the indoor heat exchanger to exchange heat with the indoor air and cool the room.

【0003】冷房運転中、吸収式冷凍サイクルの内部の
吸収液は、濃度の薄い低濃度吸収液(例えば、吸収器か
ら再生器へ送られる吸収液)や、冷媒が蒸発して濃度の
高くなった高濃度吸収液(例えば再生器から吸収器へ送
られる吸収液)が存在する。濃度の高い吸収液は、濃度
の低い吸収液に比較して、高い温度で晶析する。吸収式
冷凍サイクルの内部で吸収液が晶析すると、晶析部分を
吸収液が流れなくなり、吸収式冷凍サイクルが作動でき
なくなるとともに、吸収式冷凍サイクルの作動を継続さ
せるとサイクルが破損する可能性もある。このため、冷
房運転を停止する際、吸収液を加熱する加熱手段の作動
を停止した状態で、溶液ポンプを作動させ、吸収液の濃
度を均一化させる希釈運転を行う必要がある。
During the cooling operation, the absorption liquid inside the absorption refrigeration cycle has a low concentration and a low concentration (for example, the absorption liquid sent from the absorber to the regenerator), or the refrigerant has a high concentration. There is also a highly concentrated absorbent (eg absorbent sent from the regenerator to the absorber). The highly concentrated absorbent crystallizes at a higher temperature than the less concentrated absorbent. When the absorption liquid crystallizes inside the absorption refrigeration cycle, the absorption liquid does not flow through the crystallization part, and the absorption refrigeration cycle cannot operate.If the absorption refrigeration cycle continues, the cycle may be damaged. There is also. Therefore, when the cooling operation is stopped, it is necessary to operate the solution pump and perform the dilution operation in which the concentration of the absorbing liquid is made uniform while the operation of the heating means for heating the absorbing liquid is stopped.

【0004】[0004]

【発明が解決しようとする課題】吸収式冷凍サイクルに
よる冷房運転は、吸収液の濃度差を利用して冷房を行う
ものである。このため、冷房運転が停止後、希釈運転に
よって吸収液の濃度を殆ど均一化すると、次回、冷房運
転を起動させた際、吸収液に十分な濃度差が生じるまで
に時間がかかり、冷房運転の立ち上がりが悪くなる。逆
に、冷房の立ち上がりを良くするために、吸収液に濃度
差を残したままサイクルを停止すると、例えば、冬期な
ど、吸収式冷凍サイクルの設置された環境温度が低下
し、吸収式冷凍サイクル内における濃度の比較的高い吸
収液の温度も低下し、この濃度の比較的高い吸収液が晶
析する不具合が生じる。
In the cooling operation by the absorption type refrigeration cycle, cooling is performed by utilizing the difference in concentration of the absorbing liquid. Therefore, if the concentration of the absorbing liquid is made almost uniform by the dilution operation after the cooling operation is stopped, it takes time until the sufficient concentration difference occurs in the absorbing liquid when the cooling operation is started next time, and The rise is worse. On the contrary, if the cycle is stopped while leaving the concentration difference in the absorption liquid in order to improve the cooling start-up, the environmental temperature in which the absorption refrigeration cycle is installed decreases, for example, during the winter, and the absorption refrigeration cycle The temperature of the absorbing solution having a relatively high concentration in (3) is also lowered, and the absorbing solution having a relatively high concentration is crystallized.

【0005】[0005]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、夏期など続けて冷房を行う場合
は、冷房の立ち上がりに優れ、冬期など吸収式冷凍サイ
クルの設置された環境温度が低下しても、吸収式冷凍サ
イクル内で吸収液の晶析が発生しない吸収式空調装置の
提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide excellent cooling start-up in the case of continuous cooling in the summer and to install an absorption type refrigeration cycle in the winter. It is an object of the present invention to provide an absorption type air conditioner in which crystallization of an absorption liquid does not occur in the absorption type refrigeration cycle even when the environmental temperature decreases.

【0006】[0006]

【課題を解決するための手段】本発明の吸収式空調装置
は、上記の目的を達成するために、次の技術的手段を採
用した。 〔請求項1の手段〕吸収式空調装置は、 a)吸収液を加熱させる加熱手段と、 b)この加熱手段で吸収液を加熱することによって吸収
液の一部を気化させる再生器、この再生器で発生した気
化冷媒を冷却して液化する凝縮器、この凝縮器で液化し
た液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で
蒸発した気化冷媒を吸収液に吸収させる吸収器、この吸
収器内の吸収液を前記再生器へ圧送する溶液ポンプを具
備する吸収式冷凍サイクルと、 c)室内に設置され、室内空気と熱媒体とを熱交換する
室内熱交換器、前記蒸発器で液化冷媒が蒸発する際に蒸
発潜熱が奪われて冷却された熱媒体を、前記室内熱交換
器へ導くとともに、室内熱交換器で室内空気と熱交換さ
れた熱媒体を再び前記蒸発器へ導く熱媒体回路、この熱
媒体回路に設けられ、熱媒体を循環させる熱媒体ポンプ
を備えた室内空調手段と、 d)冷房運転を停止する際、前記加熱手段を停止した状
態で、前記溶液ポンプを作動させ、前記吸収式冷凍サイ
クル内の冷媒および吸収液を循環させ、運転停止中に前
記吸収式冷凍サイクル内における濃度の高い吸収液が、
所定吸収液温度で晶析しない濃度まで希釈させる第1希
釈運転手段と、 e)運転停止中に前記吸収式冷凍サイクル内における濃
度の高い吸収液の温度を検出する吸収液温度検出手段
と、 f)この吸収液温度検出手段の検出する吸収液の温度
が、前記所定吸収液温度以上に設定された所定希釈開始
温度に低下すると、前記加熱手段を停止した状態で、前
記溶液ポンプを作動させ、前記吸収式冷凍サイクル内の
冷媒および吸収液を循環させて、吸収液の濃度をほぼ均
一化させる第2希釈運転手段とを備える。
The absorption type air conditioner of the present invention employs the following technical means in order to achieve the above object. [Means of Claim 1] The absorption air conditioner comprises: a) heating means for heating the absorbing liquid; and b) a regenerator for heating a portion of the absorbing liquid by this heating means, and a regenerating device for regenerating the absorbing liquid. A condenser that cools and liquefies the vaporized refrigerant generated in the condenser, an evaporator that evaporates the liquefied refrigerant liquefied by this condenser under low pressure, an absorber that absorbs the vaporized refrigerant vaporized by this evaporator into an absorption liquid, An absorption type refrigeration cycle equipped with a solution pump for pumping the absorption liquid in the absorber to the regenerator, and c) an indoor heat exchanger installed in the room for exchanging heat between indoor air and a heat medium, and the evaporator. When the liquefied refrigerant evaporates, the latent heat of evaporation is removed and the cooled heat medium is guided to the indoor heat exchanger, and the heat medium heat-exchanged with the indoor air in the indoor heat exchanger is guided to the evaporator again. Heat medium circuit, provided in this heat medium circuit An indoor air conditioner provided with a heat medium pump for circulating a heat medium, and d) when stopping the cooling operation, the solution pump is operated while the heating means is stopped, and the refrigerant in the absorption refrigeration cycle is stopped. And the absorbent is circulated, and the absorbent with a high concentration in the absorption type refrigeration cycle during the operation stop,
First dilution operation means for diluting to a concentration at which a predetermined absorption liquid temperature does not crystallize; e) absorption liquid temperature detection means for detecting the temperature of the absorption liquid having a high concentration in the absorption refrigeration cycle while the operation is stopped; ) When the temperature of the absorbing liquid detected by the absorbing liquid temperature detecting means decreases to a predetermined dilution start temperature set to the predetermined absorbing liquid temperature or higher, the solution pump is operated in a state where the heating means is stopped, A second dilution operation unit that circulates the refrigerant and the absorption liquid in the absorption refrigeration cycle to make the concentration of the absorption liquid substantially uniform.

【0007】〔請求項2の手段〕請求項1の吸収式空調
装置において、前記吸収液温度検出手段は、前記吸収式
冷凍サイクルの設置された環境温度を検出する外気温度
センサで、前記第2希釈運転手段は、運転停止中に前記
外気温度センサの検出する環境温度が所定希釈開始温度
に低下すると、前記吸収式冷凍サイクル内における濃度
の高い吸収液の温度も所定希釈開始温度に低下したと判
断することを特徴とする。
[Means for Claim 2] In the absorption type air conditioner according to claim 1, the absorbing liquid temperature detecting means is an outside air temperature sensor for detecting an environmental temperature in which the absorption refrigerating cycle is installed. When the ambient temperature detected by the outside air temperature sensor decreases to a predetermined dilution start temperature during the operation stop, the dilution operation means also lowers the temperature of the highly concentrated absorbent in the absorption refrigeration cycle to the predetermined dilution start temperature. It is characterized by making a judgment.

【0008】〔請求項3の手段〕請求項1の吸収式空調
装置において、前記吸収式冷凍サイクルは、前記加熱手
段によって加熱された吸収液を直接前記蒸発器へ導き、
この蒸発器を流れる熱媒体を加熱して室内暖房を行う暖
房運転手段を備え、前記第2希釈運転手段は、前記吸収
式冷凍サイクルの最後の運転状態を記憶する運転状態記
憶手段の記憶する前回の運転状態が冷房運転で、且つ前
記吸収式冷凍サイクル内における濃度の高い吸収液の温
度が所定希釈開始温度に低下すると、吸収液の濃度をほ
ぼ均一化させることを特徴とする。
[Means for Claim 3] In the absorption type air conditioner according to claim 1, the absorption type refrigeration cycle directly introduces the absorption liquid heated by the heating means to the evaporator,
The heating operation means for heating the heat medium flowing through the evaporator to perform indoor heating is provided, and the second dilution operation means stores the last operation state of the absorption refrigeration cycle stored in the operation state storage means. When the operating state is the cooling operation and the temperature of the highly concentrated absorbing liquid in the absorption type refrigeration cycle drops to a predetermined dilution start temperature, the concentration of the absorbing liquid is made substantially uniform.

【0009】〔請求項4の手段〕請求項3の吸収式空調
装置において、前記暖房運転手段は、前記加熱手段で加
熱された吸収液を前記蒸発器へ導く暖房管、およびこの
暖房管を暖房運転中に開く暖房弁とを備え、前記第2希
釈運転手段は、吸収液の濃度を均一化する際、前記暖房
弁を開くことを特徴とする。
[Means of Claim 4] In the absorption type air conditioner of Claim 3, the heating operation means heats the heating pipe for guiding the absorption liquid heated by the heating means to the evaporator, and the heating pipe. A heating valve that opens during operation is provided, and the second dilution operation means opens the heating valve when the concentration of the absorbing liquid is made uniform.

【0010】〔請求項5の手段〕請求項3の吸収式空調
装置において、前記運転状態記憶手段は、不揮発性メモ
リを用いた記憶手段であることを特徴とする。
[Means of claim 5] In the absorption type air conditioner of claim 3, the operating state storage means is a storage means using a non-volatile memory.

【0011】[0011]

【作用および発明の効果】[Operation and effect of the invention]

〔請求項1の作用〕冷房運転中、吸収式冷凍サイクルの
再生器では吸収液が加熱手段に加熱されて、気化冷媒が
発生するとともに、吸収液の濃度が高くなる。気化冷媒
は凝縮器で凝縮され、液化冷媒となる。液化冷媒は、蒸
発器を流れる熱媒体から気化熱を奪って蒸発する。蒸発
によって気化した冷媒は、吸収器で濃度の高い吸収液に
吸収される。そして、冷媒を吸収して濃度の低くなった
吸収液は、溶液ポンプによって、吸収器から再生器へ送
られ、上記サイクルを繰り返す。
[Operation of Claim 1] During the cooling operation, in the regenerator of the absorption type refrigeration cycle, the absorbing liquid is heated by the heating means to generate the vaporized refrigerant and the concentration of the absorbing liquid increases. The vaporized refrigerant is condensed in the condenser and becomes liquefied refrigerant. The liquefied refrigerant takes heat of vaporization from the heat medium flowing through the evaporator and evaporates. The refrigerant vaporized by evaporation is absorbed by the absorbent having a high concentration in the absorber. Then, the absorbing liquid, which has absorbed the refrigerant and becomes low in concentration, is sent from the absorber to the regenerator by the solution pump, and the above cycle is repeated.

【0012】冷房運転を停止する際、第1希釈運転手段
によって、加熱手段を停止した状態で、溶液ポンプを作
動させ、吸収式冷凍サイクル内における濃度の高い吸収
液が、所定吸収液温度(例えば夏期など冷房を行う頻度
の高い時期における最低温度)で晶析しない濃度まで希
釈させる(第1希釈運転)。
When the cooling operation is stopped, the solution pump is operated by the first dilution operation means while the heating means is stopped so that the absorption liquid having a high concentration in the absorption type refrigeration cycle has a predetermined absorption liquid temperature (eg, It is diluted to a concentration at which crystallization does not occur (first dilution operation) at the lowest temperature when cooling is frequently performed such as in summer.

【0013】冷房運転後、季節の移行等によって、吸収
式冷凍サイクルの設置された環境温度が低下し、吸収液
温度検出手段の検出する温度が所定の希釈開始温度(所
定吸収液温度以上に設定された温度)に低下すると、第
2希釈運転手段によって、加熱手段を停止した状態で、
溶液ポンプを作動させ、吸収式冷凍サイクル内の冷媒お
よび吸収液を循環させて、吸収液の濃度をほぼ均一化さ
せる(第2希釈運転)。
After the cooling operation, the environmental temperature in which the absorption refrigeration cycle is installed is lowered due to the shift of seasons and the like, and the temperature detected by the absorption liquid temperature detection means is set to a predetermined dilution start temperature (set to a predetermined absorption liquid temperature or higher). Temperature), the second dilution operation means stops the heating means,
The solution pump is operated to circulate the refrigerant and the absorbing liquid in the absorption type refrigeration cycle to make the concentration of the absorbing liquid substantially uniform (second dilution operation).

【0014】〔請求項1の効果〕本発明の吸収式空調装
置は、冷房運転を停止する際に行う第1希釈運転は、吸
収式冷凍サイクル内の吸収液に濃度差を残した希釈運転
で、吸収液の晶析を防ぐとともに、次回の冷房の立ち上
がりをよくする。吸収式冷凍サイクルの設置された環境
温度が低下して、吸収式冷凍サイクル内における濃度の
高い吸収液が希釈開始温度に低下した場合に行う第2希
釈運転は、吸収式冷凍サイクル内の吸収液の濃度をほぼ
均一化する希釈運転で、環境温度が極めて低下しても吸
収式冷凍サイクル内で吸収液が晶析するのを防ぐ。
[Effect of Claim 1] In the absorption type air conditioner of the present invention, the first dilution operation performed when the cooling operation is stopped is the dilution operation in which the concentration difference remains in the absorption liquid in the absorption type refrigeration cycle. , Prevent the crystallization of the absorption liquid and improve the next cooling start up. The second dilution operation performed when the environment temperature in which the absorption refrigeration cycle is installed is lowered and the concentration of the absorption liquid in the absorption refrigeration cycle is lowered to the dilution start temperature is the absorption liquid in the absorption refrigeration cycle. In the dilution operation to make the concentration of the solution almost uniform, the absorption liquid is prevented from crystallizing in the absorption type refrigeration cycle even if the environmental temperature is extremely lowered.

【0015】〔請求項2の作用および効果〕運転停止
中、吸収式冷凍サイクルの設置された環境温度が低下す
ると、吸収式冷凍サイクル内の冷媒の温度も環境温度の
低下に伴い低下する。そして、運転停止中に外気温度セ
ンサの検出する環境温度が所定希釈開始温度に低下する
と、吸収式冷凍サイクル内における濃度の高い吸収液の
温度も所定希釈開始温度に低下したと判断して、第2希
釈運転手段は第2希釈運転を行い、吸収式冷凍サイクル
内の吸収液の濃度をほぼ均一化する。環境温度が低下す
る場合、環境温度の方が、吸収式冷凍サイクル内の吸収
液の温度よりも先に低下する。一方、吸収式冷凍サイク
ル内における吸収液の温度は、吸収液の検出位置によっ
ては温度の低下速度が異なる場合がある。このため、環
境温度を検出して第2希釈運転を行うことにより、吸収
式冷凍サイクル内における吸収液の晶析を確実に防ぐこ
とができる。
[Operation and Effect of Claim 2] When the environmental temperature in which the absorption refrigeration cycle is installed is lowered during the operation stop, the temperature of the refrigerant in the absorption refrigeration cycle is also lowered as the environmental temperature is lowered. Then, when the ambient temperature detected by the outside air temperature sensor falls to the predetermined dilution start temperature during the operation stop, it is determined that the temperature of the highly concentrated absorbent in the absorption refrigeration cycle has also dropped to the predetermined dilution start temperature. The second dilution operation means performs the second dilution operation to make the concentration of the absorption liquid in the absorption refrigeration cycle substantially uniform. When the environmental temperature decreases, the environmental temperature decreases before the temperature of the absorbing liquid in the absorption refrigeration cycle. On the other hand, the temperature of the absorbing liquid in the absorption refrigeration cycle may have a different temperature decreasing rate depending on the detection position of the absorbing liquid. Therefore, the crystallization of the absorbing liquid in the absorption refrigeration cycle can be reliably prevented by detecting the environmental temperature and performing the second dilution operation.

【0016】〔請求項3の作用および効果〕吸収式冷凍
サイクルによって暖房運転が可能な場合、暖房運転を行
うことにより、吸収式冷凍サイクル内の吸収液の濃度は
ほぼ均一化される。このため、運転停止中、吸収式冷凍
サイクル内の吸収液の温度が所定希釈開始温度に低下し
ても、運転状態記憶手段の記憶する前回の運転が暖房運
転であった場合、第2希釈運転は行わない。このよう
に、前回の運転状態が暖房運転の場合は、無駄な第2希
釈運転は行われない。つまり、無駄なエネルギー消費を
抑えることができる。
[Operation and Effect of Claim 3] When the heating operation can be performed by the absorption refrigeration cycle, by performing the heating operation, the concentration of the absorbing liquid in the absorption refrigeration cycle is substantially equalized. Therefore, even if the temperature of the absorbing liquid in the absorption refrigeration cycle drops to the predetermined dilution start temperature during the operation stop, if the previous operation stored in the operation state storage means is the heating operation, the second dilution operation is performed. Does not. As described above, when the previous operating state is the heating operation, the useless second dilution operation is not performed. That is, wasteful energy consumption can be suppressed.

【0017】〔請求項4の作用および効果〕第2希釈運
転手段は、吸収液の濃度を均一化する際、暖房弁を開
く。すると、再生器の比較的濃度の高い吸収液が、暖房
管を通って蒸発器および吸収器に導かれる。蒸発器に
は、冷媒が存在するとともに、吸収器には、気化冷媒を
吸収した後の比較的濃度の低い吸収液が存在する。この
ため、暖房管から供給された濃度の高い吸収液は、冷媒
や濃度の低い吸収液に混ざり合い、溶液ポンプによっ
て、再び再生器に導かれる。このように、暖房弁を開く
ことにより、吸収式冷凍サイクル内における吸収液の循
環を促進し、吸収液の均一化する時間を短くすることが
できる。
[Operation and Effect of Claim 4] The second dilution operation means opens the heating valve when the concentration of the absorbing liquid is made uniform. Then, the relatively high-concentration absorption liquid of the regenerator is guided to the evaporator and the absorber through the heating pipe. A refrigerant exists in the evaporator, and an absorbent having a relatively low concentration after absorbing the vaporized refrigerant exists in the absorber. Therefore, the high-concentration absorption liquid supplied from the heating pipe mixes with the refrigerant and the low-concentration absorption liquid, and is again guided to the regenerator by the solution pump. In this way, by opening the heating valve, the circulation of the absorbing liquid in the absorption refrigeration cycle can be promoted, and the time required for uniformizing the absorbing liquid can be shortened.

【0018】〔請求項5の作用および効果〕運転状態記
憶手段は、不揮発性メモリを用いることによって、前回
の運転状態を簡単な回路で記憶することができる。
[Operation and Effect of Claim 5] The operating state storage means can store the previous operating state with a simple circuit by using a non-volatile memory.

【0019】[0019]

【実施例】次に、本発明の吸収式空調装置を、図に示す
実施例に基づき説明する。 〔実施例の構成〕図1および図2は実施例を示すもの
で、図1は室内の空調を行う2重効用型の吸収式冷凍サ
イクルを用いた吸収式空調装置の概略構成図である。本
実施例の吸収式空調装置1は、大別して、吸収液(本実
施例では臭化リチウム水溶液)を加熱する加熱手段2
と、2重効用型の吸収式冷凍サイクル3と、吸収式冷凍
サイクル3で冷却または加熱された冷温水(本発明の熱
媒体で、本実施例では水)で室内を空調する室内空調手
段4と、吸収式冷凍サイクル3内で主に気化冷媒(本実
施例では水蒸気)を冷やすために用いられる冷却水を冷
却する冷却水冷却手段5と、搭載された各電気機能部品
を制御する制御装置6とから構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an absorption type air conditioner of the present invention will be described based on the embodiments shown in the drawings. [Configuration of Embodiment] FIGS. 1 and 2 show an embodiment, and FIG. 1 is a schematic configuration diagram of an absorption air conditioning system using a double-effect absorption refrigeration cycle for air conditioning the room. The absorption type air conditioner 1 of this embodiment is roughly classified into heating means 2 for heating an absorbing liquid (lithium bromide aqueous solution in this embodiment).
And a double-effect absorption refrigeration cycle 3, and an indoor air conditioning means 4 for air conditioning the room with cold / hot water cooled or heated by the absorption refrigeration cycle 3 (heat medium of the present invention, water in this embodiment). A cooling water cooling means 5 for cooling the cooling water mainly used for cooling the vaporized refrigerant (steam in the present embodiment) in the absorption refrigeration cycle 3; and a control device for controlling each of the mounted electric functional parts. 6 and 6.

【0020】〔加熱手段2の説明〕本実施例の加熱手段
2は、燃料であるガスを燃焼して熱を発生させ、発生し
た熱によって吸収液を加熱するガス燃焼装置で、ガスの
燃焼を行うガスバーナ11、このガスバーナ11へガス
の供給を行うガス供給手段12、ガスバーナ11へ燃焼
用の空気を供給する燃焼ファン13等から構成される。
そして、ガスバーナ11のガス燃焼で得られた熱で、吸
収式冷凍サイクル3の沸騰器14を加熱し、沸騰器14
内の低濃度吸収液を加熱するように設けられている。
[Explanation of Heating Means 2] The heating means 2 of the present embodiment is a gas combustor for combusting a gas which is a fuel to generate heat and heating the absorbing liquid by the generated heat. It comprises a gas burner 11 for performing, a gas supply means 12 for supplying gas to the gas burner 11, a combustion fan 13 for supplying air for combustion to the gas burner 11, and the like.
Then, the heat obtained by the gas combustion of the gas burner 11 heats the boiling device 14 of the absorption refrigeration cycle 3, and the boiling device 14 is heated.
It is provided so as to heat the low-concentration absorption liquid therein.

【0021】〔吸収式冷凍サイクル3の説明〕吸収式冷
凍サイクル3は、加熱手段2によって加熱される沸騰器
14を備え、この沸騰器14内の低濃度吸収液が加熱さ
れることによって低濃度吸収液に含まれる冷媒(水)を
気化(蒸発)させ、低濃度吸収液を中濃度吸収液にする
高温再生器15と、この高温再生器15内の気化冷媒の
凝縮熱を利用して中濃度吸収液を加熱し、中濃度吸収液
に含まれる冷媒を気化させて中濃度吸収液を高濃度吸収
液にする低温再生器16と、高温再生器15および低温
再生器16からの気化冷媒(水蒸気)を冷却して液化す
る凝縮器17と、この凝縮器17で液化した液化冷媒
(水)を真空に近い圧力下で蒸発させる蒸発器18と、
この蒸発器18で蒸発した気化冷媒を低温再生器16で
得られた高濃度吸収液に吸収させる吸収器19とから構
成される。
[Description of Absorption-type Refrigeration Cycle 3] The absorption-type refrigeration cycle 3 includes a boiling device 14 that is heated by the heating means 2, and the low-concentration absorption liquid in the boiling device 14 is heated to reduce the low-concentration liquid. The high temperature regenerator 15 that vaporizes (evaporates) the refrigerant (water) contained in the absorption liquid to convert the low concentration absorption liquid into the medium concentration absorption liquid, and the condensation heat of the vaporized refrigerant in the high temperature regenerator 15 The low-temperature regenerator 16 that heats the concentrated absorbent to vaporize the refrigerant contained in the medium-concentrated absorbent to convert the medium-concentrated absorbent into a high-concentrated absorbent, and the vaporized refrigerant from the high-temperature regenerator 15 and the low-temperature regenerator 16 ( A condenser 17 for cooling and liquefying (steam) and an evaporator 18 for evaporating the liquefied refrigerant (water) liquefied by the condenser 17 under a pressure close to vacuum;
It is composed of an absorber 19 for absorbing the vaporized refrigerant evaporated in the evaporator 18 into the high-concentration absorption liquid obtained in the low temperature regenerator 16.

【0022】〔高温再生器15の説明〕高温再生器15
は、上述のように、加熱手段2によって低濃度吸収液を
加熱する沸騰器14を備える。この沸騰器14で沸騰し
た低濃度吸収液は、沸騰器14から上方へ延びる吹出筒
21から、円筒容器形状の高温再生容器22内に吹き出
す。この高温再生容器22内に吹き出された高温の低濃
度吸収液は、気液分離用のバッフル23に衝突する。そ
して、高温再生容器22内に吹き出された低濃度吸収液
は、一部蒸発して気化冷媒になり、残りが吹出筒21の
周囲に滴下して中濃度吸収液になる。なお、気化冷媒
は、高温再生容器22の壁によって低温再生器4内の中
濃度吸収液の蒸発時の気化熱として熱が奪われて冷却さ
れて液化冷媒(水)になる。
[Description of High Temperature Regenerator 15] High Temperature Regenerator 15
As described above, includes the boiling device 14 that heats the low-concentration absorption liquid by the heating means 2. The low-concentration absorbent liquid boiled in the boiling device 14 is blown out into a high-temperature regeneration container 22 in the shape of a cylindrical container from a blowing cylinder 21 extending upward from the boiling device 14. The high-temperature low-concentration absorption liquid blown out into the high-temperature regeneration container 22 collides with the gas-liquid separation baffle 23. Then, the low-concentration absorption liquid blown into the high-temperature regeneration container 22 partially evaporates to become a vaporized refrigerant, and the rest drops around the blow-out cylinder 21 to become a medium-concentration absorption liquid. The vaporized refrigerant is deprived of heat by the wall of the high-temperature regeneration container 22 as vaporization heat during evaporation of the medium-concentration absorption liquid in the low-temperature regenerator 4 and cooled to become a liquefied refrigerant (water).

【0023】高温再生容器22内には、液化冷媒(水)
と、中濃度吸収液とを分離するために、吹出筒21と高
温再生容器22との間に仕切筒24が設けられている。
そして、高温再生容器22で冷却されて液化し、仕切筒
24の外側に分離された液化冷媒(水)は下部に接続さ
れた液冷媒管25を通って凝縮器17に供給される。ま
た、仕切筒24の内側と吹出筒21との間に分離された
中濃度吸収液は下部に接続された中液管26を通って低
温再生器16に供給される。なお、中液管26には、オ
リフィス等の絞り手段27が設けられている。この絞り
手段27は、後述する冷暖切替弁55が閉じられると、
高温再生器15と低温再生器16との圧力差を保った状
態で中濃度吸収液を流し、冷暖切替弁55が開かれると
中濃度吸収液を殆ど流さない。
A liquefied refrigerant (water) is placed in the high temperature regeneration container 22.
A partition cylinder 24 is provided between the blow-out cylinder 21 and the high-temperature regeneration container 22 to separate the medium-concentration absorbent.
Then, the liquefied refrigerant (water) cooled in the high-temperature regeneration container 22 and liquefied and separated to the outside of the partition tube 24 is supplied to the condenser 17 through the liquid refrigerant pipe 25 connected to the lower part. Further, the medium-concentration absorbing liquid separated between the inside of the partition cylinder 24 and the blow-off cylinder 21 is supplied to the low temperature regenerator 16 through the middle liquid pipe 26 connected to the lower portion. The medium liquid pipe 26 is provided with throttle means 27 such as an orifice. When the cooling / heating switching valve 55 described later is closed, the throttle means 27 is
When the temperature difference between the high temperature regenerator 15 and the low temperature regenerator 16 is maintained, the medium-concentration absorbent is flown, and when the cooling / heating switching valve 55 is opened, the medium-concentration absorbent is hardly flowed.

【0024】〔低温再生器16の説明〕低温再生器16
は、高温再生容器22を覆う筒状容器形状の低温再生容
器31を備え、中液管26を通って供給される中濃度吸
収液を高温再生容器22の天井部分に向けて注入するも
のである。低温再生容器31内の温度は、高温再生容器
22の温度に比較して低いため、低温再生容器31内の
圧力は高温再生容器22の圧力に比較して低い。このた
め、中液管26から低温再生容器31内に供給された中
濃度吸収液は蒸発し易い。そして、中濃度吸収液が高温
再生容器22の天井部分に注入されると、高温再生容器
22の壁によって中濃度吸収液が加熱され、中濃度吸収
液に含まれる冷媒の一部が蒸発して気化冷媒になり、残
りが高濃度吸収液になる。
[Description of Low Temperature Regenerator 16] Low Temperature Regenerator 16
Is equipped with a tubular low-temperature regeneration container 31 that covers the high-temperature regeneration container 22, and injects the medium-concentration absorption liquid supplied through the medium-liquid pipe 26 toward the ceiling portion of the high-temperature regeneration container 22. . Since the temperature inside the low temperature regeneration container 31 is lower than the temperature inside the high temperature regeneration container 22, the pressure inside the low temperature regeneration container 31 is lower than the pressure inside the high temperature regeneration container 22. Therefore, the medium-concentration absorption liquid supplied from the middle liquid pipe 26 into the low temperature regeneration container 31 is easily evaporated. Then, when the medium-concentration absorbing liquid is injected into the ceiling portion of the high-temperature regenerating container 22, the wall of the high-temperature regenerating container 22 heats the medium-concentrating absorbing liquid, and a part of the refrigerant contained in the medium-concentrating absorbing liquid evaporates. It becomes a vaporized refrigerant, and the rest becomes a high-concentration absorbent.

【0025】ここで、低温再生容器31の上方は、環状
容器形状の凝縮容器32の上側と、連通部33により連
通している。このため、低温再生容器31内で蒸発した
気化冷媒は、連通部33を通って凝縮容器32内に供給
される。一方、高濃度吸収液は、低温再生容器31の下
部に落下し、低温再生容器31の下部に接続された高液
管34を通って吸収器19に供給される。なお、低温再
生容器31内の上側には、天井板35が設けられ、この
天井板35の外周端と低温再生容器31との間には、気
化冷媒が通過する隙間36が設けられている。
Here, the upper part of the low temperature regeneration container 31 communicates with the upper part of the condensing container 32 in the shape of an annular container by a communication part 33. Therefore, the vaporized refrigerant evaporated in the low temperature regeneration container 31 is supplied into the condensing container 32 through the communication part 33. On the other hand, the high-concentration absorption liquid drops to the lower portion of the low temperature regeneration container 31 and is supplied to the absorber 19 through the high liquid pipe 34 connected to the lower portion of the low temperature regeneration container 31. A ceiling plate 35 is provided on the upper side inside the low temperature regeneration container 31, and a gap 36 through which the vaporized refrigerant passes is provided between the outer peripheral end of the ceiling plate 35 and the low temperature regeneration container 31.

【0026】〔凝縮器17の説明〕凝縮器17は、環状
容器形状の凝縮容器32によって覆われている。この凝
縮容器32の内部には、凝縮容器32内の気化冷媒を冷
却して液化させる凝縮用熱交換器37が配置されてい
る。この凝縮用熱交換器37は、環状のコイルで、内部
には冷却水が流れる。そして、低温再生器16から凝縮
容器32内に供給された液化冷媒は、凝縮用熱交換器3
7によって冷却されて液化し、凝縮用熱交換器37の下
方へ滴下する。
[Description of Condenser 17] The condenser 17 is covered with a condensing container 32 having an annular container shape. Inside the condensing container 32, a condensing heat exchanger 37 for cooling and liquefying the vaporized refrigerant in the condensing container 32 is arranged. The condensing heat exchanger 37 is an annular coil through which cooling water flows. Then, the liquefied refrigerant supplied from the low temperature regenerator 16 into the condensing container 32 is the condensing heat exchanger 3
It is cooled by 7 and liquefied, and is dripped below the condensation heat exchanger 37.

【0027】一方、凝縮容器32の下側には、上述の高
温再生器15から液冷媒管25を通って冷媒が供給され
る。なお、この供給冷媒は、凝縮容器32内に供給され
る際に、圧力の違い(凝縮容器32内は約70mmHg
の低圧)から、再沸騰し、気化冷媒と液化冷媒とが混合
した状態で供給される。また、凝縮容器32には、液化
冷媒を蒸発器18に導く低液供給管38が接続されてい
る。この低液供給管38には、凝縮容器32から蒸発器
18に供給される液化冷媒の供給量を調節する冷媒弁3
9が設けられている。
On the other hand, below the condensing container 32, the refrigerant is supplied from the above-mentioned high temperature regenerator 15 through the liquid refrigerant pipe 25. In addition, when the supply refrigerant is supplied into the condensing container 32, a difference in pressure (about 70 mmHg in the condensing container 32 is generated.
From the low pressure), re-boiling, and the vaporized refrigerant and the liquefied refrigerant are supplied in a mixed state. A low liquid supply pipe 38 that guides the liquefied refrigerant to the evaporator 18 is connected to the condensing container 32. The low liquid supply pipe 38 has a refrigerant valve 3 for adjusting the supply amount of the liquefied refrigerant supplied from the condensation container 32 to the evaporator 18.
9 are provided.

【0028】〔蒸発器18の説明〕蒸発器18は、吸収
器19とともに、凝縮容器32の下部に設けられるもの
で、低温再生容器31の周囲に設けられた環状容器形状
の蒸発吸収容器41によって覆われている。この蒸発吸
収容器41の内部の外側には、凝縮器17から供給され
る液化冷媒を蒸発させる蒸発用熱交換器42が配置され
ている。この蒸発用熱交換器42は、環状のコイルで、
内部には室内空調手段4に供給される熱媒体(冷温水)
が流れる。そして、凝縮器17から低液供給管38を介
して供給された液化冷媒は、蒸発用熱交換器42の上部
に配置された冷媒散布具43から蒸発用熱交換器42の
上に散布される。
[Explanation of Evaporator 18] The evaporator 18 is provided in the lower part of the condensing container 32 together with the absorber 19, and is formed by an evaporative absorption container 41 in the shape of an annular container provided around the low temperature regeneration container 31. Is covered. An evaporation heat exchanger 42 that evaporates the liquefied refrigerant supplied from the condenser 17 is arranged outside the inside of the evaporation / absorption container 41. This evaporation heat exchanger 42 is an annular coil,
Heat medium (cold hot water) supplied to the indoor air conditioning means 4 inside
Flows. Then, the liquefied refrigerant supplied from the condenser 17 through the low-liquid supply pipe 38 is scattered on the evaporation heat exchanger 42 from the refrigerant distribution tool 43 arranged on the evaporation heat exchanger 42. .

【0029】蒸発吸収容器41内は、ほぼ真空(例えば
6.5mmHg)に保たれるため、沸点が低く、蒸発用
熱交換器42に散布された液化冷媒は、大変蒸発しやす
い。そして、蒸発用熱交換器42に散布された液化冷媒
は、蒸発用熱交換器42内を流れる熱媒体から気化熱を
奪って蒸発する。この結果、蒸発用熱交換器42内を流
れる熱媒体が冷却される。そして、冷却された熱媒体
は、室内空調手段4に導かれ、室内を冷房する。
Since the inside of the evaporation / absorption container 41 is maintained in a substantially vacuum (for example, 6.5 mmHg), the boiling point is low, and the liquefied refrigerant dispersed in the evaporation heat exchanger 42 is very easily evaporated. Then, the liquefied refrigerant scattered on the evaporation heat exchanger 42 deprives the heat of vaporization from the heat medium flowing inside the evaporation heat exchanger 42 to evaporate. As a result, the heat medium flowing in the evaporation heat exchanger 42 is cooled. Then, the cooled heat medium is guided to the indoor air conditioning unit 4 to cool the room.

【0030】〔吸収器19の説明〕吸収器19は、上述
のように、蒸発吸収容器41に覆われる。そして、吸収
器19は、蒸発吸収容器41の内部の内側に、高液管3
4から供給される高濃度吸収液を冷却する吸収用熱交換
器44が配置されている。この吸収用熱交換器44は、
環状のコイルで、内部には、コイル上に散布された高濃
度吸収液を冷却する冷却水が供給される。なお、吸収用
熱交換器44を通過した冷却水は、凝縮器17の凝縮用
熱交換器37を通過した後、冷却水冷却手段5に導か
れ、冷却される。そして冷却水冷却手段5で冷却された
冷却水は、再び吸収用熱交換器44に導かれる。
[Description of Absorber 19] The absorber 19 is covered with the evaporative absorption container 41 as described above. The absorber 19 is provided inside the evaporative absorption container 41 inside the high liquid pipe 3
An absorption heat exchanger 44 for cooling the high-concentration absorption liquid supplied from No. 4 is arranged. This absorption heat exchanger 44 is
Cooling water that cools the high-concentration absorbent dispersed on the coil is supplied to the inside of the annular coil. The cooling water that has passed through the absorption heat exchanger 44 passes through the condensation heat exchanger 37 of the condenser 17 and is then guided to the cooling water cooling means 5 to be cooled. Then, the cooling water cooled by the cooling water cooling means 5 is again guided to the absorption heat exchanger 44.

【0031】一方、吸収用熱交換器44の上部には、高
液管34から供給される高濃度吸収液を吸収用熱交換器
44に散布する吸収液散布具45が配置される。吸収用
熱交換器44に散布された高濃度吸収液は、吸収用熱交
換器44のコイル表面を伝わって上方から下方へ落下す
る間に、蒸発用熱交換器42において蒸発により生成さ
れた気化冷媒を吸収する。この結果、蒸発吸収容器41
の底に落下した吸収液は、濃度が薄くなった低濃度吸収
液となる。蒸発吸収容器41の底には、蒸発吸収容器4
1の底の低濃度吸収液を沸騰器14に供給するための低
液管46が接続されている。この低液管46には、ほぼ
真空状態の蒸発吸収容器41内から沸騰器14に向けて
低濃度吸収液を流すために、溶液ポンプ47が設けられ
ている。
On the other hand, above the absorption heat exchanger 44, there is arranged an absorption liquid spraying device 45 for spraying the high-concentration absorption liquid supplied from the high liquid pipe 34 to the absorption heat exchanger 44. The high-concentration absorption liquid sprinkled on the absorption heat exchanger 44 is vaporized by evaporation in the evaporation heat exchanger 42 while traveling along the coil surface of the absorption heat exchanger 44 and falling from above. Absorbs refrigerant. As a result, the evaporation absorption container 41
The absorption liquid that has dropped to the bottom of the bottom becomes a low-concentration absorption liquid with a reduced concentration. At the bottom of the evaporation / absorption container 41, the evaporation / absorption container 4 is provided.
A low liquid pipe 46 for supplying the low-concentration absorption liquid at the bottom of No. 1 to the boiling device 14 is connected. The low liquid pipe 46 is provided with a solution pump 47 for flowing the low-concentration absorption liquid from the evaporation absorption container 41 in a substantially vacuum state toward the boiling device 14.

【0032】〔吸収式冷凍サイクル3における上記以外
の構成部品の説明〕図1に示す符号51は、高温再生器
15から低温再生器16へ流れる中濃度吸収液と、吸収
器19から沸騰器14へ流れる低濃度吸収液とを熱交換
する高温熱交換器で、高温再生器15から低温再生器1
6へ流れる中濃度吸収液を冷却し、逆に吸収器19から
沸騰器14へ流れる低濃度吸収液を加熱するものであ
る。また、図1に示す符号52は、低温再生器16から
吸収器19へ流れる高濃度吸収液と、吸収器19から沸
騰器14へ流れる低濃度吸収液とを熱交換する低温熱交
換器で、低温再生器16から吸収器19へ流れる高濃度
吸収液を冷却し、逆に吸収器19から沸騰器14へ流れ
る低濃度吸収液を加熱するものである。
[Description of Components Other Than Above Above in Absorption Refrigeration Cycle 3] Reference numeral 51 shown in FIG. 1 indicates a medium-concentration absorption liquid flowing from the high temperature regenerator 15 to the low temperature regenerator 16, and the absorber 19 to the boiling device 14. A high-temperature heat exchanger that exchanges heat with the low-concentration absorbent flowing to the high-temperature regenerator 15 to the low-temperature regenerator 1
The medium-concentration absorption liquid flowing to 6 is cooled, and conversely, the low-concentration absorption liquid flowing from the absorber 19 to the boiling device 14 is heated. Reference numeral 52 shown in FIG. 1 is a low-temperature heat exchanger for exchanging heat between the high-concentration absorption liquid flowing from the low-temperature regenerator 16 to the absorber 19 and the low-concentration absorption liquid flowing from the absorber 19 to the boiling device 14. The high-concentration absorption liquid flowing from the low-temperature regenerator 16 to the absorber 19 is cooled, and conversely, the low-concentration absorption liquid flowing from the absorber 19 to the boiling device 14 is heated.

【0033】また、本実施例の吸収式冷凍サイクル3に
は、上述の作動による冷房運転の他に、暖房運転を行う
ための暖房運転手段53が設けられている。暖房運転手
段53は、高温再生器15から低温再生器16へ中濃度
吸収液を導く中液管26の途中から分岐して、温度の高
い吸収液を蒸発器18および吸収器19を収納する蒸発
吸収容器41へ導く暖房管54と、この暖房管54を開
閉する冷暖切替弁55(本発明の暖房弁に相当)とから
構成される。この冷暖切替弁55は、暖房運転時に開弁
して高温の吸収液を蒸発吸収容器41内へ導き、蒸発器
18の蒸発用熱交換器42内を流れる冷温水を加熱する
ものである。
Further, the absorption refrigeration cycle 3 of this embodiment is provided with heating operation means 53 for performing heating operation in addition to the cooling operation by the above-mentioned operation. The heating operation means 53 is branched from the middle liquid pipe 26 that guides the medium-concentration absorption liquid from the high-temperature regenerator 15 to the low-temperature regenerator 16, and evaporates the high-temperature absorption liquid in the evaporator 18 and the absorber 19. It is composed of a heating pipe 54 that leads to the absorption container 41, and a cooling / heating switching valve 55 (corresponding to the heating valve of the present invention) that opens and closes the heating pipe 54. The cooling / heating switching valve 55 is opened during the heating operation to guide the high-temperature absorption liquid into the evaporation / absorption container 41 and heat the cooling / heating water flowing in the evaporation heat exchanger 42 of the evaporator 18.

【0034】〔室内空調手段4の説明〕室内に設置され
た室内熱交換器61、冷温水を循環させる冷温水回路6
2(本発明の熱媒体回路に相当する)、および熱媒体回
路で熱媒体を循環させる冷温水ポンプ63(本発明の熱
媒体ポンプに相当)を備える。室内熱交換器61は、蒸
発器18を通過した冷温水と室内空気とを熱交換する気
体と液体の熱交換器で、室内熱交換器61を流れる冷温
水と室内空気とを強制的に熱交換し、熱交換後の空気を
室内に吹き出させるための室内ファン64を備える。
[Explanation of Indoor Air Conditioning Unit 4] Indoor heat exchanger 61 installed in the room, cold / hot water circuit 6 for circulating cold / hot water
2 (corresponding to the heat medium circuit of the present invention), and a cold / hot water pump 63 (corresponding to the heat medium pump of the present invention) for circulating the heat medium in the heat medium circuit. The indoor heat exchanger 61 is a gas and liquid heat exchanger that exchanges heat between the hot and cold water that has passed through the evaporator 18 and the indoor air, and forcibly heats the cold and hot water and the indoor air that flow through the indoor heat exchanger 61. An indoor fan 64 is provided for exchanging and blowing the heat-exchanged air into the room.

【0035】冷温水回路62は、蒸発器18を通過した
冷温水を、室内に設置された室内熱交換器61に導き、
室内空気と熱交換した冷温水を再び蒸発器18へ導く水
管で、この冷温水回路62中には、室内熱交換器61と
冷温水ポンプ63の他に、冷温水を蓄えて、冷温水回路
62内に冷温水の補充を行うシスターン65を備える。
このシスターン65には、内部へ冷温水(水道水)を供
給する給水管66が接続されている。この給水管66に
は、シスターン65内へ冷温水の供給、停止を行う給水
バルブ67が設けられている。このシスターン65に
は、図示しない水位センサを備え、シスターン65内の
冷却水が低下すると、給水バルブ67を開いてシスター
ン65内に冷温水を補充するように設けられている。ま
た、シスターン65には、オーバーフローした冷温水
を、後述する冷却水タンク78内へ導くオーバーフロー
水供給手段68が設けられている。
The cold / hot water circuit 62 guides the cold / hot water having passed through the evaporator 18 to the indoor heat exchanger 61 installed in the room,
A cold / hot water circuit that stores cold / hot water in the cold / hot water circuit 62 in addition to the indoor heat exchanger 61 and the cold / hot water pump 63 by a water pipe for guiding cold / hot water that has exchanged heat with room air to the evaporator 18 again. A cistern 65 for replenishing cold and warm water is provided in 62.
A water supply pipe 66 for supplying cold / hot water (tap water) to the interior is connected to the systern 65. The water supply pipe 66 is provided with a water supply valve 67 for supplying and stopping cold / hot water into the systern 65. The cistern 65 is provided with a water level sensor (not shown) so that when the cooling water in the cistern 65 drops, the water supply valve 67 is opened to replenish the cistern 65 with cold / hot water. Further, the systern 65 is provided with overflow water supply means 68 for guiding the overflowing cold / warm water into a cooling water tank 78 described later.

【0036】〔冷却水冷却手段5の説明〕冷却水冷却手
段5は、蒸発型の冷却塔71、冷却水を循環させる冷却
水回路72、および冷却水回路72で冷却水を循環させ
る冷却水ポンプ73を備える。冷却塔71は、吸収器1
9および凝縮器17を通過した冷却水を、上方から下方
へ流し、流れている間に外気と熱交換して放熱するとと
もに、流れている間に一部蒸発させて、蒸発時に流れて
いる冷却水から気化熱を奪い、流れている冷却水を冷却
するもので、上方において冷却水を散布する散布部74
と、冷却水が流れる広い表面積の蒸発部75と、この蒸
発部75を通過した冷却水を集める収集部76とから構
成される。また、この冷却塔71は、蒸発部75に空気
流を生じさせ、蒸発部75における冷却水の蒸発および
冷却を促進する冷却水ファン77を備える。
[Explanation of Cooling Water Cooling Unit 5] The cooling water cooling unit 5 includes an evaporative cooling tower 71, a cooling water circuit 72 for circulating cooling water, and a cooling water pump for circulating cooling water in the cooling water circuit 72. 73 is provided. The cooling tower 71 is the absorber 1
The cooling water that has passed through the condenser 9 and the condenser 17 flows from the upper side to the lower side to exchange heat with the outside air to radiate heat while flowing, and also to partially evaporate while flowing, and cooling that flows at the time of evaporation. A sprinkling unit 74 that disperses the heat of vaporization from water and cools the flowing cooling water, and sprinkles the cooling water above.
And an evaporating section 75 having a large surface area through which the cooling water flows, and a collecting section 76 that collects the cooling water that has passed through the evaporating section 75. The cooling tower 71 also includes a cooling water fan 77 that causes an air flow in the evaporation unit 75 and promotes evaporation and cooling of cooling water in the evaporation unit 75.

【0037】冷却水回路72は、吸収器19および凝縮
器17を通過して、温度の上昇した冷却水を、冷却塔7
1へ導き、この冷却塔71で冷却された冷却水を再び吸
収器19および凝縮器17へ送る水管で、この冷却水回
路72中には、冷却塔71と冷却水ポンプ73の他に、
冷却水を蓄える冷却水タンク78を備える。この冷却水
タンク78は、冷却塔71の下方で、且つシスターン6
5の下方に設置され、冷却塔71を通過した冷却水が供
給されるととともに、シスターン65でオーバーフロー
した水が供給されるように設けられている。冷却水タン
ク78には、図示しない水位センサを備え、冷却水タン
ク78内の冷却水が低下すると、給水バルブ67を開い
てシスターン65から水を溢れさせ、溢れた水をオーバ
ーフロー水供給手段68から冷却水タンク78内へ導
き、冷却水を補充するように設けられている。
The cooling water circuit 72 passes the absorber 19 and the condenser 17 to cool the cooling water having an increased temperature.
1, which is a water pipe for sending the cooling water cooled in the cooling tower 71 to the absorber 19 and the condenser 17 again. In the cooling water circuit 72, in addition to the cooling tower 71 and the cooling water pump 73,
A cooling water tank 78 for storing cooling water is provided. This cooling water tank 78 is located below the cooling tower 71
5 is installed below the cooling tower 71, and is provided so that the cooling water that has passed through the cooling tower 71 is supplied and the water that overflows at the cistern 65 is supplied. The cooling water tank 78 is provided with a water level sensor (not shown). When the cooling water in the cooling water tank 78 drops, the water supply valve 67 is opened to overflow the water from the systern 65, and the overflow water is supplied from the overflow water supply means 68. It is provided so as to lead into the cooling water tank 78 and supplement the cooling water.

【0038】〔制御装置6の説明〕制御装置6は、上述
の冷媒弁39、溶液ポンプ47、冷温水ポンプ63、室
内ファン64、冷暖切替弁55、給水バルブ67、冷却
水ポンプ73、冷却水ファン77などの電気機能部品、
および加熱手段2の電気機能部品(燃焼ファン13、ガ
ス量調節弁81、ガス開閉弁82、点火装置83等)
を、使用者によって手動設定されるコントローラ(図示
しない)の操作指示や、複数設けられた各センサの入力
信号に応じて通電制御するものである。
[Description of Control Device 6] The control device 6 includes the above-described refrigerant valve 39, solution pump 47, cold / hot water pump 63, indoor fan 64, cooling / heating switching valve 55, water supply valve 67, cooling water pump 73, and cooling water. Electrical functional parts such as fan 77,
And electric functional parts of the heating means 2 (combustion fan 13, gas amount control valve 81, gas on-off valve 82, ignition device 83, etc.)
Is to control energization according to an operation instruction of a controller (not shown) manually set by the user or an input signal of each of a plurality of sensors.

【0039】制御装置6に入力されるセンサの一例とし
て、沸騰器14内の低濃度吸収液の温度を検出する液温
度センサ85と、吸収式冷凍サイクル3が設置された屋
外温度(環境温度)を検出することによって、吸収式冷
凍サイクル3内の吸収液の温度を検出する外気温度セン
サ86(本発明の吸収液温度検出手段に相当)とを備え
る。制御装置6は、冷房運転を停止する際に、加熱手段
2を停止し、冷媒弁39および冷暖切替弁55を閉じた
状態で、液温度センサ85の検出する低濃度吸収液の温
度が所定温度(例えば110℃)に低下するまで、溶液
ポンプ47を作動させる第1希釈運転手段87を備え
る。この希釈運転によって、吸収式冷凍サイクル3内の
冷媒および吸収液が循環し、吸収式冷凍サイクル3内に
おける濃度の高い吸収液が、所定吸収液温度(例えば3
℃、この温度は、後述する希釈開始温度と同じか、希釈
開始温度よりも低く設定された温度)で晶析しない濃度
まで希釈される。つまり、運転停止後、次回の冷房が開
始された際の冷房の立ち上がりを向上するために、吸収
式冷凍サイクル3内に、多少の濃度差を残した状態であ
るが、吸収式冷凍サイクル3の設置された外気温度が所
定吸収液温度に低下して、吸収式冷凍サイクル3内にお
ける吸収液の温度も所定吸収液温度に低下しても、吸収
式冷凍サイクル3内において晶析の発生を防ぐものであ
る。
As an example of a sensor input to the control device 6, a liquid temperature sensor 85 for detecting the temperature of the low-concentration absorption liquid in the boiling device 14 and an outdoor temperature (environmental temperature) in which the absorption refrigeration cycle 3 is installed. And an outside air temperature sensor 86 (corresponding to the absorbing liquid temperature detecting means of the present invention) for detecting the temperature of the absorbing liquid in the absorption refrigeration cycle 3. When stopping the cooling operation, the control device 6 stops the heating means 2 and closes the refrigerant valve 39 and the cooling / heating switching valve 55, and the temperature of the low-concentration absorption liquid detected by the liquid temperature sensor 85 is at a predetermined temperature. The first dilution operating means 87 is provided which operates the solution pump 47 until the temperature drops to (for example, 110 ° C.). By this dilution operation, the refrigerant and the absorbing liquid in the absorption refrigeration cycle 3 circulate, and the highly concentrated absorbing liquid in the absorption refrigeration cycle 3 reaches a predetermined absorption liquid temperature (for example, 3
C., this temperature is the same as the below-mentioned dilution start temperature, or is set to a temperature lower than the dilution start temperature) to a concentration at which crystallization does not occur. In other words, in order to improve the rise of cooling when the next cooling is started after the operation is stopped, a slight difference in concentration is left in the absorption refrigeration cycle 3, but the absorption refrigeration cycle 3 Even if the installed outside air temperature falls to a predetermined absorption liquid temperature and the temperature of the absorption liquid in the absorption refrigeration cycle 3 also drops to the predetermined absorption liquid temperature, crystallization is prevented from occurring in the absorption refrigeration cycle 3. It is a thing.

【0040】制御装置6は、吸収式冷凍サイクル3の最
後の運転状態、つまり、吸収式空調装置1の最後の運転
状態を記憶する運転状態記憶手段88を備える。この運
転状態記憶手段88は、電源をOFF しても記憶内容が消
去されない不揮発性メモリ(例えばEEPROM)を用
いたものである。また、制御装置6は、吸収式空調装置
1の運転停止中、運転状態記憶手段88の記憶する前回
の運転状態が冷房運転で、且つ外気温度センサ86の検
出する外気温度が、上述した所定吸収液温度以上に設定
された所定の希釈開始温度(例えば5℃)以下に低下す
ると、加熱手段2を停止した状態で、冷媒弁39および
冷暖切替弁55を開き、溶液ポンプ47を作動させ、吸
収式冷凍サイクル3内の冷媒および吸収液を所定時間
(例えば2分間)循環させて、吸収液の濃度をほぼ均一
化させる第2希釈運転手段89を備える。この作動によ
って、外気温度が所定吸収液温度以下に低下し、吸収式
冷凍サイクル3内の吸収液も所定吸収液温度以下に低下
しても、吸収式冷凍サイクル3内に晶析が発生しない。
The control device 6 is provided with an operation state storage means 88 for storing the last operation state of the absorption refrigeration cycle 3, that is, the last operation state of the absorption air conditioner 1. The operating state storage means 88 uses a non-volatile memory (for example, EEPROM) whose stored contents are not erased even when the power is turned off. Further, the control device 6 is configured such that while the operation of the absorption type air conditioner 1 is stopped, the previous operation state stored in the operation state storage means 88 is the cooling operation, and the outside air temperature detected by the outside air temperature sensor 86 is equal to the above predetermined absorption. When the temperature drops below a predetermined dilution start temperature (for example, 5 ° C.) set above the liquid temperature, the refrigerant valve 39 and the cooling / heating switching valve 55 are opened with the heating means 2 stopped, the solution pump 47 is operated, and absorption is performed. A second dilution operation unit 89 is provided that circulates the refrigerant and the absorbing liquid in the rotary refrigeration cycle 3 for a predetermined time (for example, 2 minutes) to substantially equalize the concentration of the absorbing liquid. By this operation, even if the outside air temperature falls below the predetermined absorption liquid temperature and the absorption liquid in the absorption refrigeration cycle 3 also falls below the predetermined absorption liquid temperature, crystallization does not occur in the absorption refrigeration cycle 3.

【0041】次に、上記第1希釈運転手段87の作動
を、図2のフローチャートに基づき説明する。冷房運転
中、コントローラより冷房運転を停止する指示が与えら
れた場合、あるいは安全作動のために冷房運転を停止す
る指示が制御装置6より与えられると(スタート)、溶
液ポンプ47や冷却水冷却手段5の作動を継続するとと
もに、加熱手段2の燃焼ファン13は作動させたまま、
ガス量調節弁81、ガス開閉弁82の通電を停止してガ
スバーナ11におけるガスの燃焼を停止する(ステップ
S1 )。
Next, the operation of the first dilution operation means 87 will be described with reference to the flowchart of FIG. When an instruction to stop the cooling operation is given from the controller during the cooling operation, or when an instruction to stop the cooling operation for safe operation is given from the control device 6 (start), the solution pump 47 and the cooling water cooling means. 5 is continued and the combustion fan 13 of the heating means 2 is kept operating,
The energization of the gas amount control valve 81 and the gas on-off valve 82 is stopped to stop the gas combustion in the gas burner 11 (step S1).

【0042】次に、液温度センサ85の検出する低濃度
吸収液の温度が110℃以下であるか否かの判断を行う
(ステップS2 )。この判断結果がNOの場合は、ステッ
プS2 へ戻る。ステップS2 の判断結果がYES の場合
は、吸収式冷凍サイクル3内における吸収液の濃度が、
所定吸収液温度に低下するまで晶析しない状態まで希釈
されたと判断して、吸収式空調装置1の全ての作動を停
止する(ステップS3 )。
Next, it is judged whether or not the temperature of the low-concentration absorption liquid detected by the liquid temperature sensor 85 is 110 ° C. or lower (step S2). If the result of this determination is NO, the process returns to step S2. If the decision result in the step S2 is YES, the concentration of the absorbing liquid in the absorption refrigeration cycle 3 is
It is judged that the absorption type air conditioner 1 has been diluted to the state where it does not crystallize until it has decreased to the predetermined absorption liquid temperature, and all the operations of the absorption type air conditioner 1 are stopped (step S3).

【0043】次に、上記第2希釈運転手段89の作動
を、図3のフローチャートに基づき説明する。吸収式空
調装置1の停止中で、運転状態記憶手段88の記憶する
前回の運転状態が冷房運転の場合(スタート)、外気温
度センサ86の検出する外気温度が5℃(希釈開始温
度)以下に低下したか否かの判断を行う(ステップS1
1)。この判断結果がNOの場合は、ステップS11へ戻
る。また、判断結果がYES の場合は、吸収式冷凍サイク
ル3内の吸収液の濃度を均一化させるために、冷媒弁3
9および冷暖切替弁55を開き、溶液ポンプ47を作動
させる(ステップS12)。次に、この希釈運転が開始さ
れてから、2分経過したか否かの判断を行う(ステップ
S13)。この判断結果がNOの場合は、ステップS13へ戻
る。ステップS13の判断結果がYES の場合は、吸収液の
濃度がほぼ均一化したと判断して、吸収式空調装置1の
全ての作動を停止する(ステップS14)。なお、この希
釈運転後は、運転状態記憶手段88の記憶する前回の運
転状態は、冷房運転ではなく、第2希釈運転となるた
め、次回、外気温度が5℃以下に低下しても、第2希釈
運転は行わない。
Next, the operation of the second dilution operation means 89 will be described with reference to the flowchart of FIG. When the absorption type air conditioner 1 is stopped and the previous operation state stored in the operation state storage means 88 is the cooling operation (start), the outside air temperature detected by the outside air temperature sensor 86 becomes 5 ° C. (dilution start temperature) or less. It is determined whether or not it has decreased (step S1).
1). If the result of this determination is NO, the process returns to step S11. When the result of the determination is YES, the refrigerant valve 3 is used to make the concentration of the absorbing liquid in the absorption refrigeration cycle 3 uniform.
9 and the cooling / heating switching valve 55 are opened, and the solution pump 47 is operated (step S12). Next, it is determined whether or not 2 minutes have elapsed since the start of this dilution operation (step S13). If the result of this determination is NO, the process returns to step S13. If the result of the determination in step S13 is YES, it is determined that the concentration of the absorbing liquid has become substantially uniform, and all the operations of the absorption air conditioner 1 are stopped (step S14). After the dilution operation, the previous operation state stored in the operation state storage means 88 is not the cooling operation but the second dilution operation, so even if the outside air temperature drops to 5 ° C. or less next time, 2 Dilution operation is not performed.

【0044】〔実施例の効果〕本実施例の吸収式空調装
置1は、上記作動で示したように、冷房運転を停止する
際に行う第1希釈運転は、吸収式冷凍サイクル3内の吸
収液に多少の濃度差を残した希釈運転であり、次回の冷
房の立ち上がりに優れる。また、夏期など、冷房運転を
行う頻度が高い時期では、吸収液の温度が低下しても、
吸収液の晶析が防がれる。また、冷房シーズンが終わ
り、吸収式冷凍サイクル3の設置された外気温度が5℃
(希釈開始温度)に低下した場合に行う第2希釈運転
は、吸収式冷凍サイクル3内の吸収液の濃度をほぼ均一
化するため、冬期など、外気温度が極めて低下しても、
吸収液の晶析を防ぐことができる。
[Effects of the Embodiment] In the absorption type air conditioner 1 of the present embodiment, as described above, the first dilution operation performed when the cooling operation is stopped is the absorption in the absorption refrigeration cycle 3. It is a diluting operation that leaves a slight difference in concentration in the liquid, and is excellent at the next rise of cooling. In addition, during the period when the cooling operation is frequently performed, such as in the summer, even if the temperature of the absorbing liquid decreases,
Crystallization of the absorption liquid is prevented. Also, after the cooling season is over, the outside air temperature at which the absorption refrigeration cycle 3 is installed is 5 ° C.
In the second dilution operation performed when the temperature decreases to (dilution start temperature), the concentration of the absorbing liquid in the absorption refrigeration cycle 3 is made substantially uniform, so even if the outside air temperature is extremely low, such as in winter,
Crystallization of the absorption liquid can be prevented.

【0045】また、本実施例では、第2希釈運転によっ
て吸収液の濃度を均一化する際、冷媒弁39および冷暖
切替弁55を開くため、ガスバーナ11による加熱運転
を行わなくても高温再生器15から暖房管54を介して
蒸発吸収容器41内へ吸収液を供給することができ、供
給された比較的濃度の高い吸収液は、凝縮器17から冷
媒弁39を介して供給された冷媒や濃度の低い吸収液に
混ざり合う。この結果、吸収式冷凍サイクル3内におけ
る吸収液の均一化する時間を、本実施例では2分と短く
することができる。さらに、運転状態記憶手段88に不
揮発性メモリを用いたことによって、前回の運転状態を
簡単な回路で記憶することができる。
Further, in this embodiment, since the refrigerant valve 39 and the cooling / heating switching valve 55 are opened when the concentration of the absorbing liquid is made uniform by the second dilution operation, the high temperature regenerator is not required to perform the heating operation by the gas burner 11. It is possible to supply the absorbing liquid from 15 into the evaporative absorption container 41 through the heating pipe 54, and the supplied relatively high-concentration absorbing liquid is the refrigerant supplied from the condenser 17 via the refrigerant valve 39. Mixes with low-concentration absorbent. As a result, the time required for the absorption liquid to be homogenized in the absorption refrigeration cycle 3 can be shortened to 2 minutes in this embodiment. Furthermore, by using a non-volatile memory for the operating state storage means 88, the previous operating state can be stored by a simple circuit.

【0046】〔変形例〕上記の実施例では、吸収式冷凍
サイクルの設置されている環境温度(外気温度)を検出
して吸収液温度の低下を推測し、第2希釈運転を開始さ
せた例を示したが、吸収式冷凍サイクルの吸収液の温度
を直接検出し、直接検出された吸収液の温度が希釈開始
温度に低下した場合に第2希釈運転を行うように設けて
も良い。上記の実施例では、2重効用型の吸収式冷凍サ
イクル3を例に示したが、1重効用型の吸収式冷凍サイ
クルでも良いし、3重以上の多重効用型の吸収式冷凍サ
イクルでも良い。また、低温再生器内に中濃度吸収液を
注入する際、低温再生器の上方から注入する例を示した
が、下方から注入しても良い。
[Modification] In the above embodiment, the second dilution operation is started by detecting the environment temperature (outside air temperature) in which the absorption refrigeration cycle is installed and estimating the decrease in the absorption liquid temperature. However, the second dilution operation may be performed when the temperature of the absorption liquid in the absorption refrigeration cycle is directly detected and the directly detected temperature of the absorption liquid drops to the dilution start temperature. In the above embodiment, the double-effect absorption refrigeration cycle 3 is shown as an example, but a single-effect absorption refrigeration cycle or a triple-effect multiple-effect absorption refrigeration cycle may be used. . Further, when the medium-concentration absorption liquid is injected into the low temperature regenerator, an example in which it is injected from above the low temperature regenerator has been shown, but it may be injected from below.

【0047】加熱手段の加熱源としてガスバーナを用い
たが、石油バーナや電気ヒータを用いたり、他の装置
(例えば内燃機関)の排熱を利用しても良い。凝縮用熱
交換器、蒸発用熱交換器、吸収用熱交換器をコイル状に
設けた例を示したが、チューブアンドフィンや、積層型
熱交換器など他の形式の熱交換器を用いても良い。吸収
液の一例として臭化リチウム水溶液を例に示したが、冷
媒にアンモニア、吸収剤に水を利用したアンモニア水溶
液など他の吸収液を用いても良い。
Although the gas burner is used as the heating source of the heating means, an oil burner or an electric heater may be used, or the exhaust heat of another device (for example, an internal combustion engine) may be used. Although an example in which a condensing heat exchanger, an evaporating heat exchanger, and an absorbing heat exchanger are provided in a coil shape is shown, other types of heat exchangers such as a tube-and-fin or a laminated heat exchanger may be used. Is also good. Although an aqueous lithium bromide solution has been shown as an example of the absorbing liquid, other absorbing liquids such as an ammonia aqueous solution using ammonia as a refrigerant and water as an absorbent may be used.

【0048】熱媒体の一例として、水道水を用い、冷却
水回路の冷却水と共用した例を示したが、冷却水回路の
冷却水とは異なる不凍液やオイルなど他の熱媒体を用い
ても良い。上記実施例中で示した数値は、実施例を判り
易くするために用いた一例であって、本願発明は実施例
の数値になんら限定されるものではなく、使用目的や装
置の規模に適した数値を適宜採用可能なものである。
As an example of the heat medium, tap water is used and shared with the cooling water of the cooling water circuit, but another heating medium such as an antifreeze liquid or oil different from the cooling water of the cooling water circuit is used. good. The numerical values shown in the above embodiments are examples used for making the embodiments easy to understand, and the present invention is not limited to the numerical values of the embodiments, and is suitable for the purpose of use and the scale of the device. Numerical values can be appropriately adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式空調装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an absorption air conditioner.

【図2】第1希釈運転手段の作動を示すフローチャート
である。
FIG. 2 is a flowchart showing the operation of a first dilution operation means.

【図3】第2希釈運転手段の作動を示すフローチャート
である。
FIG. 3 is a flowchart showing the operation of a second dilution operation means.

【符号の説明】[Explanation of symbols]

1 吸収式空調装置 2 加熱手段 3 吸収式冷凍サイクル 4 室内空調手段 5 冷却水冷却手段 6 制御装置 15 高温再生器 16 低温再生器 17 凝縮器 18 蒸発器 19 吸収器 47 溶液ポンプ 54 暖房管 55 冷暖切替弁 61 室内熱交換器 62 冷温水回路(熱媒体回路) 63 冷温水ポンプ(熱媒体ポンプ) 86 外気温度センサ(吸収液温度検出手段) 87 第1希釈運転手段 88 運転状態記憶手段 89 第2希釈運転手段 1 Absorption type air conditioner 2 Heating means 3 Absorption type refrigeration cycle 4 Indoor air conditioning means 5 Cooling water cooling means 6 Control device 15 High temperature regenerator 16 Low temperature regenerator 17 Condenser 18 Evaporator 19 Absorber 47 Solution pump 54 Heating pipe 55 Cooling / heating Switching valve 61 Indoor heat exchanger 62 Cold / hot water circuit (heat medium circuit) 63 Cold / hot water pump (heat medium pump) 86 Outside air temperature sensor (absorbent liquid temperature detection means) 87 First dilution operation means 88 Operating state storage means 89 Second Dilution operation means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】a)吸収液を加熱させる加熱手段と、 b)この加熱手段で吸収液を加熱することによって吸収
液の一部を気化させる再生器、この再生器で発生した気
化冷媒を冷却して液化する凝縮器、この凝縮器で液化し
た液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で
蒸発した気化冷媒を吸収液に吸収させる吸収器、この吸
収器内の吸収液を前記再生器へ圧送する溶液ポンプを具
備する吸収式冷凍サイクルと、 c)室内に設置され、室内空気と熱媒体とを熱交換する
室内熱交換器、前記蒸発器で液化冷媒が蒸発する際に蒸
発潜熱が奪われて冷却された熱媒体を、前記室内熱交換
器へ導くとともに、室内熱交換器で室内空気と熱交換さ
れた熱媒体を再び前記蒸発器へ導く熱媒体回路、この熱
媒体回路に設けられ、熱媒体を循環させる熱媒体ポンプ
を備えた室内空調手段と、 d)冷房運転を停止する際、前記加熱手段を停止した状
態で、前記溶液ポンプを作動させ、前記吸収式冷凍サイ
クル内の冷媒および吸収液を循環させ、運転停止中に前
記吸収式冷凍サイクル内における濃度の高い吸収液が、
所定吸収液温度で晶析しない濃度まで希釈させる第1希
釈運転手段と、 e)運転停止中に前記吸収式冷凍サイクル内における濃
度の高い吸収液の温度を検出する吸収液温度検出手段
と、 f)この吸収液温度検出手段の検出する吸収液の温度
が、前記所定吸収液温度以上に設定された所定希釈開始
温度に低下すると、前記加熱手段を停止した状態で、前
記溶液ポンプを作動させ、前記吸収式冷凍サイクル内の
冷媒および吸収液を循環させて、吸収液の濃度をほぼ均
一化させる第2希釈運転手段とを備える吸収式空調装
置。
1. A) heating means for heating an absorbing liquid; b) a regenerator for vaporizing a part of the absorbing liquid by heating the absorbing liquid by the heating means; cooling a vaporized refrigerant generated in the regenerator. A condenser for liquefying the liquefied refrigerant, an evaporator for evaporating the liquefied refrigerant liquefied by the condenser under a low pressure, an absorber for absorbing the vaporized refrigerant evaporated by the evaporator into an absorbing liquid, and the absorbing liquid in the absorber as described above. An absorption refrigeration cycle equipped with a solution pump for pressure-feeding to a regenerator, and c) an indoor heat exchanger installed in the room for exchanging heat between indoor air and a heat medium, and evaporated when the liquefied refrigerant is evaporated in the evaporator. A heat medium circuit that guides the heat medium cooled by removing the latent heat to the indoor heat exchanger, and also guides the heat medium that has been heat-exchanged with the room air in the indoor heat exchanger to the evaporator, the heat medium circuit Heat to circulate the heat medium provided in An indoor air conditioner equipped with a body pump, and d) when stopping the cooling operation, the solution pump is operated while the heating means is stopped to circulate the refrigerant and the absorbing liquid in the absorption refrigeration cycle, Absorbing liquid with high concentration in the absorption refrigeration cycle during operation stop,
First dilution operation means for diluting to a concentration at which a predetermined absorption liquid temperature does not crystallize; e) absorption liquid temperature detection means for detecting the temperature of the absorption liquid having a high concentration in the absorption refrigeration cycle while the operation is stopped; ) When the temperature of the absorbing liquid detected by the absorbing liquid temperature detecting means decreases to a predetermined dilution start temperature set to the predetermined absorbing liquid temperature or higher, the solution pump is operated in a state where the heating means is stopped, An absorption air conditioner, comprising: a second dilution operation means for circulating the refrigerant and the absorption liquid in the absorption refrigeration cycle to make the concentration of the absorption liquid substantially uniform.
【請求項2】請求項1の吸収式空調装置において、 前記吸収液温度検出手段は、 前記吸収式冷凍サイクルの設置された環境温度を検出す
る外気温度センサで、 前記第2希釈運転手段は、運転停止中に前記外気温度セ
ンサの検出する環境温度が所定希釈開始温度に低下する
と、前記吸収式冷凍サイクル内における濃度の高い吸収
液の温度も所定希釈開始温度に低下したと判断すること
を特徴とする吸収式空調装置。
2. The absorption type air conditioner according to claim 1, wherein the absorbing liquid temperature detecting means is an outside air temperature sensor for detecting an environmental temperature in which the absorbing refrigeration cycle is installed, and the second dilution operating means is When the environmental temperature detected by the outside air temperature sensor falls to a predetermined dilution start temperature during an operation stop, it is determined that the temperature of the highly concentrated absorbent in the absorption refrigeration cycle has also dropped to the predetermined dilution start temperature. Absorption type air conditioner.
【請求項3】請求項1の吸収式空調装置において、 前記吸収式冷凍サイクルは、前記加熱手段によって加熱
された吸収液を直接前記蒸発器へ導き、この蒸発器を流
れる熱媒体を加熱して室内暖房を行う暖房運転手段を備
え、 前記第2希釈運転手段は、前記吸収式冷凍サイクルの最
後の運転状態を記憶する運転状態記憶手段の記憶する前
回の運転状態が冷房運転で、且つ前記吸収式冷凍サイク
ル内における濃度の高い吸収液の温度が所定希釈開始温
度に低下すると、吸収液の濃度をほぼ均一化させること
を特徴とする吸収式空調装置。
3. The absorption type air conditioner according to claim 1, wherein the absorption refrigeration cycle directly introduces the absorption liquid heated by the heating means to the evaporator, and heats a heat medium flowing through the evaporator. The second dilution operation means includes a heating operation means for performing indoor heating, and the second dilution operation means has a cooling operation as a previous operation state stored in an operation state storage means for storing a last operation state of the absorption refrigeration cycle, and the absorption operation. An absorption type air conditioner characterized in that when the temperature of an absorbent having a high concentration in the automatic refrigeration cycle drops to a predetermined dilution start temperature, the concentration of the absorbent is made substantially uniform.
【請求項4】請求項3の吸収式空調装置において、 前記暖房運転手段は、前記加熱手段で加熱された吸収液
を前記蒸発器へ導く暖房管、およびこの暖房管を暖房運
転中に開く暖房弁とを備え、 前記第2希釈運転手段は、吸収液の濃度を均一化する
際、前記暖房弁を開くことを特徴とする吸収式空調装
置。
4. The absorption air conditioner according to claim 3, wherein the heating operation means is a heating pipe for guiding the absorption liquid heated by the heating means to the evaporator, and heating for opening the heating pipe during the heating operation. An absorption type air conditioner, wherein the second dilution operation means opens the heating valve when the concentration of the absorbing liquid is made uniform.
【請求項5】請求項3の吸収式空調装置において、 前記運転状態記憶手段は、 不揮発性メモリを用いた記憶手段であることを特徴とす
る吸収式空調装置。
5. The absorption type air conditioner according to claim 3, wherein the operating state storage means is a storage means using a non-volatile memory.
JP6163733A 1994-07-15 1994-07-15 Absorption air conditioner Expired - Fee Related JP2902305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163733A JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163733A JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH0828998A true JPH0828998A (en) 1996-02-02
JP2902305B2 JP2902305B2 (en) 1999-06-07

Family

ID=15779642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163733A Expired - Fee Related JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP2902305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine
US20230036309A1 (en) * 2021-07-29 2023-02-02 Yazaki Energy System Corporation Absorption chiller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079856A (en) * 1973-11-20 1975-06-28
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPH04295558A (en) * 1991-03-25 1992-10-20 Tokyo Gas Co Ltd Absorption refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079856A (en) * 1973-11-20 1975-06-28
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPH04295558A (en) * 1991-03-25 1992-10-20 Tokyo Gas Co Ltd Absorption refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine
US20230036309A1 (en) * 2021-07-29 2023-02-02 Yazaki Energy System Corporation Absorption chiller
US12044446B2 (en) * 2021-07-29 2024-07-23 Yazaki Energy System Corporation Absorption chiller

Also Published As

Publication number Publication date
JP2902305B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JP2003343940A (en) Absorption water cooler/heater
JP2902305B2 (en) Absorption air conditioner
JP3283780B2 (en) Absorption cooling device
JP2650654B2 (en) Absorption refrigeration cycle device
JP2846582B2 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP3328156B2 (en) Absorption air conditioner
JP2000186868A (en) Controller for absorption air conditioning apparatus
JP3322994B2 (en) Absorption air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JPH11304398A (en) Air conditioner
JPH0829000A (en) Absorption type air conditioner
JP3837186B2 (en) Absorption refrigerator
JP3660493B2 (en) Absorption refrigeration system controller
KR100219910B1 (en) Absorption type air conditioner
JP3117631B2 (en) Absorption air conditioner
JP3281564B2 (en) Absorption air conditioner
JP2954514B2 (en) Absorption air conditioner
JP2954515B2 (en) Absorption air conditioner
JP2746323B2 (en) Absorption air conditioner
JP2003042588A (en) Absorption type cooling and heating machine
JP2898202B2 (en) Absorption cooling system
JP3017060B2 (en) Absorption air conditioner
JP4115020B2 (en) Control method of absorption refrigerator
JP2003065625A (en) Absorption type air conditioning equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees