JP3660493B2 - Absorption refrigeration system controller - Google Patents

Absorption refrigeration system controller Download PDF

Info

Publication number
JP3660493B2
JP3660493B2 JP01542498A JP1542498A JP3660493B2 JP 3660493 B2 JP3660493 B2 JP 3660493B2 JP 01542498 A JP01542498 A JP 01542498A JP 1542498 A JP1542498 A JP 1542498A JP 3660493 B2 JP3660493 B2 JP 3660493B2
Authority
JP
Japan
Prior art keywords
temperature
absorption
liquid
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01542498A
Other languages
Japanese (ja)
Other versions
JPH11211264A (en
Inventor
寿洋 佐藤
徹 福知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP01542498A priority Critical patent/JP3660493B2/en
Publication of JPH11211264A publication Critical patent/JPH11211264A/en
Application granted granted Critical
Publication of JP3660493B2 publication Critical patent/JP3660493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭化リチウムなどの水溶液を吸収液とする吸収サイクルを形成し、吸収器内に冷却水を通過させるための冷却水ポンプを具備した吸収式冷凍装置に関し、特に、吸収サイクルの運転終了時の希釈運転における冷却水ポンプの制御に係る。
【0002】
【従来の技術】
吸収式冷凍装置では、再生器でバーナの加熱により沸騰した低濃度吸収液から冷媒蒸気が分離され、冷媒蒸気は凝縮器で冷却されて冷媒液となり蒸発器へ供給される。再生器で冷媒蒸気が分離されて高濃度となった吸収液は、吸収器へ供給される。吸収器と蒸発器とは連通しており、冷媒液は蒸発器で蒸発して熱を奪って冷却源を形成し、吸収液は吸収器で冷媒蒸気を吸収する。このときの発熱を外部へ排出するために、吸収器内には熱交換用配管が設けられていて、冷却水ポンプによって供給される冷却水の通過によって外部へ排熱される。
吸収器で冷媒蒸気を吸収した吸収液は、吸収液ポンプによって再生器へ循環する。
【0003】
上記構成の吸収サイクルにおいて、運転終了時には、再生器の加熱源であるバーナの燃焼が停止された後も余熱によって熱が再生器に与えられて冷媒蒸気が生成されるため、バーナによる加熱の停止後も、再生器内の温度がある程度下がるまでは、吸収液ポンプを継続して運転させる希釈運転が行われる。
【0004】
この希釈運転は、吸収液の温度を下げて、吸収サイクル内の吸収液の濃度及び圧力を均一化させて、吸収液の晶析を防止するためのものである。吸収液の温度をより速く下げるために、従来では、希釈運転において、バーナの停止後に吸収液ポンプの継続作動のみではなく、冷却水ポンプも同じく継続して運転させて、吸収器内の吸収液の温度を下げることによって、希釈運転の時間の短縮を図っている。
【0005】
【発明が解決しようとする課題】
上記のとおり、従来では、希釈運転における冷却水ポンプの継続作動は、吸収液ポンプの作動時間を短縮させるための補助として用いられていた。
ところが、蒸発器は吸収器と連通しており、バーナの停止後の希釈運転において、冷却水ポンプが継続して運転されると、室内機側は、流量調整バルブが閉じられ、ファンも停止しているので負荷がない状態になっている。一方、室外機側は、余熱等でサイクルはしばらくの間成立しているため、吸収器の冷却により活発になる吸収反応に対応して促進されて蒸発器における冷媒液の蒸発は活発になり、蒸発器が冷やされていく。つまり、結果として、蒸発器が凍結しやすい環境になっている事になる。
【0006】
また、希釈運転中に蒸発器内の温度が下がり過ぎて冷媒液等が凍結することがないようにするために、バーナの停止後の希釈運転中の冷却水ポンプの継続作動の時間を制限し、例えば、1分間と短めの時間に設定することが考えられるが、冷却が不十分であって吸収器内の吸収液の温度を十分に下げられないために、冷却水ポンプの停止後の吸収液ポンプのみの作動による希釈運転時間が長くなり過ぎるなどの不具合が生じてしまう。
【0007】
本発明は、吸収式冷凍装置において、運転終了時の希釈運転を、蒸発器を凍結させることなく、短時間で終えることを目的とする。
【0008】
【課題を解決するための手段】
本発明では、請求項1は、冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、該再生器によって分離した前記冷媒蒸気を冷却して凝縮させる凝縮器と、該凝縮器で凝縮した冷媒液を低圧下で蒸発させて冷却源とする蒸発器と、前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させるとともに、冷却水を通過させる熱交換用配管を内部に配置して、前記熱交換用配管上に散布される吸収液の熱を吸熱するう吸収器とから吸収サイクルを形成するとともに、前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプと、前記吸収器の前記熱交換用配管内に冷却水を通過させる冷却水ポンプとを備えた吸収式冷凍装置であって、該吸収式冷凍装置の運転終了時に、前記加熱手段の加熱を停止した後に、前記吸収液ポンプを継続して作動させる希釈運転を行う希釈運転制御手段を具備する吸収式冷凍装置の制御装置において、前記希釈運転制御手段は、前記蒸発器の温度を検知する蒸発器温度検知手段を備え、前記吸収式冷凍装置の運転終了時の前記希釈運転において、前記加熱手段の加熱を停止させた後に、前記蒸発器温度検知手段の検知する蒸発器温度が凍結限界温度に低下するまでは前記冷却水ポンプの作動を継続させ、前記蒸発器温度検知手段の検知する蒸発器温度が前記凍結限界温度に低下した時に前記冷却水ポンプの作動を停止させることを技術的手段とする。
【0009】
上記構成により、請求項1では、吸収式冷凍装置において、吸収サイクルの運転を終了させる際には、再生器を加熱する加熱手段の作動を停止させた後、冷却水ポンプと吸収液ポンプを継続して作動させる。
冷却水ポンプの作動により、吸収器の熱交換用配管内を冷却水が継続して通過するため、熱交換用配管上に散布される吸収液の熱が、熱交換用配管を通過する冷却水によって吸収器の外部へ排熱され、吸収器内の吸収液の温度及び吸収器内の温度が低下する。
また、吸収液ポンプの作動により、吸収器内から再生器内へ吸収液が循環するため、加熱手段によって加熱された再生器内の高温の吸収液が、吸収器から送られる冷却された吸収液で希釈されて、その温度が次第に低下して、吸収サイクル内の圧力の均一化が進む。
【0010】
吸収器内の温度低下に伴って温度低下する蒸発器温度が凍結限界温度まで低下すると、冷却水ポンプの作動を停止し、以後は、吸収液ポンプのみが継続して作動される。
冷却水ポンプは、蒸発器温度が凍結限界に低下するまでの間、継続して作動されるため、吸収液ポンプに作動のみによる希釈運転と比較して、大幅に吸収液の温度低下を促進することができる。
この結果、希釈運転の時間を大幅に短縮させることができる。
【0011】
希釈運転において、冷却水ポンプの作動停止を、蒸発器が凍結を生じない限界の温度まで下がったときに行うようにしておくことで、蒸発器が凍結しない範囲で冷却水ポンプを停止させることができる。
従って、蒸発器の温度を検知して冷却水ポンプの作動停止の時期を決定するため、蒸発器の凍結防止を図り且つ希釈運転時間の短縮を実現できる。
【0012】
請求項2では、請求項1において、前記希釈運転制御手段は、前記再生器内の吸収液温度を検知する吸収液温度検知手段を備え、前記再生器内の吸収液温度が所定の吸収液ポンプ停止温度に低下するまでは前記吸収液ポンプを継続して作動させ、前記再生器内の吸収液温度が前記吸収液ポンプ停止温度に低下した時に前記吸収液ポンプを停止させることを技術的手段とする。
【0013】
これにより、請求項2では、加熱手段の作動終了後に、冷却水ポンプが作動を終了した後に、再生器内の吸収液温度に低下したときには、吸収サイクル内の吸収液の濃度及び圧力が均一化され、吸収液が晶析する恐れがなくなったと判断して、吸収液ポンプを停止する。吸収器内の吸収液の温度は冷却水ポンプの作動によって低下しているため、吸収器から吸収液ポンプによって再生器へ戻される吸収液の温度は低下している。従って、吸収器から供給された吸収液の温度に基づいて吸収液ポンプの作動の終了が制御されることによって、吸収液ポンプが作動する希釈運転時間を短縮することができる。
【0014】
【発明の実施の形態】
図1は、本発明に関わる空調装置の実施例を示す。
空調装置は、吸収式冷凍装置としての室外機100と室内機RUとからなり、室外機100は、冷凍機本体101と冷却塔(クーリングタワー)CTとから構成される。なお、空調装置は、制御装置200により制御される。
冷凍機本体101は、主にステンレスによって成形され、冷媒及び吸収液としての臭化リチウム水溶液の吸収サイクルを形成するもので、Bは加熱手段としてのガスバーナ、1は高温再生器、2は低温再生器、3は吸収器、4は蒸発器、5は凝縮器であり、吸収液内には、ステンレスと臭化リチウムとの反応による腐食を抑制するためのインヒビターが含まれている。
【0015】
高温再生器1では、加熱タンク11の内部に供給された低濃度吸収液をガスバーナBによって加熱し、中濃度吸収液分離筒12と吸収液仕切り容器13との間に形成された筒状の吸収液上昇流路14を加熱された吸収液が上昇すると、加熱により低濃度吸収液中の冷媒としての水が蒸発して冷媒蒸気(水蒸気)として分離して、冷媒蒸気の蒸発により濃化した中濃度吸収液は、吸収液戻し板15によって内側へ方向を転換されて吸収液仕切り容器13内へ戻される。
【0016】
冷媒が分離されて高濃度化された中濃度吸収液は、吸収液仕切り容器13の側部に開口した中濃度吸収液流路L1から、低温再生器2へ供給される。
また、分離した冷媒蒸気は冷媒回収タンク10で回収されて、冷媒流路L5により凝縮器5へ供給される。
尚、吸収液仕切り容器13の底部には、暖房運転時に、加熱された吸収液を蒸発器4内へ供給するための暖房用吸収液流路L4の流入口が開口している。
【0017】
冷媒回収タンク10内の下部内側には、冷媒仕切り筒17が中濃度吸収液分離筒12に接合されていて、中濃度吸収液分離筒12との間に断熱用間隙17aを形成しているため、中濃度吸収液分離筒12からの熱が遮断され、後述する冷媒貯留部10a内の冷媒液が、吸収液上昇流路14内の高温の吸収液によって加熱されることがない。
冷媒回収タンク10は、冷媒仕切り筒17の外側が、分離された冷媒が貯留する冷媒貯留部10aとなっており、冷媒貯留部10aに貯留された冷媒液は、冷媒流路L5から凝縮器5へ供給される。
尚、高温再生器1の加熱タンク11には、内部の吸収液温度を検知するための吸収液温度サーミスタ211が備えられている。
【0018】
低温再生器2では、途中に熱交換器Hを通過する中濃度吸収液流路L1によって供給される中濃度吸収液が、低温再生器ケース20の天井から流入して冷媒回収タンク10の外壁を熱源として再加熱され、気液分離部22で冷媒蒸気と高濃度吸収液とに分離され、冷媒蒸気は、冷媒蒸気出口21および隙間5Aから凝縮器ケース50内へ、高濃度吸収液は、高濃度吸収液受け部23に貯留され、高濃度吸収液流路L2により吸収器3へ供給される。
【0019】
尚、中濃度吸収液流路L1中には、吸収液仕切り容器13から低温再生器2へ流れる中濃度吸収液の流量を制限するためのオリフィス(図示なし)が設けられていて、低温再生器ケース20内へは中濃度吸収液分離筒12との圧力差により中濃度吸収液が供給される。(低温再生器ケース20内では、約70mmHg、中濃度吸収液分離筒12内では約700mmHg)
【0020】
吸収器3は、蒸発・吸収ケース30内に銅管を縦型円筒状に巻設され内部を排熱用冷却水が流れる吸収管としてコイル状に巻かれた吸収コイル31が捲回されており、高濃度吸収液流路L2により低温再生器2の高濃度吸収液受け部23から供給される高濃度吸収液が圧力差により流入して、高濃度吸収液散布具32により吸収コイル31の上端に散布され、吸収コイル31の表面に付着して薄膜状になり、重力の作用で下方に流下し、水蒸気を吸収して低濃度吸収液となる。この水蒸気を吸収する際に吸収コイル31の表面で発熱するが、吸収コイル31を循環する排熱用冷却水により冷却される。
尚、吸収液に吸収される水蒸気は、後述する蒸発器4で冷媒蒸気として発生したものである。
【0021】
吸収器3内の低濃度吸収液は、吸収液ポンプP1の作動により、底部33から、熱交換器Hおよび吸収液ポンプP1が装着された低濃度吸収液流路L3によって加熱タンク11内へ供給される。
また吸収コイル31内には、冷房運転時に、冷却塔CTで冷却された排熱用冷却水が、凝縮器5の冷却コイル51を介して循環する。
【0022】
蒸発器4は、蒸発・吸収ケース30内の吸収コイル31の外周に設けた縦型円筒形で多数の連通口(図示なし)付きの仕切り板40の外周に、内部を冷暖房用の冷温水が流れる銅管からなる縦型円筒形の蒸発コイル41を配設し、その上方に冷媒液散布具42を取り付けてなる。尚、蒸発器4の底部43は、電磁式の冷暖切替え弁6を有する暖房用吸収液流路L4により中濃度吸収液分離筒12内の吸収液仕切り容器13の底部と連通している。
【0023】
以上の構成により、蒸発器4では、冷房運転時に冷媒液散布具42より冷媒液(水)を蒸発コイル41の上に流下させると、流下された冷媒液は、表面張力で蒸発コイル41の表面を濡らして膜状となり、重力の作用で下方へ降下しながら低圧(例えば、6.5mmHg)となっている蒸発・吸収ケース30内で蒸発コイル41から気化熱を奪って蒸発し、蒸発コイル41内を流れる空調用の冷温水を冷却する。
【0024】
凝縮器5では、凝縮器ケース50内に、冷却コイル51によって冷却された冷媒蒸気が液化した冷媒液を受けるための冷媒液受け部52が設けられていて、冷媒液受け部52は、蒸発器4の冷媒液散布具42の上方に設けられて、供給される冷媒液の自己冷却により、冷媒液を冷却させる冷媒冷却器48と、冷媒液供給路L6によって連通している。
尚、冷媒冷却器48内には、蒸発器4内の冷媒液の温度を検知するための蒸発器温度サーミスタが212が備えられている。
【0025】
以上の構造を有する凝縮器5は、冷媒流量を制限するためのオリフィス(図示なし)が設けられた冷媒流路L5により冷媒回収タンク10の冷媒貯留部10aと連通するとともに、冷媒蒸気出口21および隙間5Aを介して低温再生器2とも連通しており、いずれも圧力差(凝縮器ケース内では約70mmHg)により冷媒が供給される。
凝縮器5では、凝縮器ケース50内に供給された冷媒蒸気は、冷却コイル51により冷却されて液化し、凝縮器5の下部に設けられた冷媒液受け部52から蒸発器4内に配置された冷媒冷却器48へ冷媒液供給路L6を介して供給される。尚、凝縮器ケース50内と冷媒冷却器48とは、冷媒弁7を備えた冷媒液流路L7によって連通しており、冷媒液の凍結の恐れのある場合に、冷媒液受け部52をオーバーフローして凝縮器ケース50の底に貯留された冷媒液が冷媒弁7の開弁制御によって蒸発器4内へ供給されて、凍結を防止する。
【0026】
以上の構成により、吸収液は、高温再生器1→中濃度吸収液流路L1→低温再生器2→高濃度吸収液流路L2→高濃度吸収液散布具32→吸収器3→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
また、冷媒は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒液)→冷媒供給路L6(冷媒液)又は冷媒液流路L7(冷媒液)→冷媒冷却器48(冷媒液)→冷媒液散布具42(冷媒液)→蒸発器4(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃度吸収液流路L3→高温再生器1の順に循環する。
【0027】
上記、吸収液と熱交換する吸収器3の吸収コイル31と凝縮器5の冷却コイル51は、接続されて連続コイルを形成しており、連続コイルは、冷却水流路34によって冷却塔CTと接続されて冷却水循環路を形成している。
この冷却水循環路において、吸収コイル31の入口と冷却塔CTとの間の冷却水流路34には、連続コイル内へ冷却水を送り込むための冷却水ポンプP2が設けられており、冷却水ポンプP2の作動により連続コイルを通過する冷却水は、吸収コイル31で吸収熱を、冷却コイル51で凝縮熱をそれぞれ吸熱して比較的高温となって、冷却塔CTに供給される。
【0028】
上記の構成により、冷房運転時には、冷却水ポンプP2の作動により冷却塔CT内の冷却水が、冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却コイル51→冷却塔CTの順に循環する。
冷却塔CTでは、落下する冷却水を大気中に一部蒸発させて、残りの冷却水を冷却する自己冷却がなされており、冷却水は、大気中に放熱して低温度になる排熱サイクルを形成している。なお、送風機Sからの送風により、水の蒸発を促進させている。
【0029】
蒸発器4の蒸発コイル41には、室内機RUに設けられた空調熱交換器44が冷温水流路47で連結されていて、冷温水流路47には、冷温水ポンプP3が設けられている。
以上の構成により、蒸発コイル41で低温度となった冷温水は、蒸発コイル41→冷温水流路47→空調熱交換器44→冷温水流路47→冷温水ポンプP3→蒸発コイル41の順で循環する。
【0030】
室内機RUには、空調熱交換器44が設けられているとともに、この熱交換器44に対して、室内空気を通過させて再び室内へ吹き出すブロワ46が備えられている。
【0031】
暖房用吸収液流路L4および冷暖切替え弁6は暖房運転用に設けられたもので、暖房運転時には冷暖切替え弁6を開弁し、吸収液ポンプP1を作動させる。
これにより、中濃度吸収液分離筒12内の吸収液仕切り容器13内の高温度の中濃度吸収液が蒸発器4内へ流入し、中濃度吸収液の高温蒸気(冷媒蒸気)によって蒸発コイル41内の冷温水が加熱され、加熱された蒸発コイル41内の冷温水は、冷温水ポンプP3の作動により冷温水流路47から空調用熱交換器44へ供給され、暖房の熱源となる。
蒸発器4内の中濃度吸収液は、仕切り板40の連通口から吸収器3側へ入り、低濃度吸収液流路L3を経て、吸収液ポンプP1により加熱タンク11へ戻される。
【0032】
以上の構成からなる本実施例の空調装置では、吸収サイクルにおいて吸収液を循環させるための吸収液ポンプP1と、蒸発器コイル41で冷却または加熱された冷温水を冷温水流路47によって室内機RUの空調用熱交換器44に循環させるための冷温水ポンプP3とが、同一のモータによって駆動されるタンデムポンプとして構成されていて、常に吸収液ポンプP1と冷温水ポンプP3とが同時に同一回転数で回転する。
【0033】
次に、空調装置を制御する制御装置200の制御動作について説明する。
制御装置200は、ガスバーナBの燃焼制御、吸収液ポンプP1及び冷温水ポンプP3を駆動するタンデムポンプの制御、冷却水ポンプP2の制御、冷却塔CTの送風機Sの回転制御、室内機RUのブロワ46の制御、吸収サイクル内に設けられた各弁6、7の制御等により、空調装置の冷房運転、暖房運転の各制御を行う。以下では、図2から図4に基づいて冷房運転についての説明のみを行い、暖房運転については説明を省略する。
【0034】
[冷房運転制御]
リモコン(図示なし)等の操作によって冷房運転が開始されると、所定の冷房始動制御(S100)を行い、その後、冷房比例運転(ステップS200)へ移行し、使用者による冷房運転終了の操作が行われると(ステップS201においてYES)、終了用希釈運転(S300)に移行する。
【0035】
冷房始動制御(図3参照)では、各弁6、7の閉弁制御を行い、ガスバーナBへのガス供給路201に設けられたガス電磁弁202、203およびガス比例弁204を開いてガスバーナBを点火用電極(図示なし)により点火し(ステップS101)、ガスバーナBの着火後は、高温再生器1の吸収液温度(以下「HGE温度」という)を検知する吸収液温度サーミスタ211の検知温度に応じて、HGE温度が60℃より低い場合には(ステップS102においてNO)、コールドスタートとしてガスバーナBのインプットを2500kcalの小インプットになるようにガス比例弁204、燃焼ファン205を制御し(ステップS103)、HGE温度が60℃に達するまで待機する(ステップS102)。
【0036】
HGE温度が60℃以上の場合には(ステップS102においてYES)、インプットを4800kcalにするように、ガス比例弁204、燃焼ファン205を制御する(ステップS104)。
その後、HGE温度が80℃に達するまで待機し(ステップS105においてNO)、HGE温度が80℃に達すると(ステップS105においてYES)、冷却水ポンプP2を駆動する(ステップS106)。
その後、HGE温度が100℃に達するまで待機し(ステップS107においてNO)、HGE温度が100℃に達すると(ステップS107においてYES)、タンデムポンプ110を駆動する(ステップS108)。
これにより、吸収サイクル内を吸収液が循環し、吸収器3において吸収液が冷媒蒸気を吸収し、蒸発器4において冷媒液が蒸発すると、蒸発コイル41内を循環する冷温水の温度が次第に低下する。
【0037】
室内機RUに供給される冷温水の温度を検知する冷温水温度サーミスタ(図示なし)の検知温度が、所定の制御移行温度Tp(コールドスタートの場合には10℃、ホットスタートの場合には9℃)以下に低下するまでは(ステップS109においてNO)そのままのインプットを継続し、制御移行温度Tp以下に低下すると(ステップS109においてYES)、冷房比例制御に移行する(ステップS200)。
【0038】
冷房比例制御では、室内機RUに供給される冷温水の温度を検知して、この冷温水温度が7℃になるようにガス比例弁204、燃焼ファン205を制御して、ガスバーナBの燃焼量を制御する。他方、タンデムポンプの回転数を、高温再生器1内のHGE温度を検知する吸収液温度サーミスタ211の検知温度に基づいて、比例制御する。
さらに、冷却塔CTから吸収コイル31へ供給される冷却水の温度が、31.5℃になるように、送風機Sの回転数を制御する(冷却水ポンプP2の回転数は一定)。
【0039】
尚、冷房比例制御中には、冷温水の温度が5℃以下になった場合に、吸収サイクルの能力を下げるために、ガスバーナBを消火して希釈運転を行い、また、室内温度が設定温度より下がった場合にも、ガスバーナBを消火して所定の希釈運転を行い、各条件が解除された場合に、再び、能力制御を再開する。
リモコンにより、冷房運転の停止が指示された場合には(ステップS201においてYES)、終了用希釈運転を行う(ステップS300)。
【0040】
終了用希釈運転(図4参照)では、まずガスバーナBの消火のみを行い(ステップS301)、タンデムポンプおよび冷却水ポンプP2を継続して作動させる。これによって、HGE温度が次第に低下し、このとき、タンデムポンプの回転数は、HGE温度の温度低下に伴って次第に低下する。
冷却水ポンプP2の継続作動により、吸収コイル31上に散布される高濃度吸収液が冷却されて吸収器3内の温度が低下し、それに伴って蒸発器4内の温度(以下「EVA温度」という)も低下するが、蒸発器4のEVA温度が3℃より高い間は(ステップS302においてNO)、冷却水ポンプP2を引き続き作動させる。
【0041】
蒸発器4のEVA温度が3℃以下になったとき(ステップS302においてYES)、冷却水ポンプP2の作動を停止させる(ステップS303)。このときまでに、吸収器3内の吸収液の温度は十分に低下し、吸収器3から戻される低温の吸収液によって、高温再生器1内の吸収液の温度も低下する。
【0042】
その後、HGE温度が125℃より高い間は(ステップS304においてNO)、タンデムポンプ110を継続して作動させて、HGE温度が125℃以下に低下したとき(ステップS304においてYES)、冷暖切替え弁6を開弁する(ステップS305)。
【0043】
その後、HGE温度が110℃より高い間は(ステップS306においてNO)、タンデムポンプ110を継続して作動させて、さらにHGE温度が低下して、110℃以下に低下したとき(ステップS306においてYES)、タンデムポンプ110の作動を停止するとともに冷暖切替え弁6を閉弁して(ステップS307)、終了用希釈運転を終える。
【0044】
以上のとおり、本発明では、冷房運転の終了時の希釈運転において、ガスバーナBの消火後に、蒸発器4のEVA温度が3℃以下になるまで冷却水ポンプP2を継続して作動させているため、吸収器3内の温度低下に伴って温度低下する蒸発器4内の冷媒液等が凍結する前に、冷却水ポンプP2の作動を停止させることができるとともに、吸収液の温度を速やかに低下させることができる。この結果、その後、タンデムポンプの作動による希釈運転時間を大幅に短縮することができる。
【0045】
また、吸収サイクルが定常状態に達する前に冷房運転の停止操作が行われたような場合であっても、蒸発器4内の温度が3℃以下に下がった時点で、冷却水ポンプP2の作動を停止させることができるため、冷却水ポンプP2の作動時間が長すぎて、蒸発器4内が凍結してしまうことがない。
尚、蒸発器温度サーミスタ212は、蒸発器4内の壁面に配置して、雰囲気温度を検出する様にしてもよい。
【0046】
上記実施例では、終了希釈運転において、タンデムポンプの停止とともに冷暖切替え弁6を閉弁させるようにしたが、冷暖切替え弁6の閉弁をタンデムポンプの停止から数秒(例えば10秒程度)遅らせてもよい。
上記実施例では、室外機100に対して、単一の室内機RUのみを設けたものを示したが、複数の室内機RUを室外機100の蒸発コイル41に対して並列に接続してもよい。
室内機RUに空調熱交換器44のみを設けたものを示したが、室内温度を下げないで除湿運転を行うために、空調熱交換器44で一旦冷却した空気を加熱する加熱用熱交換器を空調熱交換器44と並設させるようにしてもよい。
上記実施例では、吸収式冷凍装置を用いた空調装置を示したが、冷蔵庫、冷凍庫など、他の冷凍装置に用いてもよい。
上記実施例では、2重効用式で説明したが、1重効用式でもよい。また、加熱源としては、石油バーナや、電気ヒータを用いてもよい。
【図面の簡単な説明】
【図1】本発明の実施例を示す空調装置の概略構成図である。
【図2】本発明の実施例の制御装置における冷房運転の制御動作の概略を説明するための流れ図である。
【図3】本発明の実施例の制御装置における冷房運転における始動制御を説明するための流れ図である。
【図4】本発明の実施例の制御装置における冷房運転における終了用希釈運転を説明するための流れ図である。
【符号の説明】
1 高温再生器
2 低温再生器
3 吸収器
31 吸収コイル(熱交換用配管)
4 蒸発器
5 凝縮器
7 冷媒弁(冷媒蒸気電磁弁)
100 室外機(吸収式冷凍装置)
200 制御装置(吸収式冷凍装置の制御装置)
211 吸収液温度サーミスタ(吸収液温度検知手段)
212 蒸発器温度サーミスタ(蒸発器温度検知手段)
P1 吸収液ポンプ
P2 冷却水ポンプ
B ガスバーナ(加熱手段)
L7 冷媒蒸気流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigeration apparatus having an absorption cycle in which an aqueous solution such as lithium bromide is used as an absorption liquid and having a cooling water pump for passing cooling water through the absorber, and in particular, operation of the absorption cycle. It relates to the control of the cooling water pump in the dilution operation at the end.
[0002]
[Prior art]
In the absorption refrigeration apparatus, the refrigerant vapor is separated from the low-concentration absorption liquid boiled by heating of the burner in the regenerator, and the refrigerant vapor is cooled by the condenser to become refrigerant liquid and supplied to the evaporator. The absorbing liquid having a high concentration as the refrigerant vapor is separated in the regenerator is supplied to the absorber. The absorber and the evaporator communicate with each other. The refrigerant liquid evaporates in the evaporator and takes heat to form a cooling source, and the absorbing liquid absorbs the refrigerant vapor in the absorber. In order to discharge the heat generated at this time to the outside, a heat exchange pipe is provided in the absorber, and the heat is discharged to the outside by passage of the cooling water supplied by the cooling water pump.
The absorbing liquid that has absorbed the refrigerant vapor by the absorber is circulated to the regenerator by the absorbing liquid pump.
[0003]
In the absorption cycle having the above configuration, at the end of the operation, after the combustion of the burner that is the heating source of the regenerator is stopped, heat is applied to the regenerator by residual heat and refrigerant vapor is generated. Thereafter, a dilution operation is performed in which the absorption liquid pump is continuously operated until the temperature in the regenerator is lowered to some extent.
[0004]
This dilution operation is for lowering the temperature of the absorption liquid to make the concentration and pressure of the absorption liquid in the absorption cycle uniform, thereby preventing crystallization of the absorption liquid. In order to lower the temperature of the absorption liquid faster, conventionally, in the dilution operation, not only the continuous operation of the absorption liquid pump but also the cooling water pump is continuously operated after the burner is stopped. By reducing the temperature, the dilution operation time is shortened.
[0005]
[Problems to be solved by the invention]
As described above, conventionally, the continuous operation of the cooling water pump in the dilution operation has been used as an auxiliary for shortening the operation time of the absorption liquid pump.
However, the evaporator communicates with the absorber, and when the cooling water pump is continuously operated in the dilution operation after the burner is stopped, the flow control valve is closed on the indoor unit side, and the fan is also stopped. Because there is no load. On the other hand, on the outdoor unit side, because the cycle has been established for some time due to residual heat, etc., the evaporation of the refrigerant liquid in the evaporator becomes active by being promoted in response to the absorption reaction that becomes active due to cooling of the absorber, The evaporator is cooled down. That is, as a result, the evaporator is easily frozen.
[0006]
In addition, in order to prevent the refrigerant liquid from freezing during the dilution operation, the time for the continuous operation of the cooling water pump during the dilution operation after the burner is stopped is limited. For example, although it is conceivable to set the time as short as 1 minute, since the cooling is insufficient and the temperature of the absorbing liquid in the absorber cannot be lowered sufficiently, the absorption after the cooling water pump is stopped Problems such as excessively long dilution operation time due to the operation of only the liquid pump may occur.
[0007]
An object of the present invention is to end the dilution operation at the end of the operation in a short time without freezing the evaporator in the absorption refrigeration apparatus.
[0008]
[Means for Solving the Problems]
In the present invention, the first aspect of the present invention provides a regenerator that separates refrigerant vapor from the absorbing liquid by heating the absorbing liquid containing the refrigerant by a heating unit, and a condenser that cools and condenses the refrigerant vapor separated by the regenerator. And the refrigerant liquid condensed in the condenser is evaporated under a low pressure to be a cooling source, and the refrigerant vapor evaporated in the evaporator is absorbed in the absorption liquid from which the refrigerant vapor is separated in the regenerator. And forming an absorption cycle from an absorber that absorbs the heat of the absorption liquid sprayed on the heat exchange pipe by arranging a heat exchange pipe through which the cooling water passes. An absorption refrigeration apparatus comprising an absorption liquid pump for returning an absorption liquid from a regenerator to the regenerator, and a cooling water pump for allowing cooling water to pass through the heat exchange pipe of the absorber. At the end of operation of the refrigerating machine In the control apparatus for an absorption refrigeration apparatus comprising a dilution operation control means for performing a dilution operation for continuously operating the absorption liquid pump after stopping the heating of the heating means, the dilution operation control means includes: An evaporator temperature detecting means for detecting temperature, and after the heating of the heating means is stopped in the dilution operation at the end of the operation of the absorption refrigeration apparatus, the evaporator temperature detected by the evaporator temperature detecting means The cooling water pump is continuously operated until the temperature falls to the freezing limit temperature, and the cooling water pump is stopped when the evaporator temperature detected by the evaporator temperature detecting means falls to the freezing temperature limit. Is a technical means.
[0009]
With the above configuration, in claim 1, in the absorption refrigeration apparatus, when the operation of the absorption cycle is ended, the operation of the heating means for heating the regenerator is stopped, and then the cooling water pump and the absorption liquid pump are continued. To activate.
Since the cooling water continues to pass through the heat exchange pipe of the absorber due to the operation of the cooling water pump, the heat of the absorbent dispersed on the heat exchange pipe passes through the heat exchange pipe. As a result, the heat is exhausted to the outside of the absorber, and the temperature of the absorbing liquid in the absorber and the temperature in the absorber are lowered.
Further, since the absorption liquid circulates from the absorber to the regenerator by the operation of the absorption liquid pump, the high-temperature absorption liquid in the regenerator heated by the heating means is cooled by the cooled absorption liquid sent from the absorber. The temperature gradually decreases and the pressure in the absorption cycle becomes uniform.
[0010]
When the evaporator temperature, which decreases as the temperature in the absorber decreases, drops to the freezing limit temperature, the operation of the cooling water pump is stopped, and thereafter only the absorption liquid pump is continuously operated.
Since the cooling water pump is continuously operated until the evaporator temperature falls to the freezing limit, the temperature of the absorption liquid is greatly promoted as compared with the dilution operation only by operating the absorption liquid pump. be able to.
As a result, the time for the dilution operation can be greatly shortened.
[0011]
In the dilution operation, the cooling water pump is stopped when the temperature drops to the limit temperature at which the evaporator does not freeze, so that the cooling water pump can be stopped within a range where the evaporator does not freeze. it can.
Accordingly, since the temperature of the evaporator is detected to determine the timing of stopping the operation of the cooling water pump, it is possible to prevent the evaporator from freezing and to shorten the dilution operation time.
[0012]
According to a second aspect of the present invention, in the first aspect, the dilution operation control means includes an absorbent liquid temperature detecting means for detecting an absorbent liquid temperature in the regenerator, and the absorbent liquid temperature in the regenerator is a predetermined absorbent liquid pump. Technical means that the absorption liquid pump is continuously operated until the temperature decreases to a stop temperature, and the absorption liquid pump is stopped when the temperature of the absorption liquid in the regenerator decreases to the absorption liquid pump stop temperature. To do.
[0013]
Thus, in claim 2, after the operation of the heating means is finished, the concentration and pressure of the absorption liquid in the absorption cycle are equalized when the temperature of the absorption liquid in the regenerator drops after the cooling water pump has ended the operation. Therefore, it is determined that there is no risk of crystallization of the absorption liquid, and the absorption liquid pump is stopped. Since the temperature of the absorbing liquid in the absorber is lowered by the operation of the cooling water pump, the temperature of the absorbing liquid returned from the absorber to the regenerator by the absorbing liquid pump is lowered. Therefore, by controlling the end of the operation of the absorption liquid pump based on the temperature of the absorption liquid supplied from the absorber, it is possible to shorten the dilution operation time during which the absorption liquid pump operates.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an air conditioner according to the present invention.
The air conditioner includes an outdoor unit 100 and an indoor unit RU as an absorption refrigeration apparatus. The outdoor unit 100 includes a refrigerator main body 101 and a cooling tower (cooling tower) CT. The air conditioner is controlled by the control device 200.
The refrigerator main body 101 is mainly formed of stainless steel and forms an absorption cycle of a lithium bromide aqueous solution as a refrigerant and an absorption liquid. B is a gas burner as a heating means, 1 is a high temperature regenerator, and 2 is a low temperature regeneration. , 3 is an absorber, 4 is an evaporator, and 5 is a condenser. In the absorbing solution, an inhibitor for suppressing corrosion due to the reaction between stainless steel and lithium bromide is contained.
[0015]
In the high-temperature regenerator 1, the low-concentration absorbing liquid supplied to the inside of the heating tank 11 is heated by the gas burner B, and the cylindrical absorption formed between the medium-concentrating absorbing liquid separating cylinder 12 and the absorbing liquid partition container 13. When the absorption liquid heated through the liquid rising channel 14 rises, the water as the refrigerant in the low-concentration absorption liquid evaporates by heating and is separated as refrigerant vapor (water vapor), and is concentrated by evaporation of the refrigerant vapor. The concentration absorbing liquid is turned inward by the absorbing liquid return plate 15 and returned to the absorbing liquid partition container 13.
[0016]
The medium-concentration absorbing liquid whose concentration has been increased by separating the refrigerant is supplied to the low-temperature regenerator 2 from the medium-concentration absorbing liquid channel L1 opened at the side of the absorbing liquid partitioning container 13.
The separated refrigerant vapor is recovered in the refrigerant recovery tank 10 and supplied to the condenser 5 through the refrigerant flow path L5.
In addition, at the bottom of the absorption liquid partition container 13, an inlet of the heating absorption liquid flow path L <b> 4 for supplying the heated absorption liquid into the evaporator 4 during the heating operation is opened.
[0017]
The refrigerant partition cylinder 17 is joined to the intermediate concentration absorbing liquid separation cylinder 12 inside the lower part of the refrigerant recovery tank 10, and a heat insulating gap 17 a is formed between the intermediate concentration absorbing liquid separation cylinder 12. The heat from the intermediate concentration absorbent separation cylinder 12 is cut off, and the refrigerant liquid in the refrigerant reservoir 10a, which will be described later, is not heated by the high-temperature absorbent in the absorption liquid ascending channel 14.
In the refrigerant recovery tank 10, the outside of the refrigerant partition cylinder 17 is a refrigerant storage part 10a in which the separated refrigerant is stored, and the refrigerant liquid stored in the refrigerant storage part 10a is supplied from the refrigerant flow path L5 to the condenser 5. Supplied to.
The heating tank 11 of the high-temperature regenerator 1 is provided with an absorption liquid temperature thermistor 211 for detecting the internal absorption liquid temperature.
[0018]
In the low-temperature regenerator 2, the medium-concentration absorbing liquid supplied by the medium-concentration absorbing liquid flow path L 1 that passes through the heat exchanger H in the middle flows from the ceiling of the low-temperature regenerator case 20 and passes through the outer wall of the refrigerant recovery tank 10. Reheated as a heat source, separated into refrigerant vapor and high-concentration absorption liquid by the gas-liquid separator 22, the refrigerant vapor passes from the refrigerant vapor outlet 21 and the gap 5 </ b> A into the condenser case 50, and the high-concentration absorption liquid It is stored in the concentration absorbing liquid receiving portion 23 and supplied to the absorber 3 through the high concentration absorbing liquid channel L2.
[0019]
Note that an orifice (not shown) for limiting the flow rate of the intermediate concentration absorbing liquid flowing from the absorbing liquid partition container 13 to the low temperature regenerator 2 is provided in the intermediate concentration absorbing liquid flow path L1, and the low temperature regenerator is provided. The medium concentration absorbing liquid is supplied into the case 20 due to a pressure difference from the medium concentration absorbing liquid separating cylinder 12. (About 70 mmHg in the low-temperature regenerator case 20 and about 700 mmHg in the medium concentration absorbent separating cylinder 12)
[0020]
In the absorber 3, an absorption coil 31 wound in a coil shape is wound as an absorption tube in which a copper tube is wound in a vertical cylindrical shape inside the evaporation / absorption case 30 and through which the cooling water for exhaust heat flows. The high-concentration absorbent supplied from the high-concentration absorbent receiver 23 of the low-temperature regenerator 2 flows in due to the pressure difference through the high-concentration absorbent flow path L2, and the upper end of the absorption coil 31 is absorbed by the high-concentration absorbent spreader And is deposited on the surface of the absorption coil 31 to form a thin film, which flows downward due to the action of gravity and absorbs water vapor to form a low concentration absorbent. When the water vapor is absorbed, heat is generated on the surface of the absorption coil 31, but it is cooled by the exhaust heat cooling water circulating through the absorption coil 31.
The water vapor absorbed by the absorbing liquid is generated as refrigerant vapor in the evaporator 4 described later.
[0021]
The low concentration absorbent in the absorber 3 is supplied into the heating tank 11 from the bottom 33 through the low concentration absorbent flow path L3 to which the heat exchanger H and the absorbent pump P1 are mounted by the operation of the absorbent pump P1. Is done.
Further, in the absorption coil 31, the exhaust heat cooling water cooled by the cooling tower CT circulates through the cooling coil 51 of the condenser 5 during the cooling operation.
[0022]
The evaporator 4 is a vertical cylindrical shape provided on the outer periphery of the absorption coil 31 in the evaporation / absorption case 30 and has an outer periphery of a partition plate 40 with a large number of communication ports (not shown). A vertical cylindrical evaporation coil 41 made of a flowing copper tube is provided, and a refrigerant liquid spreader 42 is attached above it. The bottom 43 of the evaporator 4 communicates with the bottom of the absorbing liquid partition container 13 in the intermediate concentration absorbing liquid separating cylinder 12 by a heating absorbing liquid flow path L4 having an electromagnetic cooling / heating switching valve 6.
[0023]
With the above configuration, in the evaporator 4, when the refrigerant liquid (water) is caused to flow down on the evaporation coil 41 from the refrigerant liquid spreader 42 during the cooling operation, the refrigerant liquid that has flowed down is brought into the surface of the evaporation coil 41 by surface tension. In the evaporation / absorption case 30 which is lowered to a low pressure (for example, 6.5 mmHg) while being lowered downward due to the action of gravity, the evaporation coil 41 takes away heat of vaporization and evaporates. Cooling hot and cold water for air conditioning flowing inside.
[0024]
In the condenser 5, a refrigerant liquid receiving part 52 for receiving the refrigerant liquid obtained by liquefying the refrigerant vapor cooled by the cooling coil 51 is provided in the condenser case 50. The refrigerant liquid receiving part 52 is an evaporator. 4 is provided above the refrigerant liquid spreader 42 and communicates with a refrigerant cooler 48 that cools the refrigerant liquid by self-cooling of the supplied refrigerant liquid by a refrigerant liquid supply path L6.
In the refrigerant cooler 48, an evaporator temperature thermistor 212 for detecting the temperature of the refrigerant liquid in the evaporator 4 is provided.
[0025]
The condenser 5 having the above structure communicates with the refrigerant storage portion 10a of the refrigerant recovery tank 10 through the refrigerant flow path L5 provided with an orifice (not shown) for limiting the refrigerant flow rate, and the refrigerant vapor outlet 21 and The refrigerant communicates with the low-temperature regenerator 2 through the gap 5A, and the refrigerant is supplied by a pressure difference (about 70 mmHg in the condenser case).
In the condenser 5, the refrigerant vapor supplied into the condenser case 50 is cooled and liquefied by the cooling coil 51, and is arranged in the evaporator 4 from the refrigerant liquid receiving portion 52 provided in the lower part of the condenser 5. The refrigerant is supplied to the refrigerant cooler 48 via the refrigerant liquid supply path L6. The inside of the condenser case 50 and the refrigerant cooler 48 communicate with each other through a refrigerant liquid flow path L7 provided with the refrigerant valve 7, and overflow the refrigerant liquid receiving portion 52 when the refrigerant liquid may be frozen. Then, the refrigerant liquid stored in the bottom of the condenser case 50 is supplied into the evaporator 4 by opening control of the refrigerant valve 7 to prevent freezing.
[0026]
With the above configuration, the absorption liquid is a high temperature regenerator 1 → a medium concentration absorption liquid channel L1 → a low temperature regenerator 2 → a high concentration absorption liquid channel L2 → a high concentration absorption liquid sprayer 32 → an absorber 3 → an absorption liquid pump. It circulates in order of P1 → low concentration absorbent flow path L3 → high temperature regenerator 1.
Also, the refrigerant is a high temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) or refrigerant. Liquid flow path L7 (refrigerant liquid) → refrigerant cooler 48 (refrigerant liquid) → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbing liquid) → absorbing liquid pump P1 → low It circulates in order of the concentration absorbing liquid flow path L3 → the high temperature regenerator 1.
[0027]
The absorption coil 31 of the absorber 3 that exchanges heat with the absorption liquid and the cooling coil 51 of the condenser 5 are connected to form a continuous coil, and the continuous coil is connected to the cooling tower CT by the cooling water channel 34. As a result, a cooling water circulation path is formed.
In this cooling water circulation path, the cooling water flow path 34 between the inlet of the absorption coil 31 and the cooling tower CT is provided with a cooling water pump P2 for feeding cooling water into the continuous coil, and the cooling water pump P2 The cooling water that passes through the continuous coil by the operation of the above absorbs the heat of absorption by the absorption coil 31 and the heat of condensation by the cooling coil 51 and becomes relatively high temperature, and is supplied to the cooling tower CT.
[0028]
With the above configuration, during the cooling operation, the cooling water in the cooling tower CT is circulated in the order of the cooling tower CT → the cooling water pump P2 → the absorption coil 31 → the cooling coil 51 → the cooling tower CT by the operation of the cooling water pump P2.
In the cooling tower CT, the falling cooling water is partially evaporated into the atmosphere and self-cooling is performed to cool the remaining cooling water, and the cooling water dissipates heat into the atmosphere and becomes a low heat exhaust cycle. Is forming. In addition, evaporation of water is promoted by blowing air from the blower S.
[0029]
An air conditioning heat exchanger 44 provided in the indoor unit RU is connected to the evaporation coil 41 of the evaporator 4 by a cold / hot water flow path 47, and a cold / hot water pump P 3 is provided in the cold / hot water flow path 47.
With the above configuration, the cold / hot water having a low temperature in the evaporation coil 41 circulates in the order of the evaporation coil 41 → the cold / hot water flow path 47 → the air conditioning heat exchanger 44 → the cold / hot water flow path 47 → the cold / hot water pump P3 → the evaporation coil 41. To do.
[0030]
The indoor unit RU is provided with an air conditioning heat exchanger 44 and a blower 46 through which room air is passed and blown out into the room again.
[0031]
The heating absorption liquid flow path L4 and the cooling / heating switching valve 6 are provided for heating operation. During the heating operation, the cooling / heating switching valve 6 is opened to operate the absorption liquid pump P1.
As a result, the high-temperature medium-concentration absorption liquid in the absorption liquid partition container 13 in the medium-concentration absorption liquid separation cylinder 12 flows into the evaporator 4, and the evaporation coil 41 is heated by high-temperature vapor (refrigerant vapor) of the medium-concentration absorption liquid. The cold / hot water in the inside is heated, and the heated / cold water in the evaporation coil 41 is supplied from the cold / hot water flow path 47 to the air-conditioning heat exchanger 44 by the operation of the cold / hot water pump P3 and becomes a heat source for heating.
The medium concentration absorbing liquid in the evaporator 4 enters the absorber 3 through the communication port of the partition plate 40, and returns to the heating tank 11 by the absorbing liquid pump P1 through the low concentration absorbing liquid channel L3.
[0032]
In the air conditioner of the present embodiment configured as described above, the absorption liquid pump P1 for circulating the absorption liquid in the absorption cycle, and the cold / hot water cooled or heated by the evaporator coil 41 are passed through the cold / hot water flow path 47 to the indoor unit RU. The chilled / hot water pump P3 for circulating to the air conditioning heat exchanger 44 is configured as a tandem pump driven by the same motor, and the absorption liquid pump P1 and the chilled / hot water pump P3 are always at the same rotation speed at the same time. Rotate with.
[0033]
Next, the control operation of the control device 200 that controls the air conditioner will be described.
The control device 200 controls the combustion of the gas burner B, the control of the tandem pump that drives the absorption liquid pump P1 and the cold / hot water pump P3, the control of the cooling water pump P2, the rotation control of the blower S of the cooling tower CT, and the blower of the indoor unit RU. Each control of the cooling operation and the heating operation of the air conditioner is performed by the control of 46 and the control of the valves 6 and 7 provided in the absorption cycle. Hereinafter, only the cooling operation will be described based on FIGS. 2 to 4, and the description of the heating operation will be omitted.
[0034]
[Cooling operation control]
When the cooling operation is started by an operation of a remote controller (not shown) or the like, a predetermined cooling start control (S100) is performed, and then the operation proceeds to the cooling proportional operation (step S200), and the user finishes the cooling operation. If performed (YES in step S201), the process proceeds to the end dilution operation (S300).
[0035]
In the cooling start control (see FIG. 3), the valves 6 and 7 are closed and the gas electromagnetic valves 202 and 203 and the gas proportional valve 204 provided in the gas supply path 201 to the gas burner B are opened to open the gas burner B. Is ignited by an ignition electrode (not shown) (step S101), and after the ignition of the gas burner B, the detection temperature of the absorption liquid temperature thermistor 211 for detecting the absorption liquid temperature of the high temperature regenerator 1 (hereinafter referred to as “HGE temperature”). Accordingly, if the HGE temperature is lower than 60 ° C. (NO in step S102), the gas proportional valve 204 and the combustion fan 205 are controlled so that the input of the gas burner B becomes a small input of 2500 kcal as a cold start (step S102). S103) and wait until the HGE temperature reaches 60 ° C. (step S102).
[0036]
If the HGE temperature is 60 ° C. or higher (YES in step S102), the gas proportional valve 204 and the combustion fan 205 are controlled so that the input is set to 4800 kcal (step S104).
Thereafter, the process waits until the HGE temperature reaches 80 ° C. (NO in step S105). When the HGE temperature reaches 80 ° C. (YES in step S105), the cooling water pump P2 is driven (step S106).
Thereafter, the process waits until the HGE temperature reaches 100 ° C. (NO in step S107). When the HGE temperature reaches 100 ° C. (YES in step S107), the tandem pump 110 is driven (step S108).
As a result, when the absorption liquid circulates in the absorption cycle, the absorption liquid absorbs the refrigerant vapor in the absorber 3, and the refrigerant liquid evaporates in the evaporator 4, the temperature of the cold / hot water circulating in the evaporation coil 41 gradually decreases. To do.
[0037]
The temperature detected by a cold / hot water temperature thermistor (not shown) for detecting the temperature of the cold / hot water supplied to the indoor unit RU is a predetermined control transition temperature Tp (10 ° C. for cold start, 9 for hot start). Until the temperature drops below (° C.) (NO in step S109), the input is continued as it is, and when the temperature drops below the control transition temperature Tp (YES in step S109), the control shifts to cooling proportional control (step S200).
[0038]
In the cooling proportional control, the temperature of the cold / hot water supplied to the indoor unit RU is detected, and the gas proportional valve 204 and the combustion fan 205 are controlled so that the temperature of the cold / hot water becomes 7 ° C. To control. On the other hand, the rotational speed of the tandem pump is proportionally controlled based on the detected temperature of the absorbing liquid temperature thermistor 211 that detects the HGE temperature in the high temperature regenerator 1.
Furthermore, the rotation speed of the blower S is controlled so that the temperature of the cooling water supplied from the cooling tower CT to the absorption coil 31 is 31.5 ° C. (the rotation speed of the cooling water pump P2 is constant).
[0039]
During the cooling proportional control, when the temperature of the cold / hot water becomes 5 ° C. or lower, the gas burner B is extinguished and the dilution operation is performed to reduce the absorption cycle capability, and the room temperature is set to the set temperature. Also when it falls, the gas burner B is extinguished and a predetermined dilution operation is performed, and when each condition is canceled, the capacity control is resumed.
When the remote controller instructs the stop of the cooling operation (YES in step S201), an end dilution operation is performed (step S300).
[0040]
In the end dilution operation (see FIG. 4), only the gas burner B is first extinguished (step S301), and the tandem pump and the cooling water pump P2 are continuously operated. As a result, the HGE temperature gradually decreases, and at this time, the rotational speed of the tandem pump gradually decreases as the HGE temperature decreases.
Due to the continuous operation of the cooling water pump P2, the high-concentration absorbing liquid sprayed on the absorption coil 31 is cooled and the temperature in the absorber 3 is lowered, and accordingly, the temperature in the evaporator 4 (hereinafter referred to as “EVA temperature”). However, while the EVA temperature of the evaporator 4 is higher than 3 ° C. (NO in step S302), the cooling water pump P2 is continuously operated.
[0041]
When the EVA temperature of the evaporator 4 becomes 3 ° C. or lower (YES in step S302), the operation of the cooling water pump P2 is stopped (step S303). By this time, the temperature of the absorbent in the absorber 3 is sufficiently lowered, and the temperature of the absorbent in the high-temperature regenerator 1 is also lowered by the low-temperature absorbent returned from the absorber 3.
[0042]
Thereafter, while the HGE temperature is higher than 125 ° C. (NO in step S304), when the tandem pump 110 is continuously operated and the HGE temperature falls to 125 ° C. or lower (YES in step S304), the cooling / heating switching valve 6 Is opened (step S305).
[0043]
After that, while the HGE temperature is higher than 110 ° C. (NO in step S306), when the tandem pump 110 is continuously operated and the HGE temperature further decreases to 110 ° C. or lower (YES in step S306). Then, the operation of the tandem pump 110 is stopped and the cooling / heating switching valve 6 is closed (step S307), and the end dilution operation is finished.
[0044]
As described above, in the present invention, in the dilution operation at the end of the cooling operation, after the gas burner B is extinguished, the cooling water pump P2 is continuously operated until the EVA temperature of the evaporator 4 becomes 3 ° C. or lower. The operation of the cooling water pump P2 can be stopped and the temperature of the absorbing liquid can be quickly lowered before the refrigerant liquid or the like in the evaporator 4 whose temperature is lowered due to the temperature lowering in the absorber 3 is frozen. Can be made. As a result, the dilution operation time due to the operation of the tandem pump can be greatly shortened thereafter.
[0045]
Even when the cooling operation is stopped before the absorption cycle reaches the steady state, the operation of the cooling water pump P2 is performed when the temperature in the evaporator 4 falls below 3 ° C. Therefore, the operation time of the cooling water pump P2 is not too long, and the inside of the evaporator 4 is not frozen.
The evaporator temperature thermistor 212 may be arranged on the wall surface in the evaporator 4 so as to detect the ambient temperature.
[0046]
In the above embodiment, in the final dilution operation, the cooling / heating switching valve 6 is closed together with the stop of the tandem pump. Also good.
In the above embodiment, only the single indoor unit RU is provided for the outdoor unit 100, but a plurality of indoor units RU may be connected in parallel to the evaporation coil 41 of the outdoor unit 100. Good.
Although only the air conditioning heat exchanger 44 is provided in the indoor unit RU, in order to perform the dehumidifying operation without lowering the indoor temperature, the heating heat exchanger that heats the air once cooled by the air conditioning heat exchanger 44 May be juxtaposed with the air conditioning heat exchanger 44.
In the said Example, although the air conditioner using an absorption refrigeration apparatus was shown, you may use for other refrigeration apparatuses, such as a refrigerator and a freezer.
In the above embodiment, the double-effect formula is described, but a single-effect formula may be used. Moreover, you may use a petroleum burner and an electric heater as a heat source.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of the present invention.
FIG. 2 is a flowchart for explaining the outline of the control operation of the cooling operation in the control device of the embodiment of the present invention.
FIG. 3 is a flowchart for explaining start control in cooling operation in the control device according to the embodiment of the present invention.
FIG. 4 is a flowchart for explaining an end dilution operation in a cooling operation in the control device according to the embodiment of the present invention.
[Explanation of symbols]
1 High temperature regenerator
2 Low temperature regenerator
3 absorber
31 Absorption coil (Piping for heat exchange)
4 Evaporator
5 Condenser
7 Refrigerant valve (refrigerant vapor solenoid valve)
100 Outdoor unit (absorption refrigeration system)
200 Control device (control device for absorption refrigeration system)
211 Absorbing liquid temperature thermistor (absorbing liquid temperature detecting means)
212 Evaporator temperature thermistor (evaporator temperature detection means)
P1 Absorption liquid pump
P2 Cooling water pump
B Gas burner (heating means)
L7 Refrigerant vapor channel

Claims (2)

冷媒を含む吸収液を加熱手段により加熱して吸収液から冷媒蒸気を分離させる再生器と、
該再生器によって分離した前記冷媒蒸気を冷却して凝縮させる凝縮器と、
該凝縮器で凝縮した冷媒液を低圧下で蒸発させて冷却源とする蒸発器と、
前記再生器で前記冷媒蒸気が分離された吸収液に、前記蒸発器で蒸発した冷媒蒸気を吸収させるとともに、冷却水を通過させる熱交換用配管を内部に配置して、前記熱交換用配管上に散布される吸収液の熱を吸熱する吸収器と
から吸収サイクルを形成するとともに、
前記吸収器から前記再生器へ吸収液を戻すための吸収液ポンプと、
前記吸収器の前記熱交換用配管内に冷却水を通過させる冷却水ポンプと
を備えた吸収式冷凍装置であって、
該吸収式冷凍装置の運転終了時に、前記加熱手段の加熱を停止した後に、前記吸収液ポンプを継続して作動させる希釈運転を行う希釈運転制御手段を具備する吸収式冷凍装置の制御装置において、
前記希釈運転制御手段は、
前記蒸発器の温度を検知する蒸発器温度検知手段を備え、
前記吸収式冷凍装置の運転終了時の前記希釈運転において、
前記加熱手段の加熱を停止させた後に、前記蒸発器温度検知手段の検知する蒸発器温度が凍結限界温度に低下するまでは前記冷却水ポンプの作動を継続させ、
前記蒸発器温度検知手段の検知する蒸発器温度が前記凍結限界温度に低下した時に前記冷却水ポンプの作動を停止させることを特徴とする吸収式冷凍装置の制御装置。
A regenerator for heating the absorption liquid containing the refrigerant by a heating means to separate the refrigerant vapor from the absorption liquid;
A condenser that cools and condenses the refrigerant vapor separated by the regenerator;
An evaporator that evaporates the refrigerant liquid condensed in the condenser under a low pressure to serve as a cooling source;
The absorption liquid from which the refrigerant vapor has been separated by the regenerator absorbs the refrigerant vapor evaporated by the evaporator, and a heat exchange pipe that allows cooling water to pass therethrough is disposed on the heat exchange pipe. While forming an absorption cycle from the absorber that absorbs the heat of the absorbing liquid sprayed on,
An absorbent pump for returning the absorbent from the absorber to the regenerator;
An absorption refrigeration apparatus comprising a cooling water pump that allows cooling water to pass through the heat exchange pipe of the absorber,
At the end of the operation of the absorption refrigeration apparatus, after stopping heating of the heating means, the control apparatus of the absorption refrigeration apparatus comprising a dilution operation control means for performing a dilution operation that continuously operates the absorption liquid pump,
The dilution operation control means includes
Evaporator temperature detection means for detecting the temperature of the evaporator,
In the dilution operation at the end of the operation of the absorption refrigeration apparatus,
After stopping the heating of the heating means, the operation of the cooling water pump is continued until the evaporator temperature detected by the evaporator temperature detecting means falls to the freezing limit temperature,
The control device for an absorption refrigeration apparatus, wherein the operation of the cooling water pump is stopped when the evaporator temperature detected by the evaporator temperature detecting means is lowered to the freezing limit temperature.
前記希釈運転制御手段は、
前記再生器内の吸収液温度を検知する吸収液温度検知手段を備え、
前記再生器内の吸収液温度が所定の吸収液ポンプ停止温度に低下するまでは前記吸収液ポンプを継続して作動させ、前記再生器内の吸収液温度が前記吸収液ポンプ停止温度に低下した時に前記吸収液ポンプを停止させることを特徴とする請求項1記載の吸収式冷凍装置の制御装置。
The dilution operation control means includes
Comprising an absorbing liquid temperature detecting means for detecting the absorbing liquid temperature in the regenerator,
The absorption liquid pump is continuously operated until the absorption liquid temperature in the regenerator decreases to a predetermined absorption liquid pump stop temperature, and the absorption liquid temperature in the regenerator decreases to the absorption liquid pump stop temperature. 2. The absorption refrigeration apparatus control device according to claim 1, wherein the absorption liquid pump is sometimes stopped.
JP01542498A 1998-01-28 1998-01-28 Absorption refrigeration system controller Expired - Fee Related JP3660493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01542498A JP3660493B2 (en) 1998-01-28 1998-01-28 Absorption refrigeration system controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01542498A JP3660493B2 (en) 1998-01-28 1998-01-28 Absorption refrigeration system controller

Publications (2)

Publication Number Publication Date
JPH11211264A JPH11211264A (en) 1999-08-06
JP3660493B2 true JP3660493B2 (en) 2005-06-15

Family

ID=11888401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01542498A Expired - Fee Related JP3660493B2 (en) 1998-01-28 1998-01-28 Absorption refrigeration system controller

Country Status (1)

Country Link
JP (1) JP3660493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336882B2 (en) * 2009-02-25 2013-11-06 アズビル株式会社 Cooling tower fan control apparatus and method

Also Published As

Publication number Publication date
JPH11211264A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3660493B2 (en) Absorption refrigeration system controller
JP3728122B2 (en) Absorption air conditioner control device
JP3920979B2 (en) Absorption air conditioner control device
JP3318505B2 (en) Control device for absorption air conditioner
JP3920997B2 (en) Absorption air conditioner control device
JP2650654B2 (en) Absorption refrigeration cycle device
JP3728121B2 (en) Absorption air conditioner control device
JP3283780B2 (en) Absorption cooling device
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
KR0149569B1 (en) Absorptive refrigerating cycle apparatus
JP2618192B2 (en) Absorption refrigeration cycle device
JP2902305B2 (en) Absorption air conditioner
KR100219910B1 (en) Absorption type air conditioner
JP2898202B2 (en) Absorption cooling system
JP3886641B2 (en) Double-effect absorption refrigeration system
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP3328156B2 (en) Absorption air conditioner
JP2003042588A (en) Absorption type cooling and heating machine
JPH11351691A (en) Absorption refrigerating machine
JPH10103808A (en) Air conditioner using absorption type refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JPH109707A (en) Absorption type refrigerating device
JPH0828997A (en) Absorption type air conditioner
JP2003042589A (en) Absorptive cooling and heating machine
JP2003065625A (en) Absorption type air conditioning equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees