JPH08279653A - Manufacture of iii-v compound semiconductor light emitting device - Google Patents

Manufacture of iii-v compound semiconductor light emitting device

Info

Publication number
JPH08279653A
JPH08279653A JP7905395A JP7905395A JPH08279653A JP H08279653 A JPH08279653 A JP H08279653A JP 7905395 A JP7905395 A JP 7905395A JP 7905395 A JP7905395 A JP 7905395A JP H08279653 A JPH08279653 A JP H08279653A
Authority
JP
Japan
Prior art keywords
layer
ridge
type
current blocking
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7905395A
Other languages
Japanese (ja)
Other versions
JP3783244B2 (en
Inventor
Kenji Shimoyama
謙司 下山
Kazumasa Kiyomi
和正 清見
Yoshito Sato
義人 佐藤
Hideki Goto
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7905395A priority Critical patent/JP3783244B2/en
Publication of JPH08279653A publication Critical patent/JPH08279653A/en
Application granted granted Critical
Publication of JP3783244B2 publication Critical patent/JP3783244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To enable the base width of a ridge and the thickness of a residual film to be set high in dimensional accuracy by a method wherein a current block layer formed sandwiching in the ridge of a second clad layer is made to grow at a specific temperature or below. CONSTITUTION: A buffer layer 102, a clad layer 103, an active layer 104, a first clad layer 105, an etching stop layer 106, a second clad layer 107, and a cap layer 108 are successively grown on a substrate 101. Then, an etching mask 109 is formed on a region where a ridge is formed, and then the second clad layer 107 and the cap layer 108 are etched for the formation of a ridge. A current block layer 110 is formed on the side of the ridge which includes the cap layer 8 and the etched second clad layer 107 and made to grow at a temperature of 650 deg. or below through a vapor growth method, a protective layer 111 is formed, the etching mask 109 is removed, and a contact layer 112 is deposited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III−V族化合物半導
体発光素子の製造方法に関し、特にコンパクトディスク
や光ディスク等の光情報処理機器の光源として好適なA
lGaAs系またはAlGaInP系化合物半導体材料
を用いたIII−V族化合物半導体発光素子の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a III-V group compound semiconductor light emitting device, and particularly suitable as a light source for optical information processing equipment such as compact discs and optical discs.
The present invention relates to a method for manufacturing a III-V group compound semiconductor light emitting device using a 1GaAs type or AlGaInP type compound semiconductor material.

【0002】[0002]

【従来の技術】AlGaAs系半導体材料を用いた高性
能半導体レーザダイオード(LD)の構成として、図4
に示すような構成が提案されている。図において、40
1はn型GaAs基板、402はn型GaAsバッファ
層、403はn型Al0.6Ga0.4Asからなるnクラッ
ド層、405はAl0.14Ga 0.86As活性層、407は
p型Al0.6Ga0.4Asからなる第1pクラッド層であ
る。GaAs活性層405のエネルギーギャップが、A
lGaAsクラッド層403及び407のエネルギーギ
ャップより小さい、いわいるダブルヘテロ構造をなして
いる。
2. Description of the Related Art High performance using AlGaAs semiconductor materials
Figure 4 shows the configuration of a semiconductor laser diode (LD).
A configuration as shown in is proposed. In the figure, 40
1 is an n-type GaAs substrate, 402 is an n-type GaAs buffer
Layer, 403 is n-type Al0.6Ga0.4N-clas made of As
Layer, 405 is Al0.14Ga 0.86As active layer, 407
p-type Al0.6Ga0.4It is a first p-clad layer made of As.
It The energy gap of the GaAs active layer 405 is A
Energy of the 1GaAs clad layers 403 and 407
It has a so-called double hetero structure, which is smaller than the cap.
There is.

【0003】406はAlGaAsからなる電流ブロッ
ク層である。電流ブロック層406は、レーザー発振に
必要な電流密度を得るために、いわゆる、電流狭窄を行
う目的で設けられる。電流ブロック層406は、SiN
x などのアモルファス膜からなるマスクを用いて、pク
ラッド層407をエッチングしてリッジを形成した後、
領域選択成長させることによって形成する。このとき、
電流ブロック層406のAl組成をpクラッド層407
のAl組成よりも大きくすることにより、実屈折率ガイ
ドと呼ばれる光導波構造を達成することができ、しきい
値電流や動作電流の低減といったレーザ特性の向上が可
能となる。電流ブロック層406形成後、n型GaAs
キャップ層410、p型GaAsキャップ層408およ
びGaAsコンタクト層411を形成してエピタキシャ
ルウエハの製造は終了する。
Reference numeral 406 is a current blocking layer made of AlGaAs. The current blocking layer 406 is provided for the purpose of so-called current constriction in order to obtain a current density required for laser oscillation. The current blocking layer 406 is SiN
After forming the ridge by etching the p-clad layer 407 using a mask made of an amorphous film such as x ,
It is formed by selective growth. At this time,
The Al composition of the current blocking layer 406 is changed to the p-clad layer 407.
By setting the Al composition to be larger than the Al composition, it is possible to achieve an optical waveguide structure called a real refractive index guide, and it is possible to improve laser characteristics such as reduction in threshold current and operating current. After forming the current blocking layer 406, n-type GaAs
The cap layer 410, the p-type GaAs cap layer 408, and the GaAs contact layer 411 are formed, and the manufacturing of the epitaxial wafer is completed.

【0004】[0004]

【発明が解決しようとする問題点】レーザーダイオード
の特性は、リッジ底部の幅Wとリッジ両側のpクラッド
層407のエッチング残し膜厚dに大きく左右される。
幅Wはリッジ形成時のエッチングマスクのパターニング
精度でほぼ決定される。幅Wは通常数μm程度であり、
設計通りの特性を得るには±0.2μm程度の精度が実
現できればよいので、再現性良く実現できる範囲にあ
る。一方、残し膜厚dはエッチングするpクラッド層4
07の膜厚均一性に大きく左右される上、dの厚みはが
約0.2μm程度に設定されることが多いのに加え、±
0.03μm程度の範囲を実現しないと設計通りの特性
を得ることが出来ない。通常リッジ形成時のエッチング
量は1〜2.0μm程度あり、エピタキシャル層の均一
性を±2%に抑えてかつ均一にエッチングできたとして
も、残し膜厚dのばらつきは±0.02〜0.04μm
になってしまう。
The characteristics of the laser diode are greatly influenced by the width W of the bottom of the ridge and the film thickness d of the p-clad layer 407 on both sides of the ridge which is left unetched.
The width W is substantially determined by the patterning accuracy of the etching mask when forming the ridge. The width W is usually about several μm,
In order to obtain the characteristics as designed, it is sufficient to achieve an accuracy of about ± 0.2 μm, so that it is within a range that can be realized with good reproducibility. On the other hand, the remaining film thickness d is the p-clad layer 4 to be etched.
In addition to being largely influenced by the film thickness uniformity of 07, the thickness of d is often set to about 0.2 μm.
The characteristics as designed cannot be obtained unless the range of about 0.03 μm is realized. Usually, the etching amount at the time of forming the ridge is about 1 to 2.0 μm, and even if the uniformity of the epitaxial layer is suppressed to ± 2% and the etching can be performed uniformly, the variation of the remaining film thickness d is ± 0.02 to 0. .04 μm
Become.

【0005】さらに、エッチングレートの若干の変動に
よるエッチング量のばらつきは少なくとも±1%程度あ
るから、実際には残し膜厚dのばらつきは±0.03μ
m以上になってしまう。このため、目的の特性が高歩留
りで得られるエピタキシャルウエハを再現性良く作製す
ることが非常に困難である。
Further, since there is at least about ± 1% variation in the etching amount due to slight variations in the etching rate, the actual variation in the remaining film thickness d is ± 0.03 μm.
It will be over m. Therefore, it is very difficult to manufacture an epitaxial wafer with desired characteristics with high yield and with good reproducibility.

【0006】そこで、図3(a)記載の様に、pクラッ
ド層を第1pクラッド層305と第2pクラッド層30
7の2層に分け、その間にp−GaInPまたはp−A
lGaInP層をエッチングストップ層306として設
けることにより、残し膜厚dが均一になるように制御す
る方法も提案されている。すなわち、SiNx をエッチ
ングマスクとして第2pクラッド層307をエッチスト
ップ層306に達するまでエッチングすれば、エッチス
トップ層306と第1pクラッド層305の膜厚バラツ
キのみがdの精度に影響するため、dを精度良く制御す
ることができる。n−Al0.7 Ga0.3As電流ブロッ
ク層310は、エッチング終了後に選択成長により形成
する。
Therefore, as shown in FIG. 3A, the p-cladding layer is replaced by a first p-cladding layer 305 and a second p-cladding layer 30.
7 layers, with p-GaInP or p-A in between.
A method has also been proposed in which a 1GaInP layer is provided as the etching stop layer 306 to control the remaining film thickness d to be uniform. That is, if the second p-clad layer 307 is etched until it reaches the etch stop layer 306 using SiN x as an etching mask, only the film thickness variation between the etch stop layer 306 and the first p-clad layer 305 affects the accuracy of d. Can be controlled accurately. The n-Al 0.7 Ga 0.3 As current blocking layer 310 is formed by selective growth after completion of etching.

【0007】図3(a)記載の構成により、幅Wと残し
膜厚dの寸法精度は向上させることが出来る。しかしな
がら、本構成は別の問題点を有している。すなわち、n
−Al0.7 Ga0.3 As電流ブロック層310を従来の
成長温度(650〜750℃)で成長させると、p−G
aAsキャップ層308の側面には多少成長が見られる
(図中、312)が、リッジの側壁には成長しない。さ
らに、このあとエッチングマスクであるSiNx 309
を除去してp−GaAsコンタクト層313を成長させ
ると、リッジの側壁に図3(b)に示すようにボイド3
14が発生してしまい、素子特性や信頼性の低下を招い
ていた。
With the structure shown in FIG. 3A, the dimensional accuracy of the width W and the remaining film thickness d can be improved. However, this configuration has another problem. That is, n
-Al 0. 7 Ga 0.3 When the As current blocking layer 310 is grown in conventional growth temperature (650~750 ℃), p-G
Although some growth is observed on the side surface of the aAs cap layer 308 (312 in the figure), it does not grow on the side wall of the ridge. Further, after that, SiN x 309 which is an etching mask is used.
Then, the p-GaAs contact layer 313 is grown to remove voids 3 on the sidewall of the ridge as shown in FIG.
14 is generated, which causes deterioration of element characteristics and reliability.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、リッジ
底辺の幅Wおよび残し膜厚dを高寸法精度で形成でき、
さらにリッジの側壁にも電流ブロック層が成長するとと
もに、ボイドの発生も抑制可能な半導体発光素子の製造
方法を提供することにある。本発明者らは、種々の検討
を重ねた結果、リッジ側壁のAl組成がリッジ左右(底
面)の平坦部に比べて高いために、酸化されやすく、リ
ッジ側壁での核形成が平坦部に比べて起こりにくくなっ
ているのではないかと考え、本発明を完成した。
The object of the present invention is to form the width W of the ridge base and the remaining film thickness d with high dimensional accuracy,
Another object of the present invention is to provide a method for manufacturing a semiconductor light emitting device capable of suppressing the occurrence of voids as well as the growth of a current blocking layer on the side wall of a ridge. As a result of various investigations, the present inventors have found that the Al composition of the ridge sidewall is higher than that of the flat portion on the left and right sides (bottom surface) of the ridge, so that the ridge sidewall is easily oxidized and nucleation on the ridge sidewall is higher than that of the flat portion. The present invention has been completed, thinking that it is unlikely to occur.

【0009】すなわち、本発明による半導体発光素子の
製造方法は、基板上に、第1導電型を有する少なくとも
1層からなる第1クラッドと、活性層と、この活性層に
隣接する、第2導電型を有する少なくとも1層から構成
され、リッジを有する第2クラッドと、このリッジを挟
んで形成された電流ブロック層とを有し、かつリッジの
側壁に、Al混晶比がリッジの両側の底面を形成する層
のAl混晶比よりも大きい層を含むIII −V族化合物半
導体発光素子の製造方法において、前記電流ブロック層
を650℃以下で気相成長法により成長させることを特
徴とするものである。
That is, in the method for manufacturing a semiconductor light emitting device according to the present invention, a first clad consisting of at least one layer having a first conductivity type, an active layer, and a second conductive layer adjacent to the active layer are provided on a substrate. A second clad having at least one layer having a mold and having a ridge, and a current blocking layer formed so as to sandwich the ridge, and a bottom surface on both sides of the ridge having an Al mixed crystal ratio on the sidewall of the ridge. A method for manufacturing a III-V group compound semiconductor light-emitting device including a layer having a ratio higher than an Al mixed crystal ratio of a layer forming a layer, wherein the current blocking layer is grown at 650 ° C. or lower by a vapor phase growth method. Is.

【0010】以下、本発明につき詳細に説明する。本発
明の製造方法を適用するIII−V族化合物半導体発光素
子としては、AlGaAs、AlGaAsP、AlGa
InP、AlGaInAs、AlGaInAsPを主要
材料とするものを挙げることができる。
The present invention will be described in detail below. Examples of the III-V group compound semiconductor light emitting device to which the manufacturing method of the present invention is applied include AlGaAs, AlGaAsP, and AlGa.
InP, AlGaInAs, and AlGaInAsP are the main materials.

【0011】本発明において、リッジの両側の底面を形
成する層及びAl混晶比がリッジの底面を形成する層の
Al混晶比よりも大きい層の材料としては、Alx Ga
1-xAsy 1-y (0≦x≦1、y≦1)または(Alu
Ga1-uvIn1-vAsw1 -w(0≦u≦1、0≦v≦
1、0≦w≦1)を用いることが出来る。また、電流ブ
ロック層にはAlsGa1-sAst1-t(0≦s≦1、0
≦t≦1)または(AlmGa1-mnIn1-nAso1-o
(0≦m≦1、0≦n≦1、0≦o≦1)が適用でき
る。
In the present invention, the material of the layer forming the bottom surface on both sides of the ridge and the layer having a higher Al mixed crystal ratio than the Al mixed crystal ratio of the layer forming the bottom surface of the ridge are Al x Ga.
1-x As y P 1-y (0 ≦ x ≦ 1, y ≦ 1) or (Al u
Ga 1-u ) v In 1-v As w P 1 -w (0 ≦ u ≦ 1, 0 ≦ v ≦
1, 0 ≦ w ≦ 1) can be used. Further, the current blocking layer Al s Ga 1-s As t P 1-t (0 ≦ s ≦ 1,0
≦ t ≦ 1) or (Al m Ga 1-m) n In 1-n As o P 1-o
(0 ≦ m ≦ 1, 0 ≦ n ≦ 1, 0 ≦ o ≦ 1) can be applied.

【0012】また、リッジ形成時に用いるエッチャント
には、リッジ両側の底面を形成する材料に対するエッチ
ングレートがリッジを形成する材料に対するエッチング
レートに比べて十分遅い物を選択する。例えばリッジが
GaAs層及びAlGaAs層からなり、リッジ両側の
底面がAlGaInP系材料からなる場合は、リン酸−
過酸化水素系、酒石酸−過酸化水素系などを用いること
ができる。
Further, as the etchant used when forming the ridge, an etchant whose etching rate for the material forming the bottom surfaces on both sides of the ridge is sufficiently slower than that for the material forming the ridge is selected. For example, when the ridge is made of a GaAs layer and an AlGaAs layer and the bottom surfaces on both sides of the ridge are made of AlGaInP-based material, phosphoric acid-
A hydrogen peroxide type, a tartaric acid-hydrogen peroxide type, or the like can be used.

【0013】また、本発明における電流ブロック層の成
長条件は、650℃以下であることが好ましく、特に5
50℃以上600℃以下が好ましい。650℃を超える
温度で成長させるとリッジ側面への成長が阻害され、コ
ンタクト層成長後のボイド発生原因となる。一方、55
0℃未満では原料の分解効率の低下による混晶組成、成
長速度の制御性悪化、膜中への酸素等の不純物混入によ
る結晶性劣化などが顕著であり好ましくない。
The growth condition of the current blocking layer in the present invention is preferably 650 ° C. or lower, and particularly 5
It is preferably 50 ° C. or higher and 600 ° C. or lower. When grown at a temperature higher than 650 ° C., growth on the side surface of the ridge is hindered, which causes a void after the contact layer is grown. On the other hand, 55
If the temperature is lower than 0 ° C., the mixed crystal composition due to the reduction of the decomposition efficiency of the raw material, the controllability of the growth rate, the crystallinity deterioration due to the inclusion of impurities such as oxygen in the film are not preferable.

【0014】AlGaAsP電流ブロック層をこのよう
な低温条件で成長させると、成長原料である有機金属か
ら膜中に炭素が混入し易くなり、例えばAl0.7Ga0.3
Asの場合ではノンドープで1018台のp型キャリア濃
度を示してしまう。そこで、電流ブロック層に高濃度に
n型のドーパントを導入することが必要になる。ドーパ
ントのうち、両性不純物となりえるシリコン(Si)は
3×1018以上のドーピングが困難なので、不適当であ
る。低温条件で高いAl組成を有するAlGaAsのド
ーパントとしては、VI族のセレン(Se)やテルル
(Te)が好ましい。具体的なドーパントガスとして
は、H2Se(セレン化水素)、DETe(ジエチルテ
ルル)DESe(ジエチルセレン)、DMTe(ジメチ
ルテルル)等を挙げることができる。
When the AlGaAsP current blocking layer is grown under such a low temperature condition, carbon is likely to be mixed into the film from an organic metal as a growth raw material, and for example, Al 0.7 Ga 0.3
In the case of As, the undoped p-type carrier concentration of 10 18 is exhibited. Therefore, it is necessary to introduce the n-type dopant into the current blocking layer in high concentration. Among the dopants, silicon (Si), which can be an amphoteric impurity, is unsuitable because it is difficult to dope at 3 × 10 18 or more. As a dopant for AlGaAs having a high Al composition under low temperature conditions, Group VI selenium (Se) or tellurium (Te) is preferable. Specific examples of the dopant gas include H 2 Se (hydrogen selenide), DETe (diethyl tellurium) DESe (diethyl selenium), DMTe (dimethyl tellurium), and the like.

【0015】低温成長により側壁への成長が可能となっ
た理由として、側壁へ直接に核形成をし成長しているの
ではなく、成長種のマイグレーションを低下させること
により、650℃以上の高温成長でみられるファッセッ
トの形成が抑制されるためではないかと考えられる。し
たがって、リッジ側壁を形成する材料が平坦部(リッジ
両側の底面)を形成する材料に比べて酸化されやすけれ
ば、本発明による製造方法を適用することができる。
The reason why the growth on the side wall is enabled by the low temperature growth is that the growth is not directly performed on the side wall by nucleation, but the migration of the growing species is reduced to thereby grow at a high temperature of 650 ° C. or higher. This is probably because the formation of facets seen in Fig. Therefore, if the material forming the ridge sidewalls is more easily oxidized than the material forming the flat portions (bottom surfaces on both sides of the ridge), the manufacturing method according to the present invention can be applied.

【0016】[0016]

【実施例】以下、本発明を実施例を用いて詳細に説明す
る。本実施例では、結晶成長法として、膜厚、組成の制
御性及び量産性に優れるMOCVD法を用いた。使用し
た原料ガスはトリメチルアルミニウム(TMA)、トリ
メチルガリウム(TMG)、トリメチルインジウム(T
MI)、ホスフィン(PH3)、アルシン(AsH3)で
あり、キャリアガスとして精製により高純度化された水
素(H2)ガスを使用した。
EXAMPLES The present invention will be described in detail below with reference to examples. In this embodiment, as the crystal growth method, the MOCVD method, which is excellent in controllability of film thickness, composition and mass productivity, is used. The source gases used were trimethylaluminum (TMA), trimethylgallium (TMG), trimethylindium (T
MI), phosphine (PH 3 ), and arsine (AsH 3 ), and hydrogen (H 2 ) gas highly purified by purification was used as a carrier gas.

【0017】(実施例1)図1(d)に示す構成を有す
るエピタキシャルウエハを次のように製造した。まず、
n型GaAs(100)基板101上にn型GaAsバ
ッファー層102(厚み0.5μm)、n型Al0.6
0.4Asクラッド層103(厚み1.5μm)、Al
0.14Ga0.86As活性層104(厚み0.05μm)、
p型Al0.6Ga0.4 As第1クラッド層105(厚み
0.2μm)、p型Ga0.5In0.5Pエッチストップ層
106(厚み0.01μm)p型Al0.6 Ga0.4As
第2クラッド層107(厚み1.3μm)、p型GaA
sキャップ層108(厚み0.2μm)を順次成長させ
た(図1(a))。
Example 1 An epitaxial wafer having the structure shown in FIG. 1D was manufactured as follows. First,
n-type GaAs buffer layer 102 (thickness 0.5 μm) and n-type Al 0.6 G on n-type GaAs (100) substrate 101
a 0.4 As clad layer 103 (thickness: 1.5 μm), Al
0.14 Ga 0.86 As active layer 104 (thickness 0.05 μm),
p-type Al 0.6 Ga 0.4 As first cladding layer 105 (thickness 0.2 μm), p-type Ga 0.5 In 0.5 P etch stop layer 106 (thickness 0.01 μm) p-type Al 0.6 Ga 0.4 As
Second cladding layer 107 (thickness: 1.3 μm), p-type GaA
The s cap layer 108 (thickness 0.2 μm) was sequentially grown (FIG. 1A).

【0018】次に、リッジを形成する部分にエッチング
マスクとしてSiNx 膜109を形成した。続いて、リ
ン酸−過酸化水素系エッチャントを用いてp型Al0.6
Ga0 .4As第2クラッド層107及びキャップ層10
8をエッチングして、リッジを形成した(図1
(b))。このエッチングにより、残し膜厚dはエッチ
ストップ層106と第1クラッド層105の合計厚み、
0.2μmとなる。
Next, a SiN x film 109 was formed as an etching mask on the portion where the ridge is to be formed. Then, using a phosphoric acid-hydrogen peroxide-based etchant, p-type Al 0.6
Ga 0 .4 As second cladding layer 107 and the cap layer 10
8 was etched to form a ridge (see FIG. 1).
(B)). By this etching, the remaining film thickness d is the total thickness of the etch stop layer 106 and the first cladding layer 105,
It becomes 0.2 μm.

【0019】リッジが形成されたウェハをMOCVD装
置に設置して、n型Al0.7Ga0.3As層110を電流
ブロック層として、キャップ層108を含むリッジ部の
側面及びエッチングされた層107上に1.0μm、さ
らに電流ブロック層110上に保護層としてn型GaA
s層111を0.3μm、何れも580℃の低温で成長
させた(図1(c))。
The wafer on which the ridge is formed is placed in an MOCVD apparatus, and the n-type Al 0.7 Ga 0.3 As layer 110 is used as a current blocking layer to form a layer on the side surface of the ridge portion including the cap layer 108 and the etched layer 107. 0.0 μm, and n-type GaA as a protective layer on the current blocking layer 110.
The s layer 111 was grown to a thickness of 0.3 μm at a low temperature of 580 ° C. (FIG. 1C).

【0020】n型Al0.7Ga0.3As(電流ブロック層
110)のドーパントガスにSi26を用いると、前述
の理由によりn型にすることが困難なため、H2Se
(セレン化水素)を用いた。さらに、電流ブロック層1
10の成長中、III族原料の1/5モル程度のHClガ
スを成長空間に導入して、SiNx 膜上への多結晶の堆
積を抑制した。保護層111の成長が終了したら、Si
x 膜109を除去し、p型GaAsコンタクト層11
2を2μm成長させてエピタキシャルウェハの製造を終
了した(図1(d))。
[0020] The use of Si 2 H 6 as a dopant gas of the n-type Al 0.7 Ga 0.3 As (current blocking layer 110), because it is difficult to n-type by reason described above, H 2 Se
(Hydrogen selenide) was used. Furthermore, the current blocking layer 1
During the growth of No. 10, about 1/5 mol of the group III raw material was introduced into the growth space to suppress the deposition of polycrystals on the SiN x film. After the growth of the protective layer 111 is completed, Si
By removing the N x film 109, the p-type GaAs contact layer 11 is formed.
2 was grown to 2 μm to complete the production of the epitaxial wafer (FIG. 1 (d)).

【0021】得られたエピタキシャルウェハに電極を蒸
着した後、ダイシングし、劈開により、ファブリー・ペ
ロー面を形成してレーザダイオードを作成した。しきい
値電流は共振器長350μm、リッジ幅Wが3μmで約
20mAと非常に低く、かつ面内での均一性も2インチ
ウェハで±5%程度と非常に良好であった。
After depositing electrodes on the obtained epitaxial wafer, dicing was performed and the Fabry-Perot surface was formed by cleavage to form a laser diode. The threshold current was very low at about 20 mA when the cavity length was 350 μm and the ridge width W was 3 μm, and the in-plane uniformity was very good at about ± 5% for a 2-inch wafer.

【0022】なお、本実施例における結晶成長条件は、
成長温度650〜800℃(選択成長のみ580℃)、
圧力102 hPa、V/III 比25〜50(GaAsま
たはAlGaAs)及び500(GaInP)、成長速
度2〜4μm/hr(GaAsまたはAlGaAs)及
び1.5μm/hr(GaInP)である。
The crystal growth conditions in this embodiment are as follows:
Growth temperature 650 to 800 ° C (only selective growth is 580 ° C),
The pressure is 10 2 hPa, the V / III ratio is 25 to 50 (GaAs or AlGaAs) and 500 (GaInP), and the growth rate is 2 to 4 μm / hr (GaAs or AlGaAs) and 1.5 μm / hr (GaInP).

【0023】(実施例2)図2は、本発明の製造方法を
実施例1と異なる材料系のウエハに適用した別の実施例
を示す。図2構成は、図1構成のエピタキシャルウエハ
と、n型クラッド層が2層から構成される点のみ異な
り、製造方法は実施例1と同様であるため、製造過程の
図は省いて説明する。n型GaAs(100)基板20
1上にn型GaAsバッファー層202(厚み0.5μ
m)、n型Al0.7Ga0.3As第1クラッド層203
(厚み1.5μm)、n型(Al0.7 Ga0.3 0.5
0.5 P第2クラッド層204(厚み0.15μm)、
活性層205をGa0.5 In0.5 P(0.06μm)、
p型(Al0.5 Ga0.5 0.5 In0.5 P第3クラッド
層206(厚み0.15μm)、p型Al0.7 Ga0.3
As第4クラッド層207(厚み1.5μm)、p型G
aAsキャップ層208(厚み0.2μm)を順次成長
させた。
(Embodiment 2) FIG. 2 shows another embodiment in which the manufacturing method of the present invention is applied to a wafer of a material system different from that of Embodiment 1. The structure of FIG. 2 is different from the epitaxial wafer of the structure of FIG. 1 only in that the n-type cladding layer is composed of two layers, and the manufacturing method is the same as that of the first embodiment. n-type GaAs (100) substrate 20
N-type GaAs buffer layer 202 (thickness 0.5 μ
m), n-type Al 0.7 Ga 0.3 As first cladding layer 203
(Thickness 1.5 μm), n-type (Al 0.7 Ga 0.3 ) 0.5 I
n 0.5 P second cladding layer 204 (thickness 0.15 μm),
The active layer 205 is formed of Ga 0.5 In 0.5 P (0.06 μm),
p-type (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P third cladding layer 206 (thickness 0.15 μm), p-type Al 0.7 Ga 0.3
As fourth clad layer 207 (thickness: 1.5 μm), p-type G
An aAs cap layer 208 (thickness 0.2 μm) was sequentially grown.

【0024】次に、リッジを形成する部分にSiNx
(図示せず)を形成した。続いて、リン酸−過酸化水素
系エッチャントを用いて、第4クラッド層207及びキ
ャップ層209をエッチングしてリッジを形成した。本
実施例においては、第2クラッド層204が実施例1に
おけるエッチストップ層の機能を有するため、エッチン
グ残し膜厚dは第2クラッド層204の厚みと等しく、
0.15μmとなる。
Next, a SiN x film (not shown) was formed on the portion where the ridge is to be formed. Subsequently, the fourth clad layer 207 and the cap layer 209 were etched using a phosphoric acid-hydrogen peroxide type etchant to form a ridge. In this embodiment, since the second clad layer 204 has the function of the etch stop layer in the first embodiment, the unetched film thickness d is equal to the thickness of the second clad layer 204.
It becomes 0.15 μm.

【0025】リッジが形成されたウェハ(図1(b)に
相当)をMOCVD装置に設置し、電流ブロック層21
1としてn型Al0.8 Ga0.2 Asをキャップ層208
を含むリッジ部の側面及び第4クラッド層207のエッ
チングにより露出した第2クラッド層204上に1.5
μm成長させる。このときのn型Al0.8 Ga0.2 As
のドーパントガスには実施例1と同様にH2Seを用い
た。
The wafer on which the ridge is formed (corresponding to FIG. 1B) is set in the MOCVD apparatus, and the current blocking layer 21 is formed.
N-type Al 0.8 Ga 0.2 As as the cap layer 208
1.5 on the side surface of the ridge portion including the second cladding layer 204 exposed by the etching of the fourth cladding layer 207.
Grow μm. N-type Al 0.8 Ga 0.2 As at this time
As the dopant gas, H 2 Se was used as in Example 1.

【0026】さらに電流ブロック層211上に保護層と
してn型GaAs層212を0.2μm成長させた(図
1(c)に相当)。このとき、Al0.8 Ga0.2 As層
のSiNx 膜上への多結晶の堆積を抑制するために成長
中にIII族原料の1/5モル程度のHClガスを成長空
間に導入した。
Further, an n-type GaAs layer 212 was grown to a thickness of 0.2 μm as a protective layer on the current blocking layer 211 (corresponding to FIG. 1C). At this time, in order to suppress the deposition of polycrystals on the Al 0.8 Ga 0.2 As layer on the SiN x film, HCl gas of about 1/5 mol of the group III raw material was introduced into the growth space during the growth.

【0027】最後に、SiNx 膜を除去した後、p型G
aAsコンタクト層213を2μm成長させて本発明の
エピタキシャルウェハの製造を終了した。
Finally, after removing the SiN x film, p-type G
The aAs contact layer 213 was grown to a thickness of 2 μm, and the production of the epitaxial wafer of the present invention was completed.

【0028】得られたエピタキシャルウェハに電極を蒸
着した後、ダイシングし、劈開により、ファブリー・ペ
ロー面を形成してレーザダイオードを作成した。しきい
値電流は共振器長350μm、リッジ幅Wが3μmで2
0mAと非常に低く、かつ面内での均一性も2インチウ
ェハで±5%程度と非常に良好であった。さらに従来の
AlGaInPリッジに対してAlGaAsをリッジに
用いたことにより、素子抵抗も大幅に低減できた。
After depositing electrodes on the obtained epitaxial wafer, dicing was performed and cleavage was performed to form a Fabry-Perot surface to prepare a laser diode. The threshold current is 2 with a cavity length of 350 μm and a ridge width W of 3 μm.
It was extremely low at 0 mA, and the in-plane uniformity was very good at about ± 5% for a 2-inch wafer. Further, by using AlGaAs for the ridge as compared with the conventional AlGaInP ridge, the element resistance can be significantly reduced.

【0029】実施例2における結晶成長条件は、成長温
度650〜750℃(ただし、選択成長は580℃)、
圧力102 hPa、V/III 比25〜50(GaAsま
たはAlGaAs)及び500〜750(GaInPま
たはAlGaInP)、成長速度2〜5μm/hr(A
lGaAs)及び1〜2μm/hr(GaInPまたは
AlGaInP)であった。
Crystal growth conditions in Example 2 are as follows: a growth temperature of 650 to 750 ° C. (however, selective growth is 580 ° C.),
Pressure 10 2 hPa, V / III ratio 25-50 (GaAs or AlGaAs) and 500-750 (GaInP or AlGaInP), growth rate 2-5 μm / hr (A
1 GaAs) and 1-2 μm / hr (GaInP or AlGaInP).

【0030】上述した実施例のように、電流ブロック層
を比較的低温で成長させようとした場合、ハイドライド
ガスの分解効率が大きく低下し、問題となる。そこで、
低温領域でも分解効率の高いターシャリーブチルアルシ
ン(TBA)やターシャリーブチルホスフィン(TB
P)をV族原料に用いることにより、基板表面での実質
的なV/III比を高めることも結晶性向上の面で効果的
である。
When the current blocking layer is grown at a relatively low temperature as in the above-mentioned embodiments, the decomposition efficiency of the hydride gas is greatly reduced, which is a problem. Therefore,
Tertiary butyl arsine (TBA) and tertiary butyl phosphine (TB), which have high decomposition efficiency even in the low temperature range
It is also effective in terms of improving the crystallinity to increase the substantial V / III ratio on the substrate surface by using P) as the group V raw material.

【0031】実施例1及び2ではn型基板を用いたが、
p型基板を用いて上記の構造の各層の導電型を反転させ
てエピタキシャルウェハを作製させてもよい。また、結
晶成長法はMOCVD法に限定されるものではなく、M
BE法、CBE法等の気相成長法においても本発明を適
用することができる。
Although an n-type substrate was used in Examples 1 and 2,
An epitaxial wafer may be produced by inverting the conductivity type of each layer having the above structure using a p-type substrate. The crystal growth method is not limited to the MOCVD method, but M
The present invention can also be applied to vapor phase growth methods such as the BE method and the CBE method.

【0032】[0032]

【発明の効果】異常説明したように、本発明によれば、
選択成長により形成される電流ブロック層の埋め込み形
状を改善することができ、発光素子の特性及び信頼性を
向上させることが可能となる。
As described above, according to the present invention,
The embedded shape of the current blocking layer formed by selective growth can be improved, and the characteristics and reliability of the light emitting element can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例を説明する図FIG. 1 is a diagram illustrating a first embodiment of the present invention.

【図2】 本発明の第2実施例を説明する図FIG. 2 is a diagram illustrating a second embodiment of the present invention.

【図3】 従来法による問題点を説明する図FIG. 3 is a diagram for explaining problems with the conventional method.

【図4】 エッチストップ層を用いない従来構成を示す
FIG. 4 is a diagram showing a conventional configuration that does not use an etch stop layer.

【符号の説明】[Explanation of symbols]

101,201,301,401 基板 102,202,302,402 バッファ層 103,203,204,303,403 nクラッド
層 104,205,304,405 活性層 105,107,206,207,305,307,4
07pクラッド層 106,306 エッチスト
ップ層 108,111,208,212,308,311,4
08,410キャップ層(保護層) 109,309 エッチング
マスク 110,211,310,406 電流ブロッ
ク層 112,213,313,411 コンタクト
層 314 ボイド
101, 201, 301, 401 Substrate 102, 202, 302, 402 Buffer layer 103, 203, 204, 303, 403 N-clad layer 104, 205, 304, 405 Active layer 105, 107, 206, 207, 305, 307, Four
07p clad layer 106,306 Etch stop layer 108,111,208,212,308,311,4
08,410 Cap layer (protective layer) 109,309 Etching mask 110, 211, 310, 406 Current blocking layer 112, 213, 313, 411 Contact layer 314 Void

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 秀樹 茨城県牛久市東狸穴町1000番地 三菱化学 株式会社筑波事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Goto 1000, Higashitanana-cho, Ushiku-shi, Ibaraki Mitsubishi Chemical Corporation Tsukuba Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、第1導電型を有する少なくと
も1層からなる第1クラッドと、活性層と、該活性層に
隣接する、第2導電型を有する少なくとも1層から構成
され、リッジを有する第2クラッドと、このリッジを挟
んで形成された電流ブロック層とを有し、かつ前記リッ
ジの側壁に、Al混晶比が前記リッジの両側の底面を形
成する層のAl混晶比よりも大きい層を含むIII −V族
化合物半導体発光素子の製造方法において、前記電流ブ
ロック層を650℃以下で気相成長法により成長させる
ことを特徴とするIII−V族化合物半導体発光素子の製
造方法。
1. A ridge formed on a substrate by a first clad formed of at least one layer having a first conductivity type, an active layer, and at least one layer adjacent to the active layer having a second conductivity type. An Al mixed crystal ratio of a layer having a second clad having a current blocking layer formed on both sides of the ridge, and having an Al mixed crystal ratio on a sidewall of the ridge that forms bottom surfaces on both sides of the ridge. A method for manufacturing a III-V compound semiconductor light emitting device including a larger layer, wherein the current blocking layer is grown by a vapor phase growth method at 650 ° C. or lower. Method.
【請求項2】 前記リッジの両側の底面を形成する層及
び前記Al混晶比がリッジの底面を形成する層のAl混
晶比よりも大きい層が、Alq Ga1-q Asr
1-r (0≦q≦1、r≦1)または(AluGa1-uv
In1-vAsw1 -w(0≦u≦1、0≦v≦1、0≦w
≦1)から構成される請求項1記載のIII−V族化合物
半導体発光素子の製造方法。
2. A layer forming the bottom surface on both sides of the ridge and a layer having a higher Al mixed crystal ratio than the layer forming the bottom surface of the ridge are Al q Ga 1 -q As r P layers.
1-r (0 ≦ q ≦ 1, r ≦ 1) or (Al u Ga 1-u ) v
In 1-v As w P 1 -w (0 ≦ u ≦ 1, 0 ≦ v ≦ 1, 0 ≦ w
The method for producing a III-V group compound semiconductor light-emitting device according to claim 1, wherein ≦ 1).
【請求項3】 前記電流ブロック層がAlsGa1-sAs
t1-t(0≦s≦1、0≦t≦1)または(AlxGa
1-xyIn1-yAsz1-Z(0≦x≦1、0≦y≦1、
0≦z≦1)からなる請求項1記載のIII−V族化合物
半導体発光素子の製造方法。
3. The current blocking layer comprises Al s Ga 1 -s As
t P 1-t (0 ≦ s ≦ 1, 0 ≦ t ≦ 1) or (Al x Ga
1-x ) y In 1-y As z P 1-Z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1,
The method for manufacturing a III-V compound semiconductor light emitting device according to claim 1, wherein 0 ≦ z ≦ 1).
【請求項4】 前記電流ブロック層がn型AlsGa1-s
Ast1-t(0≦s≦1、0≦t≦1)であり、かつn
型ドーパントはセレンまたはテルルである請求項1記載
のIII−V族化合物半導体発光素子の製造方法。
4. The current blocking layer is n-type Al s Ga 1-s
As t P 1-t (0 ≦ s ≦ 1, 0 ≦ t ≦ 1), and n
The method for manufacturing a III-V compound semiconductor light emitting device according to claim 1, wherein the type dopant is selenium or tellurium.
JP7905395A 1995-04-04 1995-04-04 III-V compound semiconductor light emitting device manufacturing method Expired - Fee Related JP3783244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7905395A JP3783244B2 (en) 1995-04-04 1995-04-04 III-V compound semiconductor light emitting device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7905395A JP3783244B2 (en) 1995-04-04 1995-04-04 III-V compound semiconductor light emitting device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005197676A Division JP2005354091A (en) 2005-07-06 2005-07-06 Manufacturing method of group iii-v compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08279653A true JPH08279653A (en) 1996-10-22
JP3783244B2 JP3783244B2 (en) 2006-06-07

Family

ID=13679162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7905395A Expired - Fee Related JP3783244B2 (en) 1995-04-04 1995-04-04 III-V compound semiconductor light emitting device manufacturing method

Country Status (1)

Country Link
JP (1) JP3783244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347366A (en) * 2004-06-01 2005-12-15 Sumitomo Chemical Co Ltd Manufacturing method for compound semiconductor board having pn junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347366A (en) * 2004-06-01 2005-12-15 Sumitomo Chemical Co Ltd Manufacturing method for compound semiconductor board having pn junction
JP4661088B2 (en) * 2004-06-01 2011-03-30 住友化学株式会社 Method for manufacturing compound semiconductor substrate having pn junction

Also Published As

Publication number Publication date
JP3783244B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2003133649A (en) Nitride semiconductor laser device and method of manufacturing the same, and semiconductor optical device provided therewith
EP0612128B1 (en) Semiconductor laser and method of manufacturing the same
JP4608731B2 (en) Manufacturing method of semiconductor laser
JPS62200785A (en) Semiconductor laser device and manufacture thereof
JPH0983071A (en) Semiconductor laser
JP3783244B2 (en) III-V compound semiconductor light emitting device manufacturing method
JP3889896B2 (en) Semiconductor light emitting device
JP2005354091A (en) Manufacturing method of group iii-v compound semiconductor light emitting device
JP2728672B2 (en) Semiconductor laser device, double hetero wafer, and method of manufacturing the same
JPH0548215A (en) Semiconductor laser diode and its manufacture
JPH05226781A (en) Production of semiconductor light emitting element
JPH0567839A (en) Semiconductor laser device
KR100586937B1 (en) Method of producing a semiconductor laser device
JPH04356963A (en) Manufacture of semiconductor quantum fine wiring
JPH08125285A (en) Semiconductor light-emitting device
JPH10190145A (en) Manufacture of semiconductor device
JP2000124553A (en) Semiconductor laser device and manufacture thereof
JPH11346033A (en) Semiconductor laser and manufacture thereof
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JPH10335745A (en) Semiconductor device and its manufacturing method
JP2812187B2 (en) Manufacturing method of semiconductor laser
JP3446344B2 (en) Semiconductor light emitting device having V-groove structure
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPH06268317A (en) Fabrication of semiconductor laser
JPS61187388A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees