JPH08274027A - Semiconductor thin film device - Google Patents

Semiconductor thin film device

Info

Publication number
JPH08274027A
JPH08274027A JP9626595A JP9626595A JPH08274027A JP H08274027 A JPH08274027 A JP H08274027A JP 9626595 A JP9626595 A JP 9626595A JP 9626595 A JP9626595 A JP 9626595A JP H08274027 A JPH08274027 A JP H08274027A
Authority
JP
Japan
Prior art keywords
mixed crystal
buffer layer
crystal layer
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9626595A
Other languages
Japanese (ja)
Inventor
Tomoe Tatsuyama
智栄 龍山
Hiroshi Ueha
弘 上羽
Toyokazu Tanpo
豊和 丹保
Tsutomu Obata
勤 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP9626595A priority Critical patent/JPH08274027A/en
Publication of JPH08274027A publication Critical patent/JPH08274027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To form an SiGe mixed crystal thin film with high quality of a relatively thin buffer layer at relatively low temperature without misfit dislocation in the mixed crystal layer on an Si substrate at all. CONSTITUTION: A superlattice comprising an assembly of Si and Ge as a buffer layer 12 is formed on a silicon substrate 10. Within this superlattice comprising the assembly of Si and Ge as the cells thereof, the Ge ratio of Ge occupied by cells is increased stepwise from the Si substrate 10 side to be maximised to the level similar to that of the composition of an SiGe mixed crystal layer 13 formed on this buffer layer 12. Finally, the SiGe mixed crystal layer 13 is formed on the buffer layer 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Si基板上にSiG
e混晶薄膜を形成した半導体薄膜素子に関する。
BACKGROUND OF THE INVENTION The present invention relates to SiG on a Si substrate.
The present invention relates to a semiconductor thin film element formed with a mixed crystal thin film.

【0002】[0002]

【従来の技術】従来、Si基板上にSiGe混晶層を直
接成長させる方法が種々試みられている。このSiGe
混晶層は、分子線エピタキシー(MBE)法により、形
成されるもので、数千Å程度の厚さに形成される。
2. Description of the Related Art Conventionally, various methods for directly growing a SiGe mixed crystal layer on a Si substrate have been tried. This SiGe
The mixed crystal layer is formed by a molecular beam epitaxy (MBE) method and has a thickness of about several thousand Å.

【0003】[0003]

【発明が解決しようとする課題】ここで、Si基板上に
SiGe混晶層を直接成長させると、両者の格子定数の
違いからそのヘテロ界面にミスフィット転位が発生す
る。また成長様式は2次元的から3次元的になりその表
面は凹凸状になり、混晶層内には転位が多く発生する。
そして、混晶層内に転位が多く発生存在すると電子素子
として使用する事が困難になってくる。また各種電子デ
バイスとして利用するには、ある程度の膜厚が必要であ
り、従来技術での転位の発生しない臨界膜厚程度の厚さ
では、電子デバイスには使用できないという問題があっ
た。
When the SiGe mixed crystal layer is directly grown on the Si substrate, misfit dislocations are generated at the hetero interface due to the difference in lattice constant between the two. Further, the growth mode is changed from two-dimensional to three-dimensional, the surface thereof becomes uneven, and many dislocations occur in the mixed crystal layer.
If many dislocations occur in the mixed crystal layer, it becomes difficult to use it as an electronic device. In addition, there is a problem that a certain degree of film thickness is required for use as various electronic devices, and the conventional device cannot be used for electronic devices with a thickness about the critical film thickness at which dislocation does not occur.

【0004】そこで近年では、SiGe混晶層とSi基
板の間に新しい混晶層(バッファー層)を挿入すること
によって格子不整合に起因する歪みを抑制し、それを仮
の基板と見立てて厚い混晶層を作成することが試みられ
ている。当初は、高品位のバッファー層自体の成長がで
きなかったため結果的にバッファー層には転位が発生
し、続く混晶層中に増殖してしまっていた。近年では、
バッファー層の組成比を段階的に増やして行き、目的の
組成にする事によってSi基板界面で発生した転位をそ
の上の混晶層に伝達しないような方法が取られている。
この方法においては急激に組成を変化させると効果がう
すれるため、組成を大きくするにつれ厚いバッファー層
が必要となってくる。また格子緩和を完全とするために
高い基板温度(750℃以上)が必要である。
Therefore, in recent years, a new mixed crystal layer (buffer layer) is inserted between the SiGe mixed crystal layer and the Si substrate to suppress the strain due to lattice mismatch, and it is regarded as a temporary substrate and is thick. Attempts have been made to create mixed crystal layers. Initially, the high-quality buffer layer itself could not be grown, and as a result, dislocations occurred in the buffer layer and they grew in the subsequent mixed crystal layer. in recent years,
A method is adopted in which the dislocation generated at the Si substrate interface is not transmitted to the mixed crystal layer thereabove by increasing the composition ratio of the buffer layer stepwise to obtain the desired composition.
In this method, the effect is weakened when the composition is rapidly changed, and thus a thick buffer layer is required as the composition is increased. Further, a high substrate temperature (750 ° C. or higher) is required to complete the lattice relaxation.

【0005】この発明は、Si基板上の混晶層にミスフ
ィット転位がなく、比較的薄いバッファー層で、高品位
なSiGe混晶薄膜を比較的低温で形成することができ
る半導体薄膜素子を提供することを目的とする。
The present invention provides a semiconductor thin film element capable of forming a high-quality SiGe mixed crystal thin film at a relatively low temperature with a relatively thin buffer layer having no misfit dislocations in the mixed crystal layer on a Si substrate. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】この発明は、シリコン基
板上に、バッファー層としてSiとGeを組み合わせた
超格子を形成し、この超格子はそのセルのSiとGeの
組み合わせを、Si基板側から段階的にセルに占めるG
eの割合を大きくし、このバッファー層の上に作成する
SiGe混晶層のGeの組成と同じところで最大とし、
このバッファー層の上にSiGe混晶層を形成した半導
体薄膜素子である。
According to the present invention, a superlattice in which Si and Ge are combined is formed as a buffer layer on a silicon substrate, and the superlattice is formed by combining the combination of Si and Ge in the cell with the Si substrate side. G gradually occupies the cell
The ratio of e is increased, and it is maximized at the same position as the Ge composition of the SiGe mixed crystal layer formed on this buffer layer.
This is a semiconductor thin film element in which a SiGe mixed crystal layer is formed on this buffer layer.

【0007】[0007]

【作用】この発明の半導体薄膜素子は、Si基板、バッ
ファー層、混晶層の三層で構成され、バッファー層は、
シュードモロフィック成長しているため、その面内の格
子定数はSi基板と同じである。よって、その上に成長
した混晶層は歪みを受け、膜厚が大きくなるにつれてそ
の歪みは大きくなっていき、臨界膜厚に達すると、歪み
の総和のエネルギーが転位が発生するのに必要なエネル
ギーを越えるため、混晶層上に成長した薄膜は転位によ
ってそのエネルギーを解放しようとする。このときエネ
ルギーはSi基板とバッファー層の界面に集中し、ミス
フィット転位や線状転位が発生する。発生した転位は超
格子の界面効果で曲げられ互いに反応するか、超格子界
面でのミスフィット転位と反応し、そこで停止するため
それより上には伝達しない。また反応の確率はかなり高
くたとえ反応しないものがあってもさらに上の超格子界
面によって停止させられる。よってかなりの転位はバッ
ファー層内にとどめられ混晶層中には転位が入らない。
The semiconductor thin film element of the present invention comprises three layers of a Si substrate, a buffer layer and a mixed crystal layer.
Since it is pseudomorphically grown, its in-plane lattice constant is the same as that of the Si substrate. Therefore, the mixed crystal layer grown on it receives strain, and the strain increases as the film thickness increases, and when the critical film thickness is reached, the energy of the total strain is necessary for dislocation to occur. Since the energy exceeds the energy, the thin film grown on the mixed crystal layer tries to release the energy by dislocation. At this time, energy is concentrated on the interface between the Si substrate and the buffer layer, and misfit dislocations and linear dislocations are generated. The generated dislocations are bent by the interface effect of the superlattice and react with each other, or react with misfit dislocations at the superlattice interface and stop there, so that they do not propagate above it. Moreover, the probability of reaction is quite high, and even if there is something that does not react, it is stopped by the superlattice interface above. Therefore, a considerable amount of dislocations are retained in the buffer layer and do not enter the mixed crystal layer.

【0008】[0008]

【実施例】以下、この発明の一実施例について図面を基
にして説明する。この実施例の半導体薄膜素子は、図1
に示すように、Si基板10、バッファー層12、混晶
層13の三層で構成されている。バッファー層12に
は、SiとGeを組み合わせた超格子を形成し、この超
格子はそのセルのSiとGeの組み合わせを、Si基板
側から段階的にセルに占めるGeの割合を大きくし、こ
のバッファー層12側では、Geの割合は、その上に作
成するSiGe混晶層13のGeの組成と同じ割合に増
大している。図1では、Si1-XGeXの、X=0.3の
Ge組成のSiGe混晶層13を、数千Åの厚さに作成
した例を示す。また、バッファー層12は、模式的に4
層にあらわされているが、実際は多数の層を形成して細
かく段階的にGeの割合を多くしていくものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The semiconductor thin film element of this embodiment is shown in FIG.
As shown in FIG. 3, it is composed of three layers of a Si substrate 10, a buffer layer 12, and a mixed crystal layer 13. In the buffer layer 12, a superlattice formed by combining Si and Ge is formed, and this superlattice gradually increases the proportion of Ge in the cell in the combination of Si and Ge in the cell. On the buffer layer 12 side, the proportion of Ge is increased to the same proportion as the composition of Ge of the SiGe mixed crystal layer 13 formed thereon. FIG. 1 shows an example in which the SiGe mixed crystal layer 13 of Si 1-X Ge X having a Ge composition of X = 0.3 is formed to a thickness of several thousand Å. The buffer layer 12 is typically 4
Although it is represented by layers, in reality, a large number of layers are formed to finely and gradually increase the proportion of Ge.

【0009】実験的には、混晶層13は、Si1-XGeX
の、X=0.1のGe組成のSiGe混晶層13を、数
千Åの厚さに作成した(臨界膜厚以上)。この半導体薄
膜素子を製造するに際して、先ず、Si基板10を洗浄
し、MBE超高真空薄膜作成装置中に導入する。Si基
板10が清浄であることを確認してから、超格子バッフ
ァー層12を作成する。この時の成長条件は、基板温度
500〜600℃で、厚さ400Å程度に形成する。次
に、上記Si1-XGeのX=0.1の混晶層13を、
3600Åの厚さに作成する。この時の基板温度は、5
50〜600℃である。
Experimentally, the mixed crystal layer 13 is formed of Si 1-x Ge x.
The SiGe mixed crystal layer 13 having a Ge composition of X = 0.1 was formed to a thickness of several thousand Å (more than the critical film thickness). When manufacturing this semiconductor thin film element, first, the Si substrate 10 is washed and introduced into the MBE ultra-high vacuum thin film forming apparatus. After confirming that the Si substrate 10 is clean, the superlattice buffer layer 12 is formed. The growth conditions at this time are such that the substrate temperature is 500 to 600 ° C. and the thickness is about 400 Å. Next, the mixed crystal layer 13 of Si 1-X Ge X with X = 0.1 is
Create a thickness of 3600Å. The substrate temperature at this time is 5
It is 50 to 600 ° C.

【0010】以上の工程を経て作成された試料の転位の
様子をフォトルミネッセンス法により評価すると、図2
に示すように、Siと超格子界面に転位が集中し、膜内
の転位は少ないことを示している。またuniaxial stres
sは小さくほぼ最上のSiGe混晶層13は緩和してい
ると思われる。即ち、図2のグラフにおいて、図中D1
〜D4の各ピークがSi基板10中の転位を示し、ブロ
ードなバックグラウンドが小さいことから、転位は、S
i基板10の界面近傍のバッファー層12に存在してい
ると考えられる。さらに、図3のこの実施例の半導体薄
膜素子の断面の電子顕微鏡写真(倍率500,000
倍)の模式図に示すように、超格子が形成されたバッフ
ァー層12に、転位14が見られるが、SiGe混晶層
13には、転位14が見られないことが分かった。
When the state of dislocation of the sample produced through the above steps is evaluated by the photoluminescence method, it is shown in FIG.
As shown in, the dislocations are concentrated on the interface between Si and the superlattice, and the dislocations in the film are small. Uniaxial stres
It is considered that s is small and the SiGe mixed crystal layer 13 almost at the top is relaxed. That is, in the graph of FIG.
Since each peak of ~ D4 indicates a dislocation in the Si substrate 10 and a broad background is small, the dislocation is S
It is considered that the i-substrate 10 exists in the buffer layer 12 near the interface. Further, an electron micrograph (magnification: 500,000) of a cross section of the semiconductor thin film element of this example in FIG.
As shown in the schematic diagram of FIG. 2), dislocations 14 are found in the buffer layer 12 in which the superlattice is formed, but dislocations 14 are not found in the SiGe mixed crystal layer 13.

【0011】この発明の半導体薄膜素子は、抵抗値変化
を利用したセンサー(圧力センサー、磁気センサー、光
センサー等)に用いることができ、さらに、電解効果ト
ランジスタ(FET)、ヘテロバイポーラトランジスタ
(HBT)等にも利用可能なものである。
The semiconductor thin film element of the present invention can be used for a sensor (pressure sensor, magnetic sensor, optical sensor, etc.) utilizing a change in resistance value, and further, a field effect transistor (FET) and a hetero bipolar transistor (HBT). Etc. can also be used.

【0012】[0012]

【発明の効果】この発明の半導体薄膜素子は、SiとG
eを組み合わせた超格子が形成されたバッファー層を設
け、この超格子はそのセルのSiとGeの組み合わせ
を、Si基板側から段階的にセルに占めるGeの割合を
大きくし、このバッファー層の上にSiGe混晶層を形
成したので、比較的薄いバッファー層で、Si基板上の
混晶層にミスフィット転位がなく、高品位なSiGe混
晶薄膜を、比較的低温で形成することができ、多数の電
子素子に利用可能なものである。
The semiconductor thin film element of the present invention is made of Si and G
A buffer layer in which a superlattice formed by combining e is formed is provided, and this superlattice increases the ratio of Ge in the cell in the combination of Si and Ge in the cell stepwise from the Si substrate side. Since the SiGe mixed crystal layer is formed on the SiGe mixed crystal layer, it is possible to form a high quality SiGe mixed crystal thin film with a relatively thin buffer layer without misfit dislocations in the mixed crystal layer on the Si substrate. It can be used for many electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体薄膜素子の断面図である。FIG. 1 is a sectional view of a semiconductor thin film element of the present invention.

【図2】この発明による半導体薄膜素子のフォトルミネ
ッセンスによる評価グラフである。
FIG. 2 is an evaluation graph by photoluminescence of a semiconductor thin film element according to the present invention.

【図3】この発明の一実施例の半導体薄膜素子の断面の
電子顕微鏡写真の模式図である。
FIG. 3 is a schematic view of an electron micrograph of a cross section of a semiconductor thin film element according to an example of the present invention.

【符号の説明】[Explanation of symbols]

10 Si基板 12 バッファー層 13 混晶層 10 Si substrate 12 Buffer layer 13 Mixed crystal layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/73 (72)発明者 小幡 勤 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01L 29/73 (72) Inventor Tsutomu Obata 3158 Shimookubo, Osawano-cho, Kamishinagawa-gun, Toyama Prefecture Hokuriku Electric Industrial Co., Ltd. In the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に、バッファー層として
SiとGeを組み合わせた超格子を形成し、この超格子
はそのセルのSiとGeの組み合わせを、Si基板側か
ら段階的にセルに占めるGeの割合を大きくし、このバ
ッファー層の上に作成するSiGe混晶層のGeの組成
と同じところで最大としてバッファー層側に接続する面
とし、このバッファー層の上にSiGe混晶層を形成し
た半導体薄膜素子。
1. A superlattice in which Si and Ge are combined as a buffer layer is formed on a silicon substrate, and the superlattice is such that the combination of Si and Ge in the cell is gradually occupied in the cell from the Si substrate side. Of the SiGe mixed crystal layer formed on this buffer layer at the same position as the maximum Ge connecting surface to the buffer layer side, and the SiGe mixed crystal layer formed on this buffer layer. Thin film device.
JP9626595A 1995-03-29 1995-03-29 Semiconductor thin film device Pending JPH08274027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9626595A JPH08274027A (en) 1995-03-29 1995-03-29 Semiconductor thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9626595A JPH08274027A (en) 1995-03-29 1995-03-29 Semiconductor thin film device

Publications (1)

Publication Number Publication Date
JPH08274027A true JPH08274027A (en) 1996-10-18

Family

ID=14160342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9626595A Pending JPH08274027A (en) 1995-03-29 1995-03-29 Semiconductor thin film device

Country Status (1)

Country Link
JP (1) JPH08274027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058571A (en) * 2001-12-31 2003-07-07 주식회사 하이닉스반도체 A method for manufacturing a semiconductor device
KR20040014716A (en) * 2002-08-10 2004-02-18 한국전자통신연구원 Method of manufacturing semiconductor device having oxide layer under active region
WO2004064161A1 (en) * 2003-01-14 2004-07-29 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit manufacturing method and semiconductor integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058571A (en) * 2001-12-31 2003-07-07 주식회사 하이닉스반도체 A method for manufacturing a semiconductor device
KR20040014716A (en) * 2002-08-10 2004-02-18 한국전자통신연구원 Method of manufacturing semiconductor device having oxide layer under active region
WO2004064161A1 (en) * 2003-01-14 2004-07-29 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit manufacturing method and semiconductor integrated circuit
US7084484B2 (en) 2003-01-14 2006-08-01 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US6703144B2 (en) Heterointegration of materials using deposition and bonding
US6927147B2 (en) Coplanar integration of lattice-mismatched semiconductor with silicon via wafer bonding virtual substrates
JP5062955B2 (en) Method for forming a relaxed Si1-xGex layer
JP4716733B2 (en) Method for forming strained silicon on insulator (SSOI)
US6709903B2 (en) Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
US5413679A (en) Method of producing a silicon membrane using a silicon alloy etch stop layer
JP2694120B2 (en) Pseudo substrate structure
US5888885A (en) Method for fabricating three-dimensional quantum dot arrays and resulting products
JP3286921B2 (en) Silicon substrate compound semiconductor device
US20070051299A1 (en) Non-contact etch annealing of strained layers
JP2007511892A (en) Epitaxial growth of relaxed silicon germanium layers.
JP2003229361A (en) Manufacturing method for semiconductor substrate
WO2006025409A1 (en) Silicon epitaxial wafer and method for manufacturing the same
JP3024584B2 (en) Method for manufacturing semiconductor device
KR20060126968A (en) Formation of lattice-tuning semiconductor substrates
JP5582617B2 (en) Relaxation of strained layer
US7147709B1 (en) Non-contact etch annealing of strained layers
CN1905132B (en) Silicon carbon germanium (SiCGe) substrate for a group III nitride-based device and forming method thereof
JP2004179462A (en) Process for manufacturing semiconductor substrate, process for manufacturing field effect transistor, semiconductor substrate and field effect transistor
JPH0982944A (en) Distortion silicon field effect transistor and manufacture of the same
JPH08274027A (en) Semiconductor thin film device
JP2003218031A (en) Method of manufacturing semiconductor wafer
JP2007142291A (en) Semiconductor structure and its growing method
JP2010516602A (en) Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes
Sawano et al. Introduction of uniaxial strain into Si/Ge heterostructures by selective ion implantation