JPH0827360A - Epoxy resin composition and fiber-reinforced composite material - Google Patents

Epoxy resin composition and fiber-reinforced composite material

Info

Publication number
JPH0827360A
JPH0827360A JP6166710A JP16671094A JPH0827360A JP H0827360 A JPH0827360 A JP H0827360A JP 6166710 A JP6166710 A JP 6166710A JP 16671094 A JP16671094 A JP 16671094A JP H0827360 A JPH0827360 A JP H0827360A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
frp
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6166710A
Other languages
Japanese (ja)
Inventor
Kazuya Goto
和也 後藤
Masahiro Sugimori
正裕 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6166710A priority Critical patent/JPH0827360A/en
Publication of JPH0827360A publication Critical patent/JPH0827360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition used for FRP, which has low viscosity, excellent infiltrability and high heat resistance and can give a cured molding with low residual internal stress. CONSTITUTION:This composition comprises 10-50 pts.wt. fine rubber particles having a diameter of 1mum or below and being at least partially crosslinked, 100 pts.wt. normally liquid epoxy resin and a normally liquid curing agent. This composition is infiltrated into reinforcing fibers and cured to obtain a fiber-reinforced composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化複合材料(以
下FRPと略記)用のエポキシ樹脂組成物及びそれを用
いて得られるFRPに関する。
TECHNICAL FIELD The present invention relates to an epoxy resin composition for a fiber reinforced composite material (hereinafter abbreviated as FRP) and an FRP obtained by using the same.

【0002】[0002]

【従来の技術】マトリックス樹脂を強化繊維で補強した
FRPは軽量、かつ高弾性、高強度のメリットを活かし
て、釣竿、ゴルフシャフト、テニスラケット等のスポー
ツ用途から航空機、船舶、自動車等の構造材料、あるい
はロール等の工業材料など、様々な用途に用いられてい
る。現在、これらFRPの問題点として、成形品に残存
する内部応力に伴う歪、あるいはクラックがある。
2. Description of the Related Art FRP, which is a matrix resin reinforced with reinforcing fibers, is lightweight, and has the advantages of high elasticity and high strength, and is used for sports applications such as fishing rods, golf shafts and tennis rackets, and structural materials for aircraft, ships, automobiles, etc. , Or industrial materials such as rolls. Currently, the problems with these FRPs are strain or cracks due to internal stress remaining in the molded product.

【0003】この内部応力については2つの要素がその
原因となっている。1つは硬化反応に伴う反応収縮、も
う1つは冷却時の熱収縮である。このうち反応収縮に関
してはその収縮量の比較的小さな樹脂としてエポキシ樹
脂が挙げられる。エポキシ樹脂は硬化後の物性にも優れ
ており、FRP用の樹脂として最適である。しかしこの
エポキシ樹脂も耐熱性が高くなると大きな熱収縮によ
り、成形品にクラックが発生し物性が低下する、あるい
は成形後の製品に反りが発生してしまう等のトラブルが
起こっている。この熱収縮による内部応力を防ぐ方法と
しては硬化樹脂の弾性率を低減させる方法が有効であ
り、そのためCTBN等のゴム変性エポキシ樹脂を組成
に加える方法がよく用いられる。この方法は硬化反応中
にゴム成分が相分離して析出し、耐熱性を低下させずに
弾性率のみを低減できる方法であるが、硬化条件によっ
てはうまく相分離せず、弾性率の低下とともに耐熱性も
低下してしまうので注意が必要であった。またこの方法
は未硬化樹脂の粘度の上昇をもたらし、含浸性の低下、
及びそれに伴う物性の低下が問題となっていた。
Two factors contribute to this internal stress. One is reaction shrinkage associated with the curing reaction, and the other is heat shrinkage during cooling. Among these, epoxy resin is mentioned as a resin whose reaction shrinkage is relatively small. Epoxy resin has excellent physical properties after curing, and is optimal as a resin for FRP. However, when the heat resistance of this epoxy resin also becomes high, a large amount of heat shrinkage causes cracks in the molded product to deteriorate the physical properties, or warps the molded product. As a method of preventing the internal stress due to the heat shrinkage, a method of reducing the elastic modulus of the cured resin is effective, and therefore, a method of adding a rubber-modified epoxy resin such as CTBN to the composition is often used. This method is a method in which the rubber component is phase-separated and precipitated during the curing reaction, and only the elastic modulus can be reduced without lowering the heat resistance. It was necessary to be careful because the heat resistance would also decrease. In addition, this method brings about an increase in the viscosity of the uncured resin and a decrease in impregnability
Also, there has been a problem that the physical properties are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解消し、低粘度で含浸性に優れ、耐熱性が高
く、かつ硬化後の成形品に残留する内部応力の小さなF
RP用のエポキシ樹脂組成物及びそれから得られる耐熱
性が高く、かつ内部応力の小さなFRPの提供を課題と
するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has a low viscosity, an excellent impregnation property, a high heat resistance, and a small internal stress F remaining in a molded product after curing.
An object of the present invention is to provide an epoxy resin composition for RP and an FRP obtained from the epoxy resin composition having high heat resistance and small internal stress.

【0005】[0005]

【課題を解決するための手段】上記課題は、直径1μm
以下の少なくとも部分的に架橋したゴム微粒子(a)1
0〜50重量部、常温で液状のエポキシ樹脂(b)10
0重量部及び常温で液状の硬化剤(c)とから成るエポ
キシ樹脂組成物、並びに該樹脂組成物を補強繊維に含
浸、硬化して得られる繊維強化複合材料によって解決さ
れる。
[Means for Solving the Problem] The above-mentioned problem is solved by the diameter of 1 μm.
The following at least partially crosslinked rubber fine particles (a) 1
0 to 50 parts by weight, epoxy resin (b) 10 which is liquid at room temperature
This is solved by an epoxy resin composition consisting of 0 part by weight and a curing agent (c) which is liquid at room temperature, and a fiber-reinforced composite material obtained by impregnating and curing the reinforcing fiber with the resin composition.

【0006】本発明に用いられる(a)成分のゴム微粒
子は補強繊維内への含浸性から、直径が1μm以下でな
ければならず、0.5μm以下は更に好ましい。ゴムの
種類には特に制限はなく、アクリルゴム、イソプレンゴ
ム、ブチルゴム、ブタジエンゴム、スチレンブタジエン
ゴム等が用いられる。ゴム微粒子の表面を変性し、マト
リックスとの接着性を改良したものは更に好ましい。こ
の(a)成分の添加量としては成分(b)のエポキシ樹
脂100重量部に対して10〜50重量部である。10
重量部未満だと低応力化の効果が小さくなってしまい、
また50重量部を越えると粘度が高くなりすぎて含浸性
に悪影響を与えるので好ましくない。
The rubber fine particles of the component (a) used in the present invention must have a diameter of 1 μm or less, more preferably 0.5 μm or less, because of the impregnation property into the reinforcing fiber. The type of rubber is not particularly limited, and acrylic rubber, isoprene rubber, butyl rubber, butadiene rubber, styrene butadiene rubber, etc. are used. It is more preferable that the surface of the rubber fine particles is modified to improve the adhesiveness with the matrix. The addition amount of the component (a) is 10 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin of the component (b). 10
If it is less than the weight part, the effect of reducing the stress becomes small,
Further, if it exceeds 50 parts by weight, the viscosity becomes too high and the impregnating property is adversely affected, which is not preferable.

【0007】成分(b)のエポキシ樹脂は常温で液状で
なければならず、このようなエポキシ樹脂としては汎用
低粘度のビスフェノールA型、F型、アミノグリシジル
型、テトラグリシジルジアミノジフェニルメタン型等の
エポキシを単独で、あるいは求められる物性により適宜
混合して用いることが出来る。また(a)のゴム微粒子
を予め分散させたエポキシ樹脂を用いることもできる。
The epoxy resin of component (b) must be liquid at room temperature, and as such an epoxy resin, general-purpose low-viscosity bisphenol A type, F type, aminoglycidyl type, tetraglycidyl diaminodiphenylmethane type epoxy and the like are used. Can be used alone or in an appropriate mixture depending on the required physical properties. It is also possible to use an epoxy resin in which the rubber fine particles (a) are dispersed in advance.

【0008】成分(c)の硬化剤は常温で液体であれば
特に制限はなく、酸無水物系、アミン系、アミド系、イ
ミダゾール系等の硬化剤が使用可能である。
The curing agent of component (c) is not particularly limited as long as it is liquid at room temperature, and acid anhydride type, amine type, amide type, imidazole type curing agents and the like can be used.

【0009】上記成分(a)、(b)及び(c)からな
るエポキシ樹脂組成物を用いて耐熱性が高く、かつ内部
応力の小さなFRPを提供することも本発明の目的であ
るが、FRPの成形法には特に制限はない。例えば上記
エポキシ樹脂組成物を補強繊維のトウに含浸し、マンド
レルに巻き付けて成形するFW法や、補強繊維を定長に
カットしたものと均一混合し、型内に射出して硬化する
インジェクション法、型内に補強繊維の織物をセット
し、そこへ樹脂を射出するRTM法等が挙げられる。
It is also an object of the present invention to provide an FRP having high heat resistance and low internal stress by using an epoxy resin composition comprising the above components (a), (b) and (c). There is no particular limitation on the molding method. For example, an FW method in which a tow of reinforcing fibers is impregnated with the epoxy resin composition and wound around a mandrel to be molded, or an injection method in which reinforcing fibers are uniformly mixed with a cut into fixed lengths and injected into a mold to be cured, An example is a RTM method in which a woven fabric of reinforcing fibers is set in a mold and a resin is injected therein.

【0010】本発明のFRPを成形する際の補強繊維に
も特に制限はなく、炭素繊維、ガラス繊維、アラミド繊
維、ボロン繊維、金属繊維等が用いられるが、その中で
も炭素繊維、ガラス繊維、アラミド繊維が好適に用いら
れる。
The reinforcing fiber used in molding the FRP of the present invention is not particularly limited, and carbon fiber, glass fiber, aramid fiber, boron fiber, metal fiber and the like are used. Among them, carbon fiber, glass fiber and aramid are used. Fibers are preferably used.

【0011】[0011]

【実施例】以下、実施例により本発明を更に詳しく説明
する。実施例、比較例中の化合物の略号、及び試験法は
以下の通りである。 Ep828 :ビスフェノールA型エポキシ樹脂
(油化シェル) Ep807 :ビスフェノールF型エポキシ樹脂
(油化シェル) ELM−100 :アミノグリシジル型エポキシ樹脂
(住友化学) TSR−601 :CTBN変性エポキシ樹脂(大日本
インキ) CX−MN77 :アクリルゴム微粒子分散エポキシ樹
脂(日本触媒) CX−MN110:アクリルゴム微粒子分散エポキシ樹
脂(日本触媒) MNA :無水メチルナジック酸 BDMA :ベンジルジメチルアミン ET−100 :エタキュア−100(エチルコーポ
レーション)
The present invention will be described in more detail with reference to the following examples. Abbreviations for compounds in Examples and Comparative Examples and test methods are as follows. Ep828: Bisphenol A type epoxy resin (oiled shell) Ep807: Bisphenol F type epoxy resin (oiled shell) ELM-100: Aminoglycidyl type epoxy resin (Sumitomo Chemical) TSR-601: CTBN modified epoxy resin (Dainippon Ink) CX-MN77: Acrylic rubber fine particle dispersed epoxy resin (Nippon catalyst) CX-MN110: Acrylic rubber fine particle dispersed epoxy resin (Nippon catalyst) MNA: Methyl nadic acid anhydride BDMA: Benzyldimethylamine ET-100: Etacure-100 (Ethyl Corporation)

【0012】<TMA Tg測定> 装置 :TAインスツルメント製 943TMA モード :エクスパンジョン 荷重 :1g 昇温速度:10℃/min<TMA Tg measurement> Apparatus: TA Instruments 943 TMA mode: Expansion load: 1 g Temperature rising rate: 10 ° C./min

【0013】<粘度測定> 装置 :レオメトリックス製 RDA−700 モード :Temp.Ramp プレート:ディスク型(50φ) 速度 :10rad/sec<Viscosity Measurement> Apparatus: Rheometrics RDA-700 mode: Temp. Ramp Plate: Disk type (50φ) Speed: 10 rad / sec

【0014】(実施例1)(a)成分として直径1μm
のアクリルゴム微粒子を20重量部、(b)成分として
Ep828を100重量部、(c)成分としてMNAを
90重量部、BDMAを2重量部用いて均一混合した。
こうして得られた本発明のエポキシ樹脂組成物を三菱レ
イヨン製炭素繊維、TR−30G、12Kのクロス(1
50g/m2、密度=1.8g/cm2)の20ply積
層物をセットした6mm厚の金型に50℃で注入し、そ
の後150℃×2hr+170℃×3hrで硬化成形し
てFRPを得た。得られたFRPのTMA Tgを測定
したところ150℃であった。また、クロス面に垂直な
面を研磨して顕微鏡観察したところ、アクリルゴムは均
一に分散されており、ボイドもクラックもなかった。
(Example 1) 1 μm diameter as component (a)
20 parts by weight of the acrylic rubber fine particles, 100 parts by weight of Ep828 as the component (b), 90 parts by weight of MNA as the component (c), and 2 parts by weight of BDMA were uniformly mixed.
The epoxy resin composition of the present invention thus obtained was used as a cloth (1) of Mitsubishi Rayon carbon fiber, TR-30G, 12K.
50 g / m 2 , density = 1.8 g / cm 2 ) 20 ply laminate was poured into a 6 mm thick mold set at 50 ° C., and then cured and molded at 150 ° C. × 2 hr + 170 ° C. × 3 hr to obtain FRP. . The TMA Tg of the obtained FRP was measured and found to be 150 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0015】(比較例1)(a)成分を用いない以外は
実施例1と同様にしてエポキシ樹脂組成物を調製し、F
RPを成形した。尚、このエポキシ樹脂組成物の粘度は
30℃で22ポイズであった。得られたFRPのTMA
Tgを測定したところ150℃であった。また、クロ
ス面に垂直な面を研磨して顕微鏡観察したところ、ボイ
ドはなかったが、クラックが見られた。
Comparative Example 1 An epoxy resin composition was prepared in the same manner as in Example 1 except that the component (a) was not used.
The RP was molded. The viscosity of this epoxy resin composition was 22 poise at 30 ° C. Obtained FRP TMA
When Tg was measured, it was 150 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, cracks were found although there were no voids.

【0016】(比較例2)(a)成分として直径2μm
のアクリルゴム微粒子を用いる以外は実施例1と同様に
してエポキシ樹脂組成物を調整し、FRPを成形した。
得られたFRPのTMA Tgを測定したところ150
℃であった。また、クロス面に垂直な面を研磨して顕微
鏡観察したところ、ボイドはなかったがアクリルゴムは
均一に分散されておらず、積層内部にはクラックが見ら
れた。
(Comparative Example 2) Diameter (2 μm) as component (a)
An epoxy resin composition was prepared in the same manner as in Example 1 except that the above acrylic rubber fine particles were used to mold FRP.
The TMA Tg of the obtained FRP was measured to be 150.
° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, no voids were found, but the acrylic rubber was not uniformly dispersed, and cracks were found inside the laminate.

【0017】(比較例3)(a)成分を用いず、(b)
成分としてEp828を70重量部、TSR−601を
30重量部、(c)成分としてMNAを90重量部、B
DMAを2重量部用いて均一混合してエポキシ樹脂組成
物を調整し、実施例1と同様にしてFRPを成形した。
得られたFRPのTMA Tgを測定したところ142
℃であった。また、クロス面に垂直な面を研磨して顕微
鏡観察したところ、ボイド、クラックが多く見られた。
(Comparative Example 3) Without using the component (a), (b)
70 parts by weight of Ep828 as a component, 30 parts by weight of TSR-601, 90 parts by weight of MNA as a component (c), B
An epoxy resin composition was prepared by uniformly mixing 2 parts by weight of DMA to form an FRP in the same manner as in Example 1.
The TMA Tg of the obtained FRP was measured to be 142.
° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, many voids and cracks were found.

【0018】(比較例4)実施例1で使用した(a)成
分のアクリルゴム微粒子を5重量部にする以外は実施例
1と同様にエポキシ樹脂組成物を調製し、FRPを成形
した。得られたFRPのTMA Tgを測定したところ
150℃であった。また、クロス面に垂直な面を研磨し
て顕微鏡観察したところ、積層内部に若干クラックが発
生していた。
(Comparative Example 4) An epoxy resin composition was prepared in the same manner as in Example 1 except that the amount of the acrylic rubber fine particles as the component (a) used in Example 1 was changed to 5 parts by weight, and an FRP was molded. The TMA Tg of the obtained FRP was measured and found to be 150 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, some cracks were found inside the stack.

【0019】(実施例2)(a)成分として実施例1で
使用したアクリルゴム微粒子を10重量部用いる以外は
実施例1と同様に本発明のエポキシ樹脂組成物を調製
し、FRPを成形した。得られたFRPのTMA Tg
を測定したところ150℃であった。また、クロス面に
垂直な面を研磨して顕微鏡観察したところ、アクリルゴ
ムは均一に分散されており、ボイドもクラックもなかっ
た。
(Example 2) An epoxy resin composition of the present invention was prepared in the same manner as in Example 1 except that 10 parts by weight of the acrylic rubber fine particles used in Example 1 were used as the component (a), and FRP was molded. . TMA Tg of the obtained FRP
Was 150 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0020】(実施例3)(a)成分として実施例1で
使用したアクリルゴム微粒子を50重量部用いる以外は
実施例1と同様にエポキシ樹脂組成物を調製し、FRP
を成形した。得られたFRPのTMA Tgを測定した
ところ150℃であった。また、クロス面に垂直な面を
研磨して顕微鏡観察したところ、アクリルゴムは均一に
分散されており、ボイドもクラックもなかった。
Example 3 An epoxy resin composition was prepared in the same manner as in Example 1 except that 50 parts by weight of the acrylic rubber fine particles used in Example 1 were used as the component (a), and FRP was prepared.
Was molded. The TMA Tg of the obtained FRP was measured and found to be 150 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0021】(比較例5)実施例1で使用した(a)成
分のアクリルゴム微粒子を60重量部用いる以外は実施
例1と同様にエポキシ樹脂組成物を調製し、FRPを成
形した。得られたFRPのTMA Tgを測定したとこ
ろ150℃であった。また、クロス面に垂直な面を研磨
して顕微鏡観察したところ、積層内部にはボイドが多数
見られた。
(Comparative Example 5) An epoxy resin composition was prepared in the same manner as in Example 1 except that 60 parts by weight of the acrylic rubber fine particles of the component (a) used in Example 1 was used to mold FRP. The TMA Tg of the obtained FRP was measured and found to be 150 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, many voids were found inside the stack.

【0022】(実施例4)(a)成分として実施例1で
使用したアクリルゴム微粒子を20重量部、(b)成分
としてEp828を100重量部、(c)成分としてE
T−100を25重量部用いて均一混合し、本発明のエ
ポキシ樹脂組成物を得た。これを用いて実施例1と同様
にしてFRPを成形した。ただし硬化条件は150℃×
2hr+180℃×3hrとした。得られたFRPのT
MA Tgを測定したところ185℃であった。また、
クロス面に垂直な面を研磨して顕微鏡観察したところ、
アクリルゴムは均一に分散されており、ボイドもクラッ
クもなかった。
Example 4 20 parts by weight of the acrylic rubber fine particles used in Example 1 as the component (a), 100 parts by weight of Ep828 as the component (b), and E as the component (c).
The epoxy resin composition of the present invention was obtained by uniformly mixing 25 parts by weight of T-100. Using this, an FRP was molded in the same manner as in Example 1. However, the curing conditions are 150 ° C ×
It was set to 2 hr + 180 ° C. × 3 hr. T of the obtained FRP
The measured MA Tg was 185 ° C. Also,
When the surface perpendicular to the cross surface was polished and observed under a microscope,
The acrylic rubber was uniformly dispersed and had neither voids nor cracks.

【0023】(比較例6)(a)成分のアクリルゴム微
粒子を用いない以外は実施例4と同様にしてエポキシ樹
脂組成物を調製し、FRPを成形した。得られたFRP
のTMA Tgを測定したところ185℃であった。ま
た、クロス面に垂直な面を研磨して顕微鏡観察したとこ
ろ、ボイドはなかったが、かなりのクラックが見られ
た。
Comparative Example 6 An epoxy resin composition was prepared in the same manner as in Example 4 except that the acrylic rubber fine particles as the component (a) were not used, and an FRP was molded. The obtained FRP
The TMA Tg of was measured to be 185 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, there were no voids, but considerable cracks were observed.

【0024】(比較例7)(a)成分として比較例2で
使用した直径2μmのアクリルゴム微粒子を用いる以外
は実施例4と同様にしてエポキシ樹脂組成物を得、FR
Pを成形した。得られたFRPのTMA Tgを測定し
たところ185℃であった。また、クロス面に垂直な面
を研磨して顕微鏡観察したところ、ボイドはなかったが
アクリルゴムは均一に分散されておらず、積層内部には
クラックが見られた。
Comparative Example 7 An epoxy resin composition was obtained in the same manner as in Example 4 except that the acrylic rubber fine particles having a diameter of 2 μm used in Comparative Example 2 were used as the component (a).
P was molded. The TMA Tg of the obtained FRP was measured and found to be 185 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, no voids were found, but the acrylic rubber was not uniformly dispersed, and cracks were found inside the laminate.

【0025】(比較例8)(a)成分を用いず、(b)
成分としてEp828を70重量部、TSR−601を
30重量部、(c)成分としてET−100を25重量
部用いて均一混合した。このエポキシ樹脂組成物を用い
て実施例4と同様にしてFRPを成形した。得られたF
RPのTMA Tgを測定したところ170℃であっ
た。また、クロス面に垂直な面を研磨して顕微鏡観察し
たところ、ボイド、クラックが多く見られた。
(Comparative Example 8) Without using the component (a), (b)
70 parts by weight of Ep828 as a component, 30 parts by weight of TSR-601 and 25 parts by weight of ET-100 as a component (c) were uniformly mixed. An FRP was molded using this epoxy resin composition in the same manner as in Example 4. Obtained F
The TMA Tg of RP was measured and found to be 170 ° C. Further, when a surface perpendicular to the cross surface was polished and observed under a microscope, many voids and cracks were found.

【0026】(実施例5)(a)成分として実施例1で
使用したアクリルゴム微粒子を20重量部、(b)成分
としてEp807を100重量部、(c)成分としてM
NAを90重量部、BDMAを2重量部用いて均一混合
し、本発明のエポキシ樹脂組成物を得た。これを用いて
実施例1と同様にしてFRPを成形した。得られたFR
PのTMA Tgを測定したところ143℃であった。
また、クロス面に垂直な面を研磨して顕微鏡観察したと
ころ、アクリルゴムは均一に分散されており、ボイドも
クラックもなかった。
(Example 5) 20 parts by weight of the acrylic rubber fine particles used in Example 1 as the component (a), 100 parts by weight of Ep807 as the component (b), and M as the component (c).
90 parts by weight of NA and 2 parts by weight of BDMA were uniformly mixed to obtain an epoxy resin composition of the present invention. Using this, an FRP was molded in the same manner as in Example 1. FR obtained
The TMA Tg of P was measured and found to be 143 ° C.
Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0027】(実施例6)(a)成分として実施例1で
使用したアクリルゴム微粒子を20重量部、(b)成分
としてEp828を50重量部、ELM−100を50
重量部、(c)成分としてET−100を35重量部用
いて均一混合し、本発明のエポキシ樹脂組成物を得た。
これを用いて実施例4と同様にしてFRPを成形した。
得られたFRPのTMA Tgを測定したところ204
℃であった。また、クロス面に垂直な面を研磨して顕微
鏡観察したところ、アクリルゴムは均一に分散されてお
り、ボイドもクラックもなかった。
(Example 6) 20 parts by weight of the acrylic rubber fine particles used in Example 1 as the component (a), 50 parts by weight of Ep828 as the component (b), and 50 parts of the ELM-100.
35 parts by weight of ET-100 as a component (c) was uniformly mixed to obtain an epoxy resin composition of the present invention.
Using this, an FRP was molded in the same manner as in Example 4.
The TMA Tg of the obtained FRP was measured to be 204
° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0028】(実施例7)(a)、(b)成分としてC
X−MN77を100重量部、(c)成分としてMNA
を80重量部、BDMAを2重量部用いて均一混合し、
本発明のエポキシ樹脂組成物を得た。これを用いて実施
例1と同様にFRPを成形した。得られたFRPのTM
A Tgを測定したところ150℃であった。また、ク
ロス面に垂直な面を研磨して顕微鏡観察したところ、ア
クリルゴムは均一に分散されており、ボイドもクラック
もなかった。更にこのFRPを電顕で観察したところ、
アクリルゴム微粒子の直径は0.3μmであった。
(Example 7) C as the components (a) and (b)
100 parts by weight of X-MN77, MNA as component (c)
And 80 parts by weight of BDMA, and 2 parts by weight of BDMA.
An epoxy resin composition of the present invention was obtained. Using this, FRP was molded in the same manner as in Example 1. Obtained FRP TM
The measured ATg was 150 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found. Furthermore, when observing this FRP with an electron microscope,
The diameter of the acrylic rubber fine particles was 0.3 μm.

【0029】(実施例8)(a)、(b)成分としてC
X−MN77を100重量部、(c)成分としてET−
100を25重量部用いて均一混合し、本発明のエポキ
シ樹脂組成物を得た。この樹脂組成物の粘度は30℃で
70ポイズであった。これを用いて実施例4と同様にF
RPを成形した。得られたFRPのTMA Tgを測定
したところ184℃であった。また、クロス面に垂直な
面を研磨して顕微鏡観察したところ、アクリルゴムは均
一に分散されており、ボイドもクラックもなかった。
Example 8 C as the components (a) and (b)
100 parts by weight of X-MN77, ET-as component (c)
The epoxy resin composition of the present invention was obtained by uniformly mixing 25 parts by weight of 100. The viscosity of this resin composition was 70 poise at 30 ° C. Using this, F as in Example 4
The RP was molded. The TMA Tg of the obtained FRP was measured and found to be 184 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found.

【0030】(実施例9)(a)、(b)成分としてC
X−MN110を100重量部、(c)成分としてMN
Aを80重量部、BDMAを2重量部用いて均一混合
し、本発明のエポキシ樹脂組成物を得た。これを用いて
実施例1と同様にFRPを成形した。得られたFRPの
TMA Tgを測定したところ148℃であった。ま
た、クロス面に垂直な面を研磨して顕微鏡観察したとこ
ろ、アクリルゴムは均一に分散されており、ボイドもク
ラックもなかった。更にこのFRPを電顕で観察したと
ころ、アクリルゴム微粒子の直径は0.3μmであっ
た。
Example 9 C as the components (a) and (b)
100 parts by weight of X-MN110, MN as component (c)
80 parts by weight of A and 2 parts by weight of BDMA were uniformly mixed to obtain an epoxy resin composition of the present invention. Using this, FRP was molded in the same manner as in Example 1. The TMA Tg of the obtained FRP was measured and found to be 148 ° C. Further, when the surface perpendicular to the cross surface was polished and observed under a microscope, the acrylic rubber was uniformly dispersed, and neither voids nor cracks were found. Further, when the FRP was observed with an electron microscope, the diameter of the acrylic rubber fine particles was 0.3 μm.

【0031】[0031]

【発明の効果】本発明のエポキシ樹脂組成物は低粘度で
含浸性に優れ、またそれを用いて得られるFRPはボイ
ドがなく、耐熱性が高く、かつ内部応力が小さいため、
成形品の反り、クラックが大幅に低減できる。
The epoxy resin composition of the present invention has a low viscosity and an excellent impregnating property, and the FRP obtained by using it has no voids, high heat resistance and low internal stress.
Warpage and cracks of molded products can be greatly reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直径1μm以下の少なくとも部分的に架橋
したゴム微粒子(a)10〜50重量部、常温で液状の
エポキシ樹脂(b)100重量部及び常温で液状の硬化
剤(c)とから成るエポキシ樹脂組成物。
1. From 10 to 50 parts by weight of at least partially crosslinked rubber fine particles (a) having a diameter of 1 μm or less, 100 parts by weight of an epoxy resin (b) which is liquid at room temperature, and a curing agent (c) which is liquid at room temperature. An epoxy resin composition comprising.
【請求項2】請求項1記載のエポキシ樹脂組成物を補強
繊維に含浸、硬化して得られる繊維強化複合材料。
2. A fiber reinforced composite material obtained by impregnating and curing a reinforcing fiber with the epoxy resin composition according to claim 1.
JP6166710A 1994-07-19 1994-07-19 Epoxy resin composition and fiber-reinforced composite material Pending JPH0827360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6166710A JPH0827360A (en) 1994-07-19 1994-07-19 Epoxy resin composition and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6166710A JPH0827360A (en) 1994-07-19 1994-07-19 Epoxy resin composition and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPH0827360A true JPH0827360A (en) 1996-01-30

Family

ID=15836328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166710A Pending JPH0827360A (en) 1994-07-19 1994-07-19 Epoxy resin composition and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH0827360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051744A1 (en) * 1997-05-12 1998-11-19 Daiso Co., Ltd. Epoxy resin composition
JPH11218185A (en) * 1998-02-03 1999-08-10 Kurashiki Kako Co Ltd Vibration isolating mount
US6994466B2 (en) 2002-02-19 2006-02-07 Seiko Epson Corporation Timepiece with time correction mechanism
WO2015029626A1 (en) * 2013-08-30 2015-03-05 住友理工株式会社 Fiber-reinforced resin molded article and automobile component using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051744A1 (en) * 1997-05-12 1998-11-19 Daiso Co., Ltd. Epoxy resin composition
JPH11218185A (en) * 1998-02-03 1999-08-10 Kurashiki Kako Co Ltd Vibration isolating mount
US6994466B2 (en) 2002-02-19 2006-02-07 Seiko Epson Corporation Timepiece with time correction mechanism
WO2015029626A1 (en) * 2013-08-30 2015-03-05 住友理工株式会社 Fiber-reinforced resin molded article and automobile component using same

Similar Documents

Publication Publication Date Title
JP5785112B2 (en) Fiber reinforced composite material
JP5739361B2 (en) Fiber reinforced composite material
EP2938658B1 (en) Fiber reinforced polymer composite with a hard interphase
KR102642515B1 (en) Prepreg and fiber reinforced composites
JP5584047B2 (en) Benzoxazine resin composition and fiber reinforced composite material
JP5785111B2 (en) Fiber reinforced composite material
KR20150070103A (en) Fiber reinforced high modulus polymer composite with a reinforced interphase
JPH09137043A (en) Epoxy resin composition
WO2013046434A1 (en) Benzoxazine resin composition, and fiber-reinforced composite material
JP2007154160A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH0827360A (en) Epoxy resin composition and fiber-reinforced composite material
CA2049116C (en) Toughened epoxy matrix with improved damage tolerance and temperature performance
JPH0820708A (en) Epoxy resin composition and prepreg prepared therefrom
JP3631543B2 (en) Epoxy resin composition
JPH0812861A (en) Epoxy resin composition and prepreg
JPH0841174A (en) Epoxy resin composition and prepreg
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2010059300A (en) Carbon fiber reinforced composite material and method for producing the same
JPH01185351A (en) Epoxy resin composition for carbon fiber reinforced material
JPH0820654A (en) Epoxy resin composition and prepreg using the same
JP3571775B2 (en) Prepreg
JP2006124555A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP3581204B2 (en) Epoxy resin prepreg and method for producing the same