JPH08262076A - Measuring device of insulation resistance of capacitor - Google Patents

Measuring device of insulation resistance of capacitor

Info

Publication number
JPH08262076A
JPH08262076A JP6829395A JP6829395A JPH08262076A JP H08262076 A JPH08262076 A JP H08262076A JP 6829395 A JP6829395 A JP 6829395A JP 6829395 A JP6829395 A JP 6829395A JP H08262076 A JPH08262076 A JP H08262076A
Authority
JP
Japan
Prior art keywords
capacitor
leakage current
discharge
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6829395A
Other languages
Japanese (ja)
Inventor
Yoshinao Nishioka
良直 西岡
Hiroshi Okubo
宏 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6829395A priority Critical patent/JPH08262076A/en
Publication of JPH08262076A publication Critical patent/JPH08262076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE: To measure a leakage current of capacitors of large and small capacities by providing an impression/discharge switch connected to a measuring power source, a current limiting circuit, a capacitor to be measured, a leakage current detecting circuit connected to measuring terminals therefor, etc., and by changing the value of resistance of an input part. CONSTITUTION: A capacitor C to be measured is inserted between measuring terminals 4a and 4b and an impression/discharge switch 2 is made on a charge- side contact 2a so as to charge the capacitor C. A charging current flows through a measuring power source 1, the switch 2, a resistor R1, the capacitor C, a leakage current detecting circuit 6 and the ground. When a prescribed time passes from the time of making the switch 2 and a leakage current is settled, the leakage current is measured by the detecting circuit 6. Next, the switch 2 is made on and connected to a discharge-side contact 2b and the capacitor C is made to discharge. When a charge/discharge voltage V1 at a node 10 is found between set reference voltages +Vt1 and -Vt2 , a window comparator circuit 8 makes a node 12 output a voltage V2 and determination is made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンデンサの漏れ電流
計測およびコンデンサ電極の測定端子との接触良否判定
を行うコンデンサの絶縁抵抗測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring insulation resistance of a capacitor for measuring the leakage current of the capacitor and judging the contact quality of the capacitor electrode with the measuring terminal.

【0002】[0002]

【従来の技術】従来、この種、コンデンサの絶縁抵抗測
定装置に関する技術としては、特開平6−130101
号公報に記載されている発明がある。この従来例は、コ
ンデンサの漏れ電流計測回路と、このコンデンサの電極
の測定端子の接触の良否判定回路とを、フォトカプラに
より電気的に絶縁して、測定電圧が高くても安全に計測
および判定できるようにしたものである。
2. Description of the Related Art Conventionally, as a technique related to this type of capacitor insulation resistance measuring device, Japanese Patent Laid-Open No. 6-130101 is known.
There is an invention described in the publication. In this conventional example, the leakage current measuring circuit of the capacitor and the contact quality judgment circuit of the measuring terminal of the electrode of this capacitor are electrically insulated by a photocoupler, so that measurement and judgment can be performed safely even if the measurement voltage is high. It was made possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来例においては、フォトカプラを動作させるために、長
い時間大きな電流を流し続ける必要があるので、容量の
大きいコンデンサにしか適用できなかった。
However, in this conventional example, since it is necessary to keep a large current flowing for a long time in order to operate the photocoupler, it can be applied only to a capacitor having a large capacitance.

【0004】したがって、本発明は、フォトカプラを使
用せず、かつ、漏れ電流検出回路の入力部のバイアス抵
抗の値を変更することにより、容量の小さいコンデンサ
から容量の大きいコンデンサまで、それらの漏れ電流を
計測することのできる、コンデンサの絶縁抵抗測定装置
を提供することを目的とする。
Therefore, the present invention does not use a photocoupler and changes the value of the bias resistance of the input part of the leakage current detection circuit, so that leakage from a capacitor having a small capacitance to a capacitor having a large capacitance can be prevented. An object of the present invention is to provide a device for measuring insulation resistance of a capacitor, which is capable of measuring a current.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、測定電源と、この測定電源に接続された
印加/放電切換器と、この印加/放電切換器に接続され
た電流制限回路と、この電流制限回路に接続されたコン
デンサの電極に接触する測定端子と、この測定端子に接
続されてコンデンサの漏れ電流を計測する漏れ電流検出
回路と、前記測定端子と前記漏れ電流検出回路との接続
点に接続されたインピーダンス変換回路と、このインピ
ーダンス変換回路に接続されて前記コンデンサの充放電
電圧を計測するコンパレータ回路と、からなることを特
徴とする。
In order to achieve the above object, the present invention provides a measurement power source, an application / discharge switching device connected to the measurement power source, and a current connected to the application / discharge switching device. A limiting circuit, a measuring terminal connected to the electrode of the capacitor connected to the current limiting circuit, a leakage current detection circuit connected to the measuring terminal to measure the leakage current of the capacitor, the measuring terminal and the leakage current detection It is characterized by comprising an impedance conversion circuit connected to a connection point with the circuit, and a comparator circuit connected to the impedance conversion circuit and measuring the charge / discharge voltage of the capacitor.

【0006】[0006]

【作用】本発明は、漏れ電流検出回路に充放電検出回路
を並列に設け、特に、充放電検出回路を、インピーダン
ス変換回路、ウインドウコンパレータ回路などで構成す
る。漏れ電流検出回路の線路途中からインピーダンス変
換回路により、充放電検出のための電圧を取り入れる
が、このインピーダンス変換回路は入力抵抗が大きいの
で、漏れ電流検出回路の電流電圧に変動を及ぼさない。
According to the present invention, the charge / discharge detection circuit is provided in parallel with the leakage current detection circuit, and in particular, the charge / discharge detection circuit is composed of an impedance conversion circuit, a window comparator circuit and the like. The impedance conversion circuit takes in a voltage for charge / discharge detection from the middle of the line of the leakage current detection circuit. However, since this impedance conversion circuit has a large input resistance, it does not affect the current voltage of the leakage current detection circuit.

【0007】被測定コンデンサの充放電電流を電圧変換
し、その充放電電圧の充電初期時および放電初期時の急
俊な充放電の電圧変化を、ウインドウコンパレータ回路
により、その設定基準電圧と比べて、絶対値として大き
い場合に、それぞれ出力パルスを出すように設定してい
るので、この出力パルスの有無により、所定の充放電の
有無、そしてコンデンサ電極の測定端子との接触の良否
を判定することができる。
The charge / discharge current of the capacitor to be measured is converted into a voltage, and the abrupt charge / discharge voltage change of the charge / discharge voltage at the beginning of charging and at the beginning of discharging is compared by a window comparator circuit with its set reference voltage. Since the output pulse is set to be output when the absolute value is large, the presence / absence of this output pulse determines the presence / absence of predetermined charging / discharging, and the quality of contact of the capacitor electrode with the measurement terminal. You can

【0008】コンデンサ電極と測定端子との接触不良に
より、被測定コンデンサの充電が完全に行われない場合
には、充電初期時の急俊な充電の電圧変化はなく、ま
た、放電初期時の急俊な放電の電圧変化もなく、したが
って、ウインドウコンパレータ回路は出力パルスを出さ
ず、前記接触不良が判定される。
If the capacitor to be measured is not completely charged due to poor contact between the capacitor electrode and the measuring terminal, there is no abrupt change in charging voltage at the beginning of charging, and sudden charging at the beginning of discharging. There is no rapid discharge voltage change, so the window comparator circuit does not output an output pulse, and the contact failure is determined.

【0009】[0009]

【実施例】つぎに、本発明の一実施例について図1を参
照して説明する。同図において、1は直流電圧Vボルト
の測定電源で、その正極側と負極側は印加/放電切換器
2の充電側接点2aと放電側接点2bとにそれぞれ接続
されている。また、測定電源1の負極側はグランドに接
続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the present invention will be described with reference to FIG. In the figure, reference numeral 1 is a measuring power source of DC voltage V volt, and its positive electrode side and negative electrode side are connected to a charging side contact 2a and a discharging side contact 2b of an application / discharge switching device 2, respectively. Moreover, the negative electrode side of the measurement power supply 1 is connected to the ground.

【0010】印加/放電切換器2は、電流制限回路3を
構成する抵抗R1の一端に接続されている。この抵抗R
1は充電時の突入電流を防止する為のものである。抵抗
R1の他端はコンデンサCの電極に接触する一方の測定
端子4aに接続されている。具体的構成としては、この
コンデンサCの一方の測定端子4aに近接して、他方の
測定端子4bが設けられる。
The application / discharge switch 2 is connected to one end of a resistor R1 which constitutes the current limiting circuit 3. This resistance R
1 is for preventing inrush current during charging. The other end of the resistor R1 is connected to one of the measurement terminals 4a that contacts the electrode of the capacitor C. As a specific configuration, the other measuring terminal 4b is provided close to one measuring terminal 4a of the capacitor C.

【0011】コンデンサCの他方の電極に接触する測定
端子4bには、漏れ電流検出回路6を構成する演算増幅
器OP1の反転入力端子(−)が、抵抗R2を介して接
続されている。この演算増幅器OP1の出力端子は抵抗
R3を介して反転入力端子に負帰還され、その非反転入
力端子(+)はグランドに接続されている。
The inverting input terminal (-) of the operational amplifier OP1 forming the leakage current detection circuit 6 is connected to the measurement terminal 4b which contacts the other electrode of the capacitor C via the resistor R2. The output terminal of the operational amplifier OP1 is negatively fed back to the inverting input terminal via the resistor R3, and its non-inverting input terminal (+) is connected to the ground.

【0012】コンデンサCの測定端子4bとバイアス抵
抗R2との接続点10には、インピーダンス変換回路7
として、ボルテージフォロワ回路を構成する演算増幅器
OP2の非反転入力端子(+)が接続されている。演算
増幅器OP2の出力端子は反転入力端子(−)に直接負
帰還されて、増幅度1のバッファ回路を構成している。
したがって、演算増幅器OP2は、入力抵抗無限大とな
り、接続点10からの電流の流入がないので、漏れ電流
検出回路6の漏れ電流検出精度には影響を及ぼさない。
An impedance conversion circuit 7 is provided at a connection point 10 between the measuring terminal 4b of the capacitor C and the bias resistor R2.
Is connected to the non-inverting input terminal (+) of the operational amplifier OP2 that constitutes the voltage follower circuit. The output terminal of the operational amplifier OP2 is directly negatively fed back to the inverting input terminal (-) to form a buffer circuit having an amplification degree of 1.
Therefore, the operational amplifier OP2 has an infinite input resistance and no current flows from the connection point 10, so that the leak current detection accuracy of the leak current detection circuit 6 is not affected.

【0013】演算増幅器OP2の出力端子は、ウインド
ウコンパレータ回路8を構成する一つの演算増幅器OP
3の反転入力端子(−)と他の演算増幅器OP4の非反
転入力端子(+)との共通接続点11に接続されてい
る。演算増幅器OP3およびOP4のそれぞれの出力端
子の共通接続点12は、コンピュータ(図示せず)に接
続されている。演算増幅器OP3はその非反転入力端子
(+)に基準電圧+Vt1がバイアスされ、演算増幅器O
P4はその反転入力端子(−)に基準電圧−Vt2がバイ
アスされている。
The output terminal of the operational amplifier OP2 is one operational amplifier OP forming the window comparator circuit 8.
3 is connected to the common connection point 11 of the inverting input terminal (-) of No. 3 and the non-inverting input terminal (+) of the other operational amplifier OP4. The common connection point 12 of the output terminals of the operational amplifiers OP3 and OP4 is connected to a computer (not shown). The non-inverting input terminal (+) of the operational amplifier OP3 is biased with the reference voltage + Vt1 and the operational amplifier O3
The reference voltage -Vt2 is biased to the inverting input terminal (-) of P4.

【0014】本実施例は、以上のような構成よりなる
が、電流制限回路3は抵抗R1以外に、定電流ダイオー
ド等の定電流素子あるいは回路的に構成された定電流回
路でもよい。また、インピーダンス変換回路7は、ボル
テージフォロワ回路以外に非反転増幅回路でもよい。
Although the present embodiment has the above-mentioned configuration, the current limiting circuit 3 may be a constant current element such as a constant current diode or a constant current circuit configured as a circuit, in addition to the resistor R1. Further, the impedance conversion circuit 7 may be a non-inverting amplifier circuit other than the voltage follower circuit.

【0015】つぎに、本実施例の動作について説明す
る。被測定用のコンデンサCを測定端子4a、4b間に
挿入して、印加/放電切換器2を、図1に示すように、
充電側接点2aに投入接続して、コンデンサCを充電す
る。この際、充電電流は、測定電源1、印加/放電切換
器2、抵抗R1、測定端子4a、コンデンサC、測定端
子4b、漏れ電流検出回路6、そしてグランドを経由し
て流れることになる。この充電電流は印加/放電切換器
2の投入時は大きく、徐々に減衰してゼロに近似してい
くが、現実のコンデンサは理想コンデンサとは相違して
完全にゼロにはならず、ある一定の漏れ電流が残ること
になる。この漏れ電流を測定電源の電圧Vから換算して
求めたのがコンデンサCの絶縁抵抗となる。印加/放電
切換器2の投入時から一定時間経過して、前記漏れ電流
が一定になった時に、漏れ電流検出回路6において漏れ
電流が計測される。
Next, the operation of this embodiment will be described. The capacitor C to be measured is inserted between the measurement terminals 4a and 4b, and the application / discharge switching device 2 is set as shown in FIG.
The charging side contact 2a is closed and connected to charge the capacitor C. At this time, the charging current flows through the measurement power supply 1, the application / discharge switching device 2, the resistor R1, the measurement terminal 4a, the capacitor C, the measurement terminal 4b, the leakage current detection circuit 6, and the ground. This charging current is large when the application / discharge switch 2 is turned on, and gradually attenuates and approaches zero, but unlike the ideal capacitor, the actual capacitor does not completely become zero, and it is constant. Leakage current will remain. The insulation resistance of the capacitor C is obtained by converting this leakage current from the voltage V of the measurement power supply. When the leak current becomes constant after a lapse of a certain time from the time when the application / discharge switch 2 is turned on, the leak current detection circuit 6 measures the leak current.

【0016】一方、上記コンデンサCの充電時における
接続点10の電圧V1の変化を示したのが、図2Aの左
側の充電カーブとなる。この充電カーブの充電時間経過
時の収斂電圧は、上記した漏れ電流が残るためゼロ電圧
とはならない。接続点10の電圧V1 は、インピーダン
ス変換回路7の演算増幅器OP2 を経由してウインドウ
コンパレータ回路8の演算増幅器OP3 、OP4 の反転
入力端子、非反転入力端子のそれぞれの共通接続点11
に印加される。接続点10の電圧V1 は、充電電流の突
入時、+R2/(R1+R2)×Vとなる。この突入時
の電圧により、図2Bに示すように、演算増幅器OP3
は接続点12に電圧V2 として、反転出力電圧Vaを出
力する。そして、電圧V1 が徐々に降下して予め設定さ
れた基準電圧+Vt1より小さくなったとき、演算増幅器
OP3 は接続点12に電圧V2 として、非反転出力電圧
Vbを出力する。したがって、充電開始初期において、
ウインドウコンパレータ回路8は、その接続点12に電
圧V2 として、パルスaを出力する。
On the other hand, the change in the voltage V1 at the connection point 10 during the charging of the capacitor C is shown in the charging curve on the left side of FIG. 2A. The convergence voltage of this charging curve when the charging time has elapsed does not become zero voltage because the above-mentioned leakage current remains. The voltage V1 at the connection point 10 passes through the operational amplifier OP2 of the impedance conversion circuit 7 and the common connection point 11 of the inverting input terminals and non-inverting input terminals of the operational amplifiers OP3 and OP4 of the window comparator circuit 8 respectively.
Is applied to The voltage V1 at the connection point 10 becomes + R2 / (R1 + R2) × V when the charging current inrushes. Due to the voltage at the time of this inrush, as shown in FIG. 2B, the operational amplifier OP3
Outputs the inverted output voltage Va to the connection point 12 as the voltage V2. When the voltage V1 gradually drops and becomes lower than the preset reference voltage + Vt1, the operational amplifier OP3 outputs the non-inverted output voltage Vb to the connection point 12 as the voltage V2. Therefore, at the beginning of charging,
The window comparator circuit 8 outputs the pulse a to the connection point 12 as the voltage V2.

【0017】つぎに、印加/放電切換器2を放電側接点
2bに投入接続した場合には、コンデンサCの充電電荷
は抵抗(R1+R2)×Cの時定数で放電し、接続点1
0の電圧V1 は、図2Aの右側に示すような放電カーブ
となる。放電開始時、−R2/(R1+R2)×V近似
の電圧において、演算増幅器OP4 は接続点12に電圧
V2 として、非反転出力電圧Vaを出力する。そして、
電圧V1 が徐々に減衰して予め設定された基準電圧−V
t2より減少したとき、演算増幅器OP4 は接続点12に
電圧V2 として、非反転出力電圧Vbを出力する。した
がって、放電開始初期において、ウインドウコンパレー
タ回路8は、その接続点12に電圧V2として、パルス
bを出力する。
Next, when the application / discharge switch 2 is closed and connected to the discharge side contact 2b, the charge of the capacitor C is discharged with a time constant of resistance (R1 + R2) × C, and the connection point 1
The voltage V1 of 0 has a discharge curve as shown on the right side of FIG. 2A. At the start of discharge, the operational amplifier OP4 outputs the non-inverted output voltage Va to the connection point 12 as the voltage V2 at a voltage of about −R2 / (R1 + R2) × V. And
Voltage V1 is gradually attenuated to a preset reference voltage -V
When it becomes smaller than t2, the operational amplifier OP4 outputs the non-inverted output voltage Vb as the voltage V2 to the connection point 12. Therefore, in the initial stage of the discharge start, the window comparator circuit 8 outputs the pulse b to the connection point 12 as the voltage V2.

【0018】ウインドウコンパレータ回路8は、接続点
V1 の充放電電圧が基準電圧+Vt1と基準電圧−Vt2と
の間では、その接続点12に電圧V2 として、電圧Vb
を出力する。
In the window comparator circuit 8, when the charging / discharging voltage at the connection point V1 is between the reference voltage + Vt1 and the reference voltage -Vt2, the connection point 12 has the voltage V2 as the voltage V2.
Is output.

【0019】以上のように、印加/放電切換器2の切り
替えにより、コンデンサCを充放電させたとき、ウイン
ドウコンパレータ回路8の出力するパルスa、bをコン
ピュータなどの制御指令判定装置(図示せず)で取り込
み、コンデンサの絶縁抵抗の当該計測の良否を判定する
ことになる。測定端子4a、4bとコンデンサCの電極
との接触不良があると、漏れ電流検出回路6で漏れ電流
が小さく計測され、真の絶縁抵抗値を計測できなくな
る。また、絶縁不良のコンデンサが漏れ電流小と計測さ
れて不良品として選別できないことになる。しかし、漏
れ電流計測と同時に、インピーダンス変換回路7以降に
より充放電特性を並行して計測すると、測定端子4a、
4bとコンデンサCの電極との間に接触不良がある場合
には、コンデンサCの充放電初期時に電位差の大きい急
俊な充放電特性カーブが現れず、接続点10の電圧V1
が絶対値でウインドウコンパレータ回路8の設定基準電
圧+Vt1、−Vt2以上にはならないので、ウインドウコ
ンパレータ回路8の接続点12の電圧V2 には、パルス
a、bは生じない。このパルスa、bの有無により、測
定端子4a、4bとコンデンサ電極との間に接触不良が
あったか否かを判別することができる。例えば、絶縁不
良のコンデンサが、測定端子4a、4bの接触不良によ
り、漏れ電流検出回路6で漏れ電流が小さくて絶縁良と
計測されたにしても、絶縁不良のコンデンサには前記負
のパルスa、bは生じないので、コンピュータの総合判
定で再検査のチェックがかかることになる。
As described above, when the capacitor C is charged / discharged by switching the application / discharge switch 2, the pulses a and b output from the window comparator circuit 8 are controlled by a control command determination device (not shown) such as a computer. ), The quality of the measurement of the insulation resistance of the capacitor is judged. If there is a poor contact between the measurement terminals 4a and 4b and the electrode of the capacitor C, the leakage current detection circuit 6 measures a small leakage current, and the true insulation resistance value cannot be measured. In addition, a capacitor with poor insulation is measured as having a small leakage current, and cannot be selected as a defective product. However, if the charge / discharge characteristics are measured in parallel by the impedance conversion circuit 7 and the same as the leakage current measurement, the measurement terminal 4a,
If there is a poor contact between the electrode 4b and the electrode of the capacitor C, a steep charge-discharge characteristic curve with a large potential difference does not appear at the beginning of charge-discharge of the capacitor C, and the voltage V1 at the connection point 10
Is an absolute value and does not exceed the set reference voltages + Vt1 and -Vt2 of the window comparator circuit 8, so that the pulses a and b do not occur in the voltage V2 at the connection point 12 of the window comparator circuit 8. Whether or not there is a contact failure between the measuring terminals 4a and 4b and the capacitor electrode can be determined by the presence or absence of the pulses a and b. For example, even if a capacitor having poor insulation is measured as having good insulation by the leak current detection circuit 6 due to poor contact between the measurement terminals 4a and 4b, the negative pulse a is detected in the capacitor having poor insulation. , B do not occur, so a check for re-inspection is required by the overall judgment of the computer.

【0020】なお、被測定コンデンサの容量の大小に対
応するためには、漏れ電流検出回路6の入力部の抵抗R
2の値を変更すればよい。即ち、大きい容量のコンデン
サの場合には抵抗R2の値を小さくし、小さい容量のコ
ンデンサの場合には抵抗R2の値を大きくすればよい。
In order to cope with the large or small capacitance of the capacitor to be measured, the resistance R of the input portion of the leakage current detection circuit 6
The value of 2 may be changed. That is, in the case of a large capacity capacitor, the value of the resistor R2 may be reduced, and in the case of a small capacity capacitor, the value of the resistor R2 may be increased.

【0021】[0021]

【発明の効果】本発明は、漏れ電流検出回路に並行して
充放電検出回路を設け、特に、充放電検出回路を、イン
ピーダンス変換回路、ウインドウコンパレータ回路など
で構成し、被測定コンデンサの充放電時の急俊な電圧の
変化を、設定基準電圧と比較して、ウインドウコンパレ
ータ回路から出力パルスを出すので、この出力パルスの
有無により、コンデンサの電極と測定端子との接触の良
否を判定することができる。
According to the present invention, a charge / discharge detection circuit is provided in parallel with a leakage current detection circuit. In particular, the charge / discharge detection circuit is composed of an impedance conversion circuit, a window comparator circuit, etc. The abrupt voltage change at the time is compared with the set reference voltage, and an output pulse is output from the window comparator circuit. Therefore, the presence or absence of this output pulse determines whether the contact between the capacitor electrode and the measurement terminal is good or bad. You can

【0022】また、漏れ電流検出回路の入力部の抵抗の
値を変更することにより、従来例より小さい容量のコン
デンサの接触の良否を判定することができるので、絶縁
抵抗を測定できるコンデンサの範囲が広がる。
Further, by changing the value of the resistance of the input portion of the leakage current detection circuit, it is possible to judge the quality of contact of the capacitor having a capacity smaller than that of the conventional example. spread.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るコンデンサの絶縁抵抗測定装置
の一実施例を示す回路図
FIG. 1 is a circuit diagram showing an embodiment of a capacitor insulation resistance measuring apparatus according to the present invention.

【図2】 図1に示す回路の動作を示すもので、Aはコ
ンデンサの絶縁抵抗測定装置における被測定コンデンサ
と漏れ電流検出回路との接続点の充放電特性図、Bはウ
インドウコンパレータ回路の出力パルス図
2 shows the operation of the circuit shown in FIG. 1, where A is a charge / discharge characteristic diagram of a connection point between a capacitor to be measured and a leakage current detection circuit in a capacitor insulation resistance measuring device, and B is an output of a window comparator circuit. Pulse diagram

【符号の説明】[Explanation of symbols]

1 測定電源 2 印加/放電切換器 2a 充電側接点 2b 放電側接点 3 電流制限回路 4a、4b 測定端子 6 漏れ電流検出回路 7 インピーダンス変換回路 8 ウインドウコンパレータ回
路 10、11、12 接続点
1 Measurement Power Supply 2 Application / Discharge Switch 2a Charging Side Contact 2b Discharge Side Contact 3 Current Limiting Circuit 4a, 4b Measuring Terminal 6 Leakage Current Detection Circuit 7 Impedance Conversion Circuit 8 Window Comparator Circuit 10, 11, 12 Connection Points

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定電源と、この測定電源に接続された印
加/放電切換器と、この印加/放電切換器に接続された
電流制限回路と、この電流制限回路に接続されたコンデ
ンサの電極に接触する測定端子と、この測定端子に接続
されてコンデンサの漏れ電流を計測する漏れ電流検出回
路と、前記測定端子と前記漏れ電流検出回路との接続点
に接続されたインピーダンス変換回路と、このインピー
ダンス変換回路に接続されて前記コンデンサの充放電電
圧を計測するコンパレータ回路と、からなるコンデンサ
の絶縁抵抗測定装置。
1. A measurement power source, an application / discharge switching device connected to the measurement power source, a current limiting circuit connected to the application / discharge switching device, and an electrode of a capacitor connected to the current limiting circuit. A measurement terminal that contacts, a leakage current detection circuit that is connected to this measurement terminal to measure the leakage current of a capacitor, an impedance conversion circuit that is connected to the connection point between the measurement terminal and the leakage current detection circuit, and this impedance A device for measuring insulation resistance of a capacitor, comprising: a comparator circuit connected to a conversion circuit to measure a charge / discharge voltage of the capacitor.
JP6829395A 1995-03-27 1995-03-27 Measuring device of insulation resistance of capacitor Pending JPH08262076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6829395A JPH08262076A (en) 1995-03-27 1995-03-27 Measuring device of insulation resistance of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6829395A JPH08262076A (en) 1995-03-27 1995-03-27 Measuring device of insulation resistance of capacitor

Publications (1)

Publication Number Publication Date
JPH08262076A true JPH08262076A (en) 1996-10-11

Family

ID=13369595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6829395A Pending JPH08262076A (en) 1995-03-27 1995-03-27 Measuring device of insulation resistance of capacitor

Country Status (1)

Country Link
JP (1) JPH08262076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008470A (en) 2014-07-14 2016-01-22 가부시키가이샤 휴모 라보라토리 Device for measuring insulation resistance of capacitor
CN106896274A (en) * 2015-12-18 2017-06-27 马涅蒂-马瑞利公司 For the devices, systems and methods that insulation measurement and insulation loss are diagnosed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008470A (en) 2014-07-14 2016-01-22 가부시키가이샤 휴모 라보라토리 Device for measuring insulation resistance of capacitor
CN105319443A (en) * 2014-07-14 2016-02-10 慧萌高新科技有限公司 Device for measuring insulation resistance of capacitor
TWI647458B (en) * 2014-07-14 2019-01-11 日商慧萌高新科技有限公司 Capacitor insulation resistance measuring device
CN106896274A (en) * 2015-12-18 2017-06-27 马涅蒂-马瑞利公司 For the devices, systems and methods that insulation measurement and insulation loss are diagnosed
CN106896274B (en) * 2015-12-18 2020-10-27 马涅蒂-马瑞利公司 Apparatus, system and method for insulation resistance measurement and insulation loss diagnosis

Similar Documents

Publication Publication Date Title
US4982306A (en) Method of limiting starting current in a DC converter and device for performing the method
US5770956A (en) Measurement amplifier
JP3204091B2 (en) Charge / discharge current measuring device
JP3259370B2 (en) Capacitor insulation resistance measuring device
KR100363294B1 (en) Probe tangency detecting method and probe tangency detecting apparatus
JPH08262076A (en) Measuring device of insulation resistance of capacitor
KR940007922B1 (en) Insulation resistance detecting apparatus
JP2001242204A (en) Direct current resistance measuring method of capacitor and its device
JPH0943284A (en) Bypass capacity measuring apparatus of dut power source pin in ic test system and contact checker for bypass capacity opening/closing switch
JPS6217666A (en) Apparatus for measuring current through voltage application
JP3673589B2 (en) Method and apparatus for measuring capacitor leakage current
JPS641649Y2 (en)
JP3031252B2 (en) Subscriber line impedance measurement method
WO2023026839A1 (en) Impedance measuring device
JPH1056657A (en) Measurement circuit
JPH04131770A (en) Dielectric resistance measuring device for capacitor
JPH0157745B2 (en)
JPH0714924Y2 (en) In-circuit tester with discharge power supply circuit and in-circuit tester with power supply circuit for both measurement and discharge
JPH09145748A (en) Electric current measuring instrument
JPH0524222Y2 (en)
JPH02176574A (en) Electronic parts measuring instrument
JPH0732106B2 (en) Polarity determination method for polar capacitors
RU1810837C (en) Device for measuring voltage drop in terminals
JPS62878A (en) Measuring circuit for current consumption
JPH0989971A (en) Method and device for judging presence of disconnection of subscriber's line