JPH08259265A - Glass-ceramic dielectric material - Google Patents

Glass-ceramic dielectric material

Info

Publication number
JPH08259265A
JPH08259265A JP7094386A JP9438695A JPH08259265A JP H08259265 A JPH08259265 A JP H08259265A JP 7094386 A JP7094386 A JP 7094386A JP 9438695 A JP9438695 A JP 9438695A JP H08259265 A JPH08259265 A JP H08259265A
Authority
JP
Japan
Prior art keywords
glass
ceramic
powder
dielectric material
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7094386A
Other languages
Japanese (ja)
Other versions
JP3624408B2 (en
Inventor
Hiromitsu Watanabe
広光 渡辺
Yoshio Mayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP09438695A priority Critical patent/JP3624408B2/en
Publication of JPH08259265A publication Critical patent/JPH08259265A/en
Application granted granted Critical
Publication of JP3624408B2 publication Critical patent/JP3624408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To obtain a glass-ceramic dielectric material having a high relative permittivity and a small dielectric loss at frequency in a microwave region, capable of using silver or copper as an electrode or conductor material because the dielectric material can be fired at a low temp., having high mechanical strength and satisfactory heat resistance and suitable for use as a microwave circuit part material. CONSTITUTION: This glass-ceramic dielectric material consists of 40-90wt.% glass powder and 60-10wt.% ceramic powder. The glass powder consists of, by weight, 10-35% SiO2 , 5-35% Ln2 O3 (lanthanoid oxide), 15-50% TiO2 , 3-45% RO (alkaline earth metal oxide) 0.1-25% ZnO, 0-30% PbO, 0-30% Bi2 O3 and 0-25% ZrO2 . A ceramic material having a relative permittivity of >=9 and a dielectric loss of <=20×10<-4> at 1GHz frequency is preferably used as the ceramic powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にマイクロ波領域の
周波数、具体的には、0.1GHz以上の周波数におい
て高い比誘電率と低い誘電損失を有し、マイクロ波用回
路部品材料として好適なガラスセラミックス誘電体材料
に関するものである。
BACKGROUND OF THE INVENTION The present invention has a high relative dielectric constant and a low dielectric loss, particularly at frequencies in the microwave region, specifically at frequencies of 0.1 GHz and above, and is suitable as a microwave circuit component material. Glass ceramic dielectric material.

【0002】[0002]

【従来の技術】高度情報化時代を迎え、情報伝達は、よ
り高速化、高周波化の傾向にある。自動車電話やパーソ
ナル無線に代表される移動体通信機器、衛星放送、衛星
通信、CATV等に代表されるニューメディア機器で
は、機器のコンパクト化が強く推し進められており、こ
れに伴い誘電体共振器等のマイクロ波用回路素子に対し
ても小型化が強く望まれている。
2. Description of the Related Art In the advanced information age, information transmission tends to be faster and higher in frequency. In mobile communication devices typified by car phones and personal radios, and new media devices typified by satellite broadcasting, satellite communication, CATV, etc., compactification of the devices is strongly promoted, and along with this, dielectric resonators, etc. There is also a strong demand for miniaturization of the microwave circuit element.

【0003】マイクロ波用回路素子の大きさは、使用電
磁波の波長が基準になる。比誘電率εの誘電体中を伝播
する電磁波の波長λは、真空中の波長をλ0 とすると、 λ=λ0 /√ε となる。回路素子は、εの平方根に反比例して小型化で
きるが、また素子の比誘電率が大きいと、電磁波エネル
ギーが素子内に集中するため、電磁波の漏れが少なくな
るという利点もある。
The size of the microwave circuit element is based on the wavelength of the electromagnetic wave used. The wavelength λ of the electromagnetic wave propagating through the dielectric having the relative permittivity ε is λ = λ 0 / √ε, where λ 0 is the wavelength in vacuum. The circuit element can be miniaturized in inverse proportion to the square root of ε, but when the element has a large relative permittivity, electromagnetic wave energy is concentrated in the element, which also has an advantage of reducing electromagnetic wave leakage.

【0004】上記事情から近年では、回路部品材料とし
て、マイクロ波領域の周波数において高い比誘電率を有
するセラミックスが各種開発されている。
In view of the above circumstances, in recent years, various ceramics having a high relative dielectric constant at frequencies in the microwave region have been developed as circuit component materials.

【0005】また上記の周波数において高い比誘電率を
有するガラス繊維によって樹脂を補強した材料も開発さ
れ、特開平4−322007号公報、特開平4−367
537号公報において具体的に開示されている。
Further, a material in which a resin is reinforced with glass fiber having a high relative dielectric constant at the above-mentioned frequency has been developed, which is disclosed in JP-A-4-322007 and JP-A-4-367.
This is specifically disclosed in Japanese Patent No. 537.

【0006】[0006]

【発明が解決しようとする課題】上記したセラミックス
材料として、例えばBaO−TiO2 系セラミック、B
aO−Ln23 −TiO2 系セラミック、複合ペロブ
スカイト系セラミック、ZrO2 −TiO2 −SnO2
系セラミック等が知られている。これらのセラミックス
材料は、高誘電率、低誘電損失であり、しかも強度が高
いものである。しかしながらこれらの材料をシート状に
成形し、複数枚を積層した後、焼成して積層型の高周波
デバイスや回路基板を作製する場合、1200℃以上の
温度で焼成する必要があるため、電極や導体材料として
銀や銅を使用することができず、より耐熱性に優れた高
価な材料を使用する必要があり、材料コストが高くなる
という欠点を有している。
As the above-mentioned ceramic materials, for example, BaO--TiO 2 system ceramics, B
aO-Ln 2 O 3 -TiO 2 based ceramic, composite perovskite ceramic, ZrO 2 -TiO 2 -SnO 2
Ceramics and the like are known. These ceramic materials have high permittivity, low dielectric loss, and high strength. However, when these materials are formed into a sheet, and a plurality of sheets are laminated and then fired to produce a high-frequency device or circuit board of a laminated type, it is necessary to fire at a temperature of 1200 ° C. or higher, and therefore electrodes and conductors are required. As a material, silver or copper cannot be used, and it is necessary to use an expensive material having higher heat resistance, which has a drawback that the material cost becomes high.

【0007】また上記したガラス繊維によって樹脂を補
強した材料は、セラミックスに比べて切断、孔開け加工
等の点で優れているが、0.1GHz以上の周波数で、
10以上の比誘電率を得ようとすると、従来より回路基
板に広く用いられてきたエポキシ樹脂に代えて、ポリフ
ッ化ビニリデン(ε=13)やシアノ樹脂(ε=16〜
20)のような比誘電率の高い樹脂を使用する必要があ
る。しかしながらこのような樹脂は、高周波(特に10
0MHz以上)での誘電損失(tanδ)が高く、マイ
クロ波用回路基板材料としては性能が良くない。しかも
このような樹脂を使用した回路基板は、基本的に耐熱性
が低いという欠点もある。
Further, the above-mentioned material in which the resin is reinforced by the glass fiber is superior to ceramics in the point of cutting and punching, but at a frequency of 0.1 GHz or more,
In order to obtain a relative permittivity of 10 or more, instead of the epoxy resin which has been widely used for circuit boards from the past, polyvinylidene fluoride (ε = 13) or cyano resin (ε = 16 to
It is necessary to use a resin having a high relative dielectric constant such as 20). However, such resins are not suitable for high frequencies (especially 10
The dielectric loss (tan δ) at 0 MHz or higher) is high, and the performance is not good as a microwave circuit board material. Moreover, the circuit board using such a resin has a drawback that it is basically low in heat resistance.

【0008】本発明の目的は、マイクロ波領域の周波数
において高い比誘電率と低い誘電損失を有し、且つ、低
温で焼成可能であるため、電極や導体材料として銀や銅
が使用可能であり、しかも機械的強度が高く、耐熱性が
良好であり、マイクロ波用回路部品材料として好適なガ
ラスセラミックス誘電体材料を提供することである。
The object of the present invention is to have high relative permittivity and low dielectric loss at frequencies in the microwave region and to be able to fire at low temperatures, so that silver or copper can be used as an electrode or conductor material. Moreover, it is an object of the present invention to provide a glass ceramic dielectric material having high mechanical strength and good heat resistance, which is suitable as a microwave circuit component material.

【0009】[0009]

【課題を解決するための手段】本発明者等は種々の実験
を重ねた結果、SiO2 、Ln23 、TiO2 、R
O、ZnOを主成分とする結晶性のガラス粉末と、高誘
電率、低誘電損失のセラミックス粉末とを組み合わせる
ことにより、上記目的を達成できるガラスセラミックス
材料が得られることを見いだし、本発明として提案する
ものである。
Means for Solving the Problems As a result of various experiments conducted by the present inventors, SiO 2 , Ln 2 O 3 , TiO 2 , R
It was found that a glass-ceramic material capable of achieving the above object can be obtained by combining a crystalline glass powder containing O and ZnO as main components with a ceramic powder having a high dielectric constant and a low dielectric loss, and proposed as the present invention. To do.

【0010】即ち、本発明のガラスセラミックス誘電体
材料は、重量百分率でガラス粉末40〜90%、セラミ
ックス粉末60〜10%からなり、該ガラス粉末がSi
210〜35%、Ln23 5〜35%、TiO2
5〜50%、RO 3〜45%、ZnO 0.1〜25
%、PbO 0〜30%、Bi23 0〜30%、Zr
2 0〜25%からなることを特徴とする。
That is, the glass-ceramic dielectric material of the present invention is composed of 40 to 90% by weight of glass powder and 60 to 10% of ceramic powder, and the glass powder is Si.
O 2 10-35%, Ln 2 O 3 5-35%, TiO 2 1
5-50%, RO 3-45%, ZnO 0.1-25
%, PbO 0-30%, Bi 2 O 3 0-30%, Zr
It is characterized in that it consists of O 2 0 to 25%.

【0011】本発明において、ガラス粉末とセラミック
ス粉末の割合を上記のように限定した理由は、ガラス粉
末が40%より少ない(即ち、セラミックス粉末が60
%より多い)と焼成時に緻密化し難いために、焼成体の
強度が著しく低下したり焼成体内部に多数の気孔が生じ
て誘電率が低下する。一方、ガラス粉末が90%より多
い(即ち、セラミックス粉末が10%より少ない)とガ
ラス成分が焼成体表面から浮き出し、表面に印刷される
導体との接着強度が低下する。
In the present invention, the reason why the ratio of the glass powder and the ceramic powder is limited as described above is that the glass powder is less than 40% (that is, the ceramic powder is 60%).
%), It is difficult to densify at the time of firing, so that the strength of the fired body is remarkably reduced, or a large number of pores are formed inside the fired body, and the dielectric constant is reduced. On the other hand, when the glass powder content is more than 90% (that is, the ceramic powder content is less than 10%), the glass component is raised from the surface of the fired body, and the adhesive strength with the conductor printed on the surface is lowered.

【0012】またガラス粉末の組成限定理由は以下の通
りである。
The reasons for limiting the composition of the glass powder are as follows.

【0013】SiO2 はガラスのネットワークフォーマ
ーであり、その含有量は10〜35%、好ましくは15
〜30%である。SiO2 が10%より少ないとガラス
化範囲より外れ、安定したガラスが得られなくなり、3
5%より多いとガラスの比誘電率が低くなる。
SiO 2 is a glass network former, and its content is 10 to 35%, preferably 15%.
~ 30%. If the SiO 2 content is less than 10%, it will be out of the vitrification range and stable glass will not be obtained.
If it exceeds 5%, the relative dielectric constant of the glass tends to be low.

【0014】Ln23 (La23 、CeO2 、Pr
611、Nd23 等のランタノイド系酸化物)は比誘
電率を高める成分であるとともに析出結晶の構成成分と
なり、その含有量は合量で5〜35%、好ましくは10
〜30%である。Ln23の合量が5%より少ないと
析出結晶量が少なくなり、比誘電率が低下するとともに
焼成体の強度が低下し、35%より多いとガラス成形時
に失透し易くなる。
Ln 2 O 3 (La 2 O 3 , CeO 2 , Pr
(Lanthanoid oxides such as 6 O 11 and Nd 2 O 3 ) are components for increasing the relative dielectric constant and are also components for the precipitated crystals. The total content is 5 to 35%, preferably 10%.
~ 30%. When the total amount of Ln 2 O 3 is less than 5%, the amount of precipitated crystals decreases, the relative dielectric constant decreases, and the strength of the fired product decreases, and when it exceeds 35%, devitrification tends to occur during glass forming.

【0015】TiO2 も比誘電率を高める成分であると
ともに析出結晶の構成成分となる。またSiO2 と同じ
くガラスのネットワークフォーマーとなり、その含有量
は15〜50%、好ましくは20〜45%である。Ti
2 が15%より少ないと析出結晶量が少なくなって比
誘電率が低下するとともに焼成体の強度が低下し、50
%より多いとガラス成形時に失透し易くなる。
TiO 2 is also a component for increasing the relative dielectric constant and a component for the precipitated crystals. Further, it becomes a glass network former like SiO 2, and its content is 15 to 50%, preferably 20 to 45%. Ti
When O 2 is less than 15%, the amount of precipitated crystals decreases, the relative permittivity decreases, and the strength of the fired body decreases.
%, The glass tends to devitrify during glass forming.

【0016】RO(BaO、CaO、SrO等のアルカ
リ土類金属酸化物)も比誘電率を高める成分であるとと
もに析出結晶の構成成分となり、その含有量は合量で3
〜45%、好ましくは5〜35%である。ROが3%よ
り少ないと析出結晶が少なくなって比誘電率が低下する
とともに焼成体の強度が低下し、また溶解性が悪くな
る。ROが45%より多いとガラス成形時に失透し易く
なる。
RO (alkaline earth metal oxide such as BaO, CaO, SrO) is also a component for increasing the relative dielectric constant and a component for the precipitated crystals, and its content is 3 in total.
~ 45%, preferably 5-35%. When the RO content is less than 3%, the number of precipitated crystals decreases, the relative dielectric constant decreases, the strength of the fired body decreases, and the solubility deteriorates. If RO is more than 45%, devitrification tends to occur during glass forming.

【0017】なおROの各成分は、BaO 3〜35
%、CaO 0〜15%、SrO 0〜15%の範囲で
あることが好ましく、特にBaO 5〜30%、CaO
0〜10%、SrO 0〜10%であることが望まし
い。
Each component of RO is BaO 3 to 35.
%, CaO 0 to 15%, SrO 0 to 15%, preferably BaO 5 to 30%, CaO.
It is desirable that they are 0 to 10% and SrO 0 to 10%.

【0018】ZnOは析出結晶量を増加させるとともに
溶解性を向上させる成分であり、その含有量は0.1〜
25%、好ましくは1〜20%である。ZnOが0.1
%より少ないと結晶の析出量が不十分になるとともに溶
解性が低下し、25%より多いとガラス成形時に失透し
易くなる。
ZnO is a component that increases the amount of precipitated crystals and improves the solubility, and the content thereof is 0.1-0.1%.
It is 25%, preferably 1 to 20%. ZnO is 0.1
If it is less than 25%, the amount of precipitated crystals becomes insufficient and the solubility decreases, and if it exceeds 25%, devitrification tends to occur during glass forming.

【0019】PbOは比誘電率を高めるとともに溶解性
を向上させる成分であり、その含有量は0〜30%、好
ましくは0〜25%である。PbOが30%より多いと
析出結晶量が少なくなって焼結体の強度が低下する。
PbO is a component that increases the relative permittivity and the solubility, and its content is 0 to 30%, preferably 0 to 25%. When PbO is more than 30%, the amount of precipitated crystals decreases and the strength of the sintered body decreases.

【0020】Bi23 もPbOと同様に比誘電率を高
めるとともに溶解性を向上させる成分であり、その含有
量は0〜30%、好ましくは0〜25%である。Bi2
3が30%より多いと析出結晶量が少なくなって焼結
体の強度が低下する。
Like PbO, Bi 2 O 3 is also a component that enhances the relative permittivity and solubility, and the content thereof is 0 to 30%, preferably 0 to 25%. Bi 2
If O 3 is more than 30%, the amount of precipitated crystals decreases and the strength of the sintered body decreases.

【0021】ZrO2 はガラスの化学的耐久性を高める
成分であり、その含有量は0〜25%、好ましくは0〜
20%である。ZrO2 が25%より多いと溶解性が悪
くなる。
ZrO 2 is a component that enhances the chemical durability of glass, and its content is 0 to 25%, preferably 0 to 25%.
20%. If ZrO 2 is more than 25%, the solubility becomes poor.

【0022】本発明において使用するセラミックス粉末
としては、高い比誘電率、低い誘電損失の材料であれば
種々のものが使用できる。特に1GHzにおける比誘電
率が9以上、且つ、誘電損失が20×10-4以下のセラ
ミックス材料を使用することが好ましい。
As the ceramic powder used in the present invention, various materials can be used as long as they have a high relative dielectric constant and a low dielectric loss. Particularly, it is preferable to use a ceramic material having a relative permittivity of 9 or more at 1 GHz and a dielectric loss of 20 × 10 −4 or less.

【0023】このようなセラミックス材料の好適な例と
して、Al23 、ZrO2 、ZrSiO4 、ZrTi
4 、TiO2 、BaTi49 やBa2 Ti920
CaTiO3 やSrTiO3 等のRO−TiO2 系セラ
ミック、Nd4 Ti924やLa4 Ti924等のLn
23 −TiO2 系セラミック、及びBaNd2 Ti5
14やSrPr2 Ti310等のRO−Ln23 −T
iO2 系セラミックの群より選択された1種又は2種以
上組み合わせて使用することができる。
Suitable examples of such ceramic materials include Al 2 O 3 , ZrO 2 , ZrSiO 4 , and ZrTi.
RO-TiO 2 based ceramics such as O 4 , TiO 2 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , CaTiO 3 and SrTiO 3 , Ln such as Nd 4 Ti 9 O 24 and La 4 Ti 9 O 24.
2 O 3 —TiO 2 system ceramic, and BaNd 2 Ti 5
O 14 and SrPr 2 Ti 3 O 10, etc. RO-Ln 2 O 3 -T
They can be used alone or in combination of two or more selected from the group of iO 2 -based ceramics.

【0024】[0024]

【作用】本発明のガラスセラミックス誘電体材料は、焼
成することによりガラス中からBa2 Ti920、Ca
TiO3 、SrTiO3 等のRO−TiO2 系結晶や、
La4 Ti924、Nd4 Ti924等のLn23
TiO2 系結晶や、SrPr2 Ti310、BaNd2
Ti514等のRO−Ln23 −TiO2 系結晶が析
出する。さらにこれらの系の結晶中にPbOやBi2
3 が含まれる場合もある。上記各結晶は、高い比誘電
率、低い誘電損失及び高い機械的強度を有するため、こ
れらの特性に優れた焼成体を得ることができる。
The glass-ceramic dielectric material of the present invention can be baked to remove Ba 2 Ti 9 O 20 and Ca from the glass.
TiO 3, RO-TiO 2 system such SrTiO 3 crystal and,
La 4 Ti 9 O 24 , Nd 4 Ti 9 O 24, etc. Ln 2 O 3
TiO 2 type crystals, SrPr 2 Ti 3 O 10 , BaNd 2
Ti 5 O 14, etc. RO-Ln 2 O 3 -TiO 2 based crystal is precipitated. Furthermore, in the crystals of these systems, PbO and Bi 2 O
May include 3 . Since each crystal has a high relative dielectric constant, a low dielectric loss, and a high mechanical strength, it is possible to obtain a fired body excellent in these characteristics.

【0025】[0025]

【実施例】以下、本発明のガラスセラミックス誘電体材
料を実施例に基づき説明する。
EXAMPLES The glass ceramic dielectric material of the present invention will be described below based on examples.

【0026】表1は、本実施例で使用するガラス粉末
(試料A〜F)を示すものである。
Table 1 shows glass powders (Samples A to F) used in this example.

【0027】[0027]

【表1】 [Table 1]

【0028】表1のガラス試料は以下のように調製し
た。
The glass samples in Table 1 were prepared as follows.

【0029】まず原料として、純珪粉、酸化ランタン、
酸化セリウム、酸化プラセオジウム、酸化ネオジウム、
酸化チタン、炭酸バリウム、炭酸カルシウム、炭酸スト
ロンチウム、酸化亜鉛、酸化鉛、酸化ビスマス、酸化ジ
ルコニウムを準備し、表中の各組成となるように原料を
調合した後、白金坩堝に入れて1400〜1500℃で
3〜6時間溶融してから、水冷ローラーによって薄板状
に成形した。次いでこの成形体を粗砕した後、水を加え
てボールミルにより湿式粉砕し、平均粒径が1.5〜
3.0μmの粉末とした。
First, as raw materials, pure silica powder, lanthanum oxide,
Cerium oxide, praseodymium oxide, neodymium oxide,
Titanium oxide, barium carbonate, calcium carbonate, strontium carbonate, zinc oxide, lead oxide, bismuth oxide, zirconium oxide are prepared, and the raw materials are mixed so as to have the respective compositions in the table, and then placed in a platinum crucible and 1400 to 1500. After being melted at 3 ° C. for 3 to 6 hours, it was formed into a thin plate by a water-cooled roller. Next, after crushing this molded body roughly, water is added and wet crushed by a ball mill to obtain an average particle size of 1.5 to
The powder was 3.0 μm.

【0030】こうして得られたガラス粉末は、1GHz
の周波数で15.9〜18.6の比誘電率と13〜20
×10-4の誘電損失を有していた。
The glass powder thus obtained has a frequency of 1 GHz.
At a frequency of 15.9 to 18.6 and a dielectric constant of 13 to 20
It had a dielectric loss of × 10 -4 .

【0031】また表2は、本実施例で使用するセラミッ
クス粉末(試料a〜g)を示すものである。
Table 2 shows the ceramic powder (samples a to g) used in this example.

【0032】[0032]

【表2】 [Table 2]

【0033】表2中、試料aのAl23 と試料bのZ
rO2 は市販品を使用した。またそれ以外のセラミック
ス粉末は、原料として酸化ジルコニウム、純珪粉、酸化
チタン、炭酸バリウム、酸化ネオジウムを準備し、表2
のセラミックスとなるように各原料を調合した後、水を
加えてボールミルにより24時間湿式混合し、次いで乾
燥させてから、表中の焼成条件で焼成し、この焼成物を
ボールミルで平均粒径が1.5〜3.0μmになるまで
粉砕することによって作製した。
In Table 2, Al 2 O 3 of sample a and Z of sample b
A commercially available product was used as rO 2 . For other ceramic powders, zirconium oxide, pure silica powder, titanium oxide, barium carbonate, and neodymium oxide were prepared as raw materials, and Table 2
After each raw material was blended so as to obtain the above-mentioned ceramics, water was added and wet-mixed in a ball mill for 24 hours, followed by drying and then firing under the firing conditions shown in the table. It was prepared by pulverizing to 1.5 to 3.0 μm.

【0034】こうして得られたセラミックス粉末は、1
GHzの周波数で、9.0〜100.0の比誘電率と、
0.5〜8.0×10-4の誘電損失を有していた。
The ceramic powder thus obtained has 1
A relative permittivity of 9.0 to 100.0 at a frequency of GHz,
It had a dielectric loss of 0.5 to 8.0 × 10 −4 .

【0035】表3、4は、表1のガラス粉末と、表2の
セラミックス粉末とを混合して作製したガラスセラミッ
クス誘電体材料(試料No.1〜16)を示すものであ
る。
Tables 3 and 4 show glass-ceramic dielectric materials (Sample Nos. 1 to 16) produced by mixing the glass powder of Table 1 and the ceramic powder of Table 2.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】これらのガラスセラミック誘電体材料から
なるグリーンシートを作製し、その複数枚を積層し焼結
させる方法を以下に述べる。
A method for producing a green sheet made of these glass ceramic dielectric materials, laminating a plurality of the green sheets and sintering them will be described below.

【0039】まずガラス粉末とセラミック粉末を表中の
割合で混合した後、所定量の結合剤、可塑剤及び溶剤を
添加してスラリーを調製する。結合剤としては、例えば
ポリビニルブチラール樹脂、メタアクリル酸樹脂等、可
塑剤としては、例えばフタル酸ジブチル等、溶剤として
は、例えばトルエン、メチルエチルケトン等を使用する
ことができる。
First, glass powder and ceramic powder are mixed in the ratios shown in the table, and then a predetermined amount of binder, plasticizer and solvent are added to prepare a slurry. As the binder, for example, polyvinyl butyral resin, methacrylic acid resin, etc., as the plasticizer, for example, dibutyl phthalate, etc., and as the solvent, for example, toluene, methyl ethyl ketone, etc. can be used.

【0040】次いで上記のスラリーをポリエステルフィ
ルム上にドクターブレード法によって塗布し、厚みが約
0.2mmのグリーンシートを作製する。その後、この
グリーンシートを乾燥させ、所定寸法に切断してから、
機械的加工を施してスルーホールを形成し、導体や電極
となる低抵抗金属材料をスルーホール及びグリーンシー
ト表面に印刷する。次いでこのようなグリーンシートの
複数枚を積層し、熱圧着によって一体化する。
Then, the above slurry is applied onto a polyester film by a doctor blade method to prepare a green sheet having a thickness of about 0.2 mm. After that, dry this green sheet, cut it to a predetermined size,
A through hole is formed by mechanical processing, and a low resistance metal material serving as a conductor or an electrode is printed on the surface of the through hole and the green sheet. Then, a plurality of such green sheets are laminated and integrated by thermocompression bonding.

【0041】このようにして得た積層グリーンシート
を、約3℃/分の速度で約500℃まで昇温し、この温
度で約30分保持することによってグリーンシート中の
有機物質を除去する。その後、約10℃/分の速度で表
中の焼成温度まで昇温し、その温度で表中の焼成時間保
持して焼結させる。
The laminated green sheet thus obtained is heated to about 500 ° C. at a rate of about 3 ° C./minute and kept at this temperature for about 30 minutes to remove the organic substances in the green sheet. After that, the temperature is raised to the firing temperature in the table at a rate of about 10 ° C./min, and the temperature is maintained for the firing time for sintering.

【0042】表3、4から明らかなように、実施例の各
試料は、900℃の低温で焼成可能であり、得られた焼
成体は1GHzの周波数で20.4〜58.7の比誘電
率と12〜20×10-4の誘電損失を有していた。しか
も曲げ強度が1800kg/cm2以上と高く、熱膨張
係数が81〜90×10-7/℃であった。
As is clear from Tables 3 and 4, each sample of the examples can be fired at a low temperature of 900 ° C., and the obtained fired body has a relative dielectric constant of 20.4 to 58.7 at a frequency of 1 GHz. And a dielectric loss of 12 to 20 × 10 -4 . Moreover, the bending strength was as high as 1800 kg / cm 2 or more, and the thermal expansion coefficient was 81 to 90 × 10 -7 / ° C.

【0043】なお、表中の比誘電率と誘電損失は、イン
ピーダンスアナライザーを使用し、25℃の温度での値
を求めた。熱膨張係数は、石英押棒式のディラトメータ
ーを使用して測定した。また軟化点は、周知のファイバ
ー法によって測定した。さらに曲げ強度は、10×45
×1mmの大きさとなるように作製した焼成体を3点荷
重測定法によって測定した。
The values of relative permittivity and dielectric loss in the table were obtained at a temperature of 25 ° C. using an impedance analyzer. The thermal expansion coefficient was measured using a quartz push rod type dilatometer. The softening point was measured by the well-known fiber method. Furthermore, bending strength is 10 × 45
The fired body produced so as to have a size of × 1 mm was measured by a three-point load measuring method.

【0044】また実施例では、本発明のガラスセラミッ
クの製造方法として、グリーンシートの例を挙げたが、
本発明はこれに限定されるものではなく、一般にセラミ
ックの製造に用いられる各種の方法を適用することが可
能である。
In the embodiment, the example of the green sheet is given as the method for producing the glass ceramic of the present invention.
The present invention is not limited to this, and various methods generally used for manufacturing ceramics can be applied.

【0045】[0045]

【発明の効果】以上のように本発明のガラスセラミック
ス誘電体材料は、1000℃以下の低温で焼成すること
が可能であり、電極や導体材料として銀や銅を使用する
ことができる。またマイクロ波領域の周波数において高
い比誘電率と低い誘電損失を有し、しかも耐熱性と機械
的強度が高いため、マイクロ波用回路部品材料として好
適である。
As described above, the glass-ceramic dielectric material of the present invention can be fired at a low temperature of 1000 ° C. or lower, and silver or copper can be used as an electrode or a conductor material. Further, it has a high relative permittivity and a low dielectric loss at frequencies in the microwave region, and has high heat resistance and high mechanical strength, so that it is suitable as a microwave circuit component material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率でガラス粉末40〜90%、
セラミックス粉末60〜10%からなり、該ガラス粉末
がSiO2 10〜35%、Ln23 (ランタノイド系
酸化物) 5〜35%、TiO2 15〜50%、RO
(アルカリ土類金属酸化物) 3〜45%、ZnO
0.1〜25%、PbO 0〜30%、Bi23 0〜
30%、ZrO2 0〜25%からなることを特徴とする
ガラスセラミックス誘電体材料。
1. Glass powder 40-90% by weight percentage,
The ceramic powder is composed of 60 to 10%, and the glass powder is SiO 2 10 to 35%, Ln 2 O 3 (lanthanoid oxide) 5 to 35%, TiO 2 15 to 50%, and RO.
(Alkaline earth metal oxide) 3 to 45%, ZnO
0.1-25%, PbO 0-30%, Bi 2 O 3 0-
A glass-ceramic dielectric material comprising 30% and ZrO 2 0 to 25%.
【請求項2】 セラミックス粉末が、1GHzにおいて
比誘電率9以上、且つ、誘電損失20×10-4以下のセ
ラミックス材料からなることを特徴とする請求項1のガ
ラスセラミックス誘電体材料。
2. The glass-ceramic dielectric material according to claim 1, wherein the ceramic powder is made of a ceramic material having a relative dielectric constant of 9 or more at 1 GHz and a dielectric loss of 20 × 10 −4 or less.
JP09438695A 1995-03-27 1995-03-27 Glass ceramic dielectric material Expired - Fee Related JP3624408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09438695A JP3624408B2 (en) 1995-03-27 1995-03-27 Glass ceramic dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09438695A JP3624408B2 (en) 1995-03-27 1995-03-27 Glass ceramic dielectric material

Publications (2)

Publication Number Publication Date
JPH08259265A true JPH08259265A (en) 1996-10-08
JP3624408B2 JP3624408B2 (en) 2005-03-02

Family

ID=14108855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09438695A Expired - Fee Related JP3624408B2 (en) 1995-03-27 1995-03-27 Glass ceramic dielectric material

Country Status (1)

Country Link
JP (1) JP3624408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013062A (en) * 2001-08-02 2009-01-22 Three M Innovative Properties Co Glass containing at least two kinds of metal oxides comprising tio2 and la2o3, or tio2 and bao, method for manufacturing article containing the glass, and glass article manufactured by the manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013062A (en) * 2001-08-02 2009-01-22 Three M Innovative Properties Co Glass containing at least two kinds of metal oxides comprising tio2 and la2o3, or tio2 and bao, method for manufacturing article containing the glass, and glass article manufactured by the manufacturing method

Also Published As

Publication number Publication date
JP3624408B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3381332B2 (en) High dielectric constant glass ceramic
US5304521A (en) Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
EP0534801B1 (en) Method of producing low temperature firing dielectric ceramic composition
US5290740A (en) Dielectric ceramic composition used for producing dielectric resonator or filter for microwave application
WO2004094338A1 (en) Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
JP3624405B2 (en) Glass ceramic dielectric material
JPH10120436A (en) Glass ceramic dielectric material
JP3624406B2 (en) Glass ceramic dielectric material
JP3624408B2 (en) Glass ceramic dielectric material
JP3624407B2 (en) Glass ceramic dielectric material
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
KR100343523B1 (en) Method for Manufacturing Ceramic Electronic Device
JPH06211564A (en) Ceramic substrate
JPH05325641A (en) Microwave dielectric resonator or dielectric porcelain composition for manufacturing filter and manufacture thereof and microwave dielectric resonator or filter obtained by using the dielectric porcelain composition and manufacture of those
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JPH0855516A (en) Glass ceramic dielectric material
JP3375450B2 (en) Dielectric porcelain composition
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
US6309993B1 (en) Low-fire microwave dielectric compositions
JP3225828B2 (en) High frequency dielectric composition
JP3225833B2 (en) High frequency dielectric composition
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2006298716A (en) Glass, glass-ceramic composition, and dielectric

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees