JPH08253842A - Steel for induction hardening shaft parts excellent in twisting fatigue strength - Google Patents

Steel for induction hardening shaft parts excellent in twisting fatigue strength

Info

Publication number
JPH08253842A
JPH08253842A JP8344795A JP8344795A JPH08253842A JP H08253842 A JPH08253842 A JP H08253842A JP 8344795 A JP8344795 A JP 8344795A JP 8344795 A JP8344795 A JP 8344795A JP H08253842 A JPH08253842 A JP H08253842A
Authority
JP
Japan
Prior art keywords
less
steel
ferrite
fatigue strength
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8344795A
Other languages
Japanese (ja)
Other versions
JP3432944B2 (en
Inventor
Tatsuro Ochi
達朗 越智
Hideo Kanisawa
秀雄 蟹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08344795A priority Critical patent/JP3432944B2/en
Publication of JPH08253842A publication Critical patent/JPH08253842A/en
Application granted granted Critical
Publication of JP3432944B2 publication Critical patent/JP3432944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a steel suitable for induction hardening shaft parts having excellent twisting fatigue strength. CONSTITUTION: This steel for induction hardening shaft parts excellent in twisting fatigue strength is the one having a compsn. contg., by weight, 0.35 to 0.65% C, 0.35 to 2.5% Si, 1.0 to 1.8% Mn, 0.05 to 0.8% Mo, 0.01 to 0.15% S, 0.015 to 0.05% Al, 0.005 to 0.05% Ti, 0.0005 to 0.005% B and 0.002 to 0.01% N, in which the contents of P, Cu and O are limited to specified ones or below, furthermore contg. specified amounts of one or two kinds of Cr and Ni, in which the structural fraction of ferrite is regulated to <=5% and the ferrite grain size is regulated to <=20μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波焼入れ軸部品用鋼
材に係り、さらに詳しくは、図1の(a)〜(c)に示
したスプライン部を有するシャフト、フランジ付シャフ
ト、外筒付シャフト等の自動車の動力伝達系を構成する
軸部品用として好適な、優れた捩り疲労強度を有する鋼
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for induction hardened shaft parts, and more particularly to a shaft having a spline portion shown in FIGS. 1A to 1C, a shaft with a flange, and a shaft with an outer cylinder. The present invention relates to a steel material having excellent torsional fatigue strength, which is suitable as a shaft component constituting a power transmission system of an automobile.

【0002】[0002]

【従来の技術】自動車の動力伝達系を構成する軸部品
は、通常中炭素鋼を所定の部品に成形加工し、高周波焼
入れ−焼戻しを施して製造されているが、近年の自動車
エンジンの高出力化および環境規制対応に伴い高捩り強
度化の指向が強い。これに対して、特開平5−1794
00号公報にはC:0.38〜0.45%、Si:0.
35%以下、Mn:1.0超〜1.5%、B:0.00
05〜0.035%、Ti:0.01〜0.05%、A
l:0.01〜0.06%、N:0.010%以下でフ
ェライト結晶粒度番号6以上の細粒組織を有する直接切
削−高周波焼入れ用鋼材が示されている。該発明材では
静的捩り強度については言及されているものの、捩り疲
労強度については全く配慮されていない。
2. Description of the Related Art A shaft component constituting a power transmission system of an automobile is usually manufactured by forming a medium carbon steel into a predetermined component and subjecting it to induction hardening-tempering. There is a strong tendency toward higher torsional strength in line with the trend toward compliance and environmental regulations. On the other hand, JP-A-5-1794
In the No. 00 publication, C: 0.38 to 0.45%, Si: 0.
35% or less, Mn: more than 1.0 to 1.5%, B: 0.00
05-0.035%, Ti: 0.01-0.05%, A
It shows a steel material for direct cutting-induction hardening, which has a fine grain structure with a ferrite grain size number of 6 or more with l: 0.01 to 0.06% and N: 0.010% or less. Although the invention material mentions the static torsional strength, no consideration is given to the torsional fatigue strength.

【0003】また、日本鉄鋼協会講演論文集「材料とプ
ロセス」第7巻第3号第771頁、第1図には、S53
C鋼(代表的な成分系0.53C−0.25Si−0.
8Mn)をベースに捩り疲労強度に及ぼす合金元素の影
響を検討し、B、Si、Moが有効であることが示され
ている。しかしながら、高周波焼入れ用軸部品用鋼とし
ていかなる鋼材が適しているかについては全く開示され
ていない。
In addition, the Iron and Steel Institute of Japan "Materials and Processes" Vol. 7, No. 3, page 771, FIG. 1 shows S53.
C steel (typical composition 0.53C-0.25Si-0.
The effect of alloying elements on the torsional fatigue strength based on (8Mn) was examined and it was shown that B, Si and Mo are effective. However, there is no disclosure what kind of steel material is suitable as a steel for shaft parts for induction hardening.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、捩り
疲労強度の優れた高周波焼入れ軸部品用鋼材を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a steel material for induction hardened shaft parts which is excellent in torsional fatigue strength.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高周波焼
入れにより優れた捩り疲労強度を有する軸部品を実現す
るために、鋭意検討を行い次の知見を得た。 (1)高周波焼入れ材の捩り疲労破壊は、次の過程で起
きる。 A)表面または硬化層と芯部の境界で亀裂が発生する。 B)軸方向に平行な面または垂直な面で亀裂が初期伝播
する。 C)軸方向に45度の面で粒界割れを伴って脆性破壊を
起こし、最終破壊を起こす。 (2)表面硬化層で硬さのムラがあれば、早期に疲労亀
裂が発生する。高周波焼入れ前の組織のフェライト分率
が35%を超え、フェライト結晶粒径が20μmを超え
ると硬化層で顕著な硬さのムラを生じ、早期に疲労亀裂
が発生しやすい。
Means for Solving the Problems The inventors of the present invention have made extensive studies in order to realize a shaft component having excellent torsional fatigue strength by induction hardening, and have obtained the following findings. (1) Torsional fatigue fracture of induction hardened material occurs in the following process. A) Cracks occur on the surface or at the boundary between the hardened layer and the core. B) The crack initially propagates in a plane parallel to the axial direction or a plane perpendicular to the axial direction. C) Brittle fracture occurs along with grain boundary cracks at a surface of 45 degrees in the axial direction, and final fracture occurs. (2) If the surface hardened layer has uneven hardness, fatigue cracks occur early. If the ferrite fraction of the structure before induction hardening exceeds 35% and the ferrite crystal grain size exceeds 20 μm, remarkable hardness unevenness occurs in the hardened layer, and fatigue cracking is likely to occur early.

【0006】(3)次に、硬化層は捩り疲労過程で材質
劣化を起こす。つまり、捩り疲労過程では、表面圧縮残
留応力の減衰、硬さの低下が起きる。疲労過程でこのよ
うな材質劣化を起こしやすい材料ほど疲労亀裂の発生が
早期に起きる。捩り疲労過程でのこうした材質劣化を抑
制するには、下記の方法が有効である。 高Mnにより焼入れ性を確保する。Crを多量添加
しない。 Moを添加する。 Siを増量する。 (4)上記捩り疲労破壊過程はC)の欄で述べた、軸方
向に45度の面で粒界割れを伴う脆性破壊を抑制するた
めには、次の方法による粒界強化が有効である。 Ti−B添加。 P,Cu,O量の低減。 (5)捩り疲労は破壊の亀裂が表面で発生する場合に比
べて、硬化層と芯部の境界で発生する場合には、捩り疲
労強度は低下する。これを抑制するためには、Nb,V
添加により析出強化を図ることが有効である。
(3) Next, the hardened layer undergoes material deterioration during the torsional fatigue process. That is, in the torsional fatigue process, the surface compressive residual stress is attenuated and the hardness is decreased. The material that is more prone to such material deterioration in the fatigue process causes the fatigue crack to occur earlier. The following method is effective for suppressing such material deterioration in the torsional fatigue process. A high Mn ensures hardenability. Do not add a large amount of Cr. Mo is added. Increase the amount of Si. (4) In the torsional fatigue fracture process, grain boundary strengthening by the following method is effective for suppressing the brittle fracture accompanied by grain boundary cracks in the plane of 45 degrees in the axial direction described in the section C). . Add Ti-B. Reduction of P, Cu, O amount. (5) When torsional fatigue occurs at the boundary between the hardened layer and the core, the torsional fatigue strength is lower than when fracture cracks occur at the surface. To suppress this, Nb, V
It is effective to promote precipitation strengthening by addition.

【0007】本発明は以上の新規なる知見に基づいてな
されたものであり、本発明の要旨は以下の通りである。
重量比として、C:0.35〜0.65%、Si:0.
35〜2.5%、Mn:1.0〜1.8%、Mo:0.
05〜0.8%、S:0.01〜0.15%、Al:
0.015〜0.05%、Ti:0.005〜0.05
%、B:0.0005〜0.005%、N:0.002
〜0.01%、を含有し、P:0.020%以下、C
u:0.05%以下、O:0.0020%以下に制限
し、またはさらに、Nb:0.01〜0.25%、V:
0.03〜0.5%の1種または2種を含有し、または
さらに、Cr:0.05〜0.5%、Ni:0.1〜
3.5%の1種または2種を含有し、残部が鉄および不
可避的不純物からなり、かつフェライトの組織分率が3
5%以下で、フェライト結晶粒径が20μm以下である
ことを特徴とする捩り疲労強度の優れた高周波焼入れ軸
部品用鋼材である。
The present invention was made based on the above new findings, and the gist of the present invention is as follows.
As a weight ratio, C: 0.35 to 0.65%, Si: 0.
35-2.5%, Mn: 1.0-1.8%, Mo: 0.
05-0.8%, S: 0.01-0.15%, Al:
0.015-0.05%, Ti: 0.005-0.05
%, B: 0.0005 to 0.005%, N: 0.002
To 0.01%, P: 0.020% or less, C
u: 0.05% or less, O: 0.0020% or less, or Nb: 0.01 to 0.25%, V:
0.03 to 0.5% of 1 type or 2 types, or Cr: 0.05 to 0.5%, Ni: 0.1 to 0.1%
It contains 3.5% of 1 type or 2 types, the balance is iron and unavoidable impurities, and the ferrite has a structural fraction of 3
It is a steel material for induction hardened shaft parts with excellent torsional fatigue strength, which is characterized by having a ferrite crystal grain size of 5% or less and 20 μm or less.

【0008】[0008]

【作用】以下に、本発明を詳細に説明する。本発明の成
分含有範囲を上記の如く限定した理由について説明す
る。まず、Cは高周波焼入れ硬化層の硬さを増加させる
のに有効な元素であるが、0.35%未満では硬さが不
十分であり、また0.65%を超えるとオーステナイト
粒界への炭化物析出が顕著になって粒界強度を劣化さ
せ、脆性破壊強度の低下を招くとともに、焼き割れが発
生しやすくなるため、含有量を0.35〜0.65%に
定めた。次に、Siは捩り疲労過程での材質劣化の抑
制、オーステナイト粒界への炭化物析出抑制による粒
界強化を目的とし、および脱酸元素として添加する。
しかしながら、0.35%未満ではその効果は不十分で
あり、一方、2.5%を超える過剰添加は、むしろ粒界
脆性を招くので、その含有量を0.35〜2.5%とし
た。
The present invention will be described in detail below. The reason why the component content range of the present invention is limited as described above will be described. First, C is an element effective in increasing the hardness of the induction hardening layer, but if the content is less than 0.35%, the hardness is insufficient, and if it exceeds 0.65%, the austenite grain boundary is formed. Since the precipitation of carbides becomes remarkable, the grain boundary strength is deteriorated, brittle fracture strength is reduced, and quench cracking is likely to occur, the content is set to 0.35 to 0.65%. Next, Si is added as a deoxidizing element for the purpose of suppressing material deterioration in the torsional fatigue process, strengthening the grain boundary by suppressing the precipitation of carbide in the austenite grain boundary.
However, if it is less than 0.35%, its effect is insufficient, while excessive addition exceeding 2.5% causes rather grain boundary brittleness, so its content was made 0.35 to 2.5%. .

【0009】Mnは捩り疲労過程での材質劣化の抑
制、焼入れ性の向上、および鋼中でMnSを形成する
ことによる高周波焼入れ加熱時のオーステナイト粒の
微細化と被削性の向上を目的として添加する。しかし
ながら、1.0%未満ではこの効果は不十分である。一
方、Mnはオーステナイト粒界に粒界偏析を起こし、粒
界強度を低下させて捩り応力下での脆性破壊を起こし易
くし、そのため強度を低下させる。特にこの傾向は1.
8%を超えると顕著になる。以上の理由から、Mnの含
有量を1.0〜1.8%とした。Moは捩り疲労過程
での材質劣化の抑制、オーステナイト粒界に粒界偏析
を起こすことによる粒界強度増加、および焼入れ性の
向上を狙いとして添加する。しかしながら、0.05%
未満ではこの効果は不十分であり、一方、0.8%を超
える過剰添加は、効果が飽和し経済性の観点から望まし
くないので、その含有量を0.05〜0.8%とした。
Mn is added for the purpose of suppressing material deterioration in the torsional fatigue process, improving hardenability, and refining austenite grains during induction hardening heating by forming MnS in steel and improving machinability. To do. However, if it is less than 1.0%, this effect is insufficient. On the other hand, Mn causes grain boundary segregation at the austenite grain boundaries, lowers the grain boundary strength, and easily causes brittle fracture under torsional stress, which lowers the strength. Especially this tendency is 1.
It becomes remarkable when it exceeds 8%. For the above reasons, the Mn content is set to 1.0 to 1.8%. Mo is added for the purpose of suppressing material deterioration in the torsional fatigue process, increasing grain boundary strength by causing grain boundary segregation in austenite grain boundaries, and improving hardenability. However, 0.05%
If it is less than 0.1%, this effect is insufficient. On the other hand, if over 0.8% is added excessively, the effect is saturated and it is not desirable from the economical point of view, so the content was made 0.05 to 0.8%.

【0010】また、Sは鋼中でMnSを形成、これによ
る高周波焼入れ加熱時のオーステナイト粒の微細化およ
び被削性の向上を目的として添加するが、0.01%以
下ではその効果は不十分である。一方、0.15%を超
えるとその効果は飽和し、むしろ粒界偏析を起こし粒界
脆化を招く。以上の理由から、Sの含有量を0.01超
〜0.15%とした。Alは、Nと結合してAlNを
形成することによる高周波焼入れ加熱時のオーテスナイ
ト粒の微細化を目的とし、および脱酸元素として添加
するが、0.15%未満ではその効果は不十分であり、
一方、0.05%を超えるとその効果は飽和し、むしろ
靱性を劣化させるので、その含有量を0.015〜0.
05%とした。
Further, S forms MnS in steel and is added for the purpose of refining austenite grains during induction hardening heating and improving machinability, but if 0.01% or less, the effect is insufficient. Is. On the other hand, if it exceeds 0.15%, the effect is saturated and rather grain boundary segregation occurs to cause grain boundary embrittlement. For the above reason, the content of S is set to more than 0.01 to 0.15%. Al is added as a deoxidizing element for the purpose of refining austenite grains at the time of induction hardening heating by combining with N to form AlN, and if less than 0.15%, the effect is insufficient. ,
On the other hand, if it exceeds 0.05%, the effect is saturated and rather the toughness is deteriorated, so the content is 0.015 to 0.
It was set to 05%.

【0011】Tiもやはり鋼中でNと結合してTiNと
なるが、これによる高周波焼入れ加熱時のオーステナ
イト粒の微細化、および固溶Nの完全固定によるBN
析出防止、つまり固溶Bの確保を目的として添加する。
しかしながら、、0.005%未満ではその効果は不十
分であり、一方、0.05%を超えるとその効果は飽和
し、むしろ靱性を劣化させるので、その含有量を0.0
05〜0.05%とした。Bは固溶状態でオーステナイ
ト粒界に粒界偏析し、P,Cu等の粒界不純物を粒界か
ら追い出すことにより粒界強度を増加させることを狙い
として添加する。しかしながら、、0.0005%未満
ではその効果は不十分であり、一方0.005%を超え
る過剰添加は、むしろ粒界脆化を招くので、その含有量
を0.0005〜0.005%とした。
Ti is also combined with N in steel to form TiN. Due to this, the austenite grains are refined during induction hardening and heating, and the solid solution N is completely fixed.
It is added for the purpose of preventing precipitation, that is, securing solid solution B.
However, if it is less than 0.005%, the effect is insufficient, while if it exceeds 0.05%, the effect is saturated and rather the toughness is deteriorated, so its content is 0.0.
It was set to 05 to 0.05%. B is added as a solid solution in order to increase the grain boundary strength by segregating to the austenite grain boundaries at the grain boundaries and expelling grain boundary impurities such as P and Cu from the grain boundaries. However, if the content is less than 0.0005%, the effect is insufficient, while excessive addition exceeding 0.005% causes rather grain boundary embrittlement, so the content is set to 0.0005 to 0.005%. did.

【0012】さらに、NはAlN等の炭窒化物析出によ
る高周波加熱時のオーステナイト粒の微細化を目的とし
て添加するが、0.002%未満ではその効果は不十分
であり、一方0.01%超では、その効果は飽和し、む
しろBNを析出して固溶Bの低減を引き起こすので、そ
の含有量を0.002〜0.01%とした。一方、Pは
オーステナイト粒界に粒界偏析を起こし、粒界強度を低
下させて捩り応力下での脆性破壊を起こし易くし、その
ため強度を低下させる。特にPが0.020%を超える
と強度低下が顕著となるため、0.020%を上限とし
た。なお、より粒界強化を図る場合には、0.015%
以下が望ましい。また、CuもPと同様オーステナイト
粒界に粒界偏析を起こし、強度低下の原因となる。特に
Cuが0.05%を超えると強度低下が顕著となるた
め、0.05%を上限とした。さらに、Oは粒界偏析を
起こし粒界脆化を起こすとともに、鋼中で硬い酸化物系
介在物を形成し、捩り応力下での脆性破壊を起こし易く
し、強度低下の原因となる。特にOが0.0020%を
超えると強度低下が顕著となるため、0.0020%を
上限とした。
Further, N is added for the purpose of refining austenite grains during high frequency heating by precipitation of carbonitrides such as AlN, but if less than 0.002%, its effect is insufficient, while 0.01%. If it exceeds the above range, the effect is saturated and rather BN is precipitated to cause a decrease in the solid solution B, so the content is made 0.002 to 0.01%. On the other hand, P causes grain boundary segregation at the austenite grain boundaries, lowers the grain boundary strength, and easily causes brittle fracture under torsional stress, and thus lowers the strength. In particular, when P exceeds 0.020%, the strength is significantly reduced, so 0.020% is made the upper limit. When strengthening the grain boundaries, 0.015%
The following is desirable. Further, Cu causes grain boundary segregation at the austenite grain boundaries, which is a cause of strength reduction, like P. In particular, if the Cu content exceeds 0.05%, the strength is significantly reduced, so the upper limit was made 0.05%. Further, O causes grain boundary segregation to cause grain boundary embrittlement, forms hard oxide inclusions in steel, and easily causes brittle fracture under torsional stress, which causes strength reduction. In particular, when O exceeds 0.0020%, the strength is markedly reduced, so 0.0020% was made the upper limit.

【0013】次に、本発明では、「フェライトの組織分
率が35%以下で、フェライト結晶粒径が20μm以
下」とする。高周波焼入れは急速加熱であるため、高周
波焼入れ前の組織のフェライト分率が大きくまたそれが
粗大であると、フェライトの部分はオーステナイト化
後、炭素の拡散が不十分で炭素濃度が添加炭素濃度より
も低くなり、焼入れ後、その位置での硬さが小さくな
る。そのため、この位置が疲労亀裂の発生起点となり易
い。以上の現象は、フェライトの組織分率が35%を超
えるか、またはフェライト結晶粒径が20μmを超える
と特に顕著になる。以上の理由でフェライトの組織分率
を35%以下で、フェライト結晶粒径を20μm以下と
した。なお、より高捩り疲労強度を図るためには、フェ
ライトの組織分率を25%以下とするか、またはさらに
フェライト結晶粒径を15μm以下とするのが望まし
い。また、本発明の高周波焼入れ軸部品用鋼材では、フ
ェライト以外の残りの組織を特に限定するものではな
く、その種類がパーライト、上部ベイナイト、下部ベイ
ナイト、中間段階組織、マルテンサイト、あるいはこれ
らの混合組織のいずれでもよい。
Next, in the present invention, "the structure fraction of ferrite is 35% or less and the ferrite crystal grain size is 20 μm or less". Since induction hardening is rapid heating, if the ferrite fraction of the structure before induction hardening is large and it is coarse, the ferrite part after austenitization has insufficient carbon diffusion and the carbon concentration is higher than the added carbon concentration. Becomes lower, and the hardness at that position becomes smaller after quenching. Therefore, this position easily becomes a starting point of fatigue crack generation. The above phenomenon becomes particularly remarkable when the structure fraction of ferrite exceeds 35% or when the ferrite crystal grain size exceeds 20 μm. For the above reasons, the structure fraction of ferrite is 35% or less, and the ferrite crystal grain size is 20 μm or less. In order to achieve a higher torsional fatigue strength, it is desirable that the structure fraction of ferrite be 25% or less, or that the ferrite crystal grain size be 15 μm or less. Further, in the steel material for induction hardened shaft parts of the present invention, the remaining structure other than ferrite is not particularly limited, and its type is pearlite, upper bainite, lower bainite, intermediate stage structure, martensite, or a mixed structure thereof. Any of

【0014】第2の発明は、高周波焼入れ後の芯部硬さ
を析出硬化により増加させ、硬化層と芯部の境界での捩
り疲労亀裂の発生を抑制するとともに、高周波加熱時の
オーステナイト粒を一層微細化し、粒界破壊防止による
高強度化を図った軸部品用鋼材である。Nb,Vは鋼中
で炭窒化物を形成し、析出硬化により高周波焼入れ後の
芯部硬さを増加させるとともに、高周波加熱時のオース
テナイト粒を微細化させる効果を有する。しかしなが
ら、、Nb含有量が0.01%未満、V含有量が0.0
3%未満ではその効果は不十分であり、一方、Nb:
0.25%超、V:0.50%超ではその効果は飽和
し、むしろ靱性を劣化させるので、これらの含有量をN
b:0.01〜0.25%、V:0.03〜0.5%と
した。
In a second aspect of the present invention, the hardness of the core portion after induction hardening is increased by precipitation hardening to suppress the occurrence of torsional fatigue cracks at the boundary between the hardened layer and the core portion, and to reduce austenite grains during induction heating. It is a steel material for shaft parts that has been further refined to achieve higher strength by preventing grain boundary fracture. Nb and V form carbonitrides in the steel, and have the effect of increasing the hardness of the core after induction hardening by precipitation hardening and making the austenite grains fine during induction heating. However, the Nb content is less than 0.01% and the V content is 0.0
If it is less than 3%, the effect is insufficient, while Nb:
If the content is more than 0.25% and V: more than 0.50%, the effect is saturated and rather the toughness is deteriorated.
b: 0.01 to 0.25%, V: 0.03 to 0.5%.

【0015】第3の発明は、Cr、Ni添加により、
捩り疲労過程での硬さの以下の抑制、および焼入れ性
の向上を図った軸部品用鋼材である。なお、Niには、
粒界近傍の靱性を改善し、脆性破壊を抑制する効果も有
する。ただし、Cr:0.05%未満、Ni:0.1%
未満ではこの効果は不十分である。一方、Cr:0.5
%超では高周波焼入れ前の組織中のセメンタイトが安定
化し、高周波焼入れ加熱時にセメンタイトの溶解が困難
になり、高周波焼入れ後の効果層の硬さが不十分とな
る。また、3.5%を超えるNiの多量添加は、効果が
飽和し経済性の観点から好ましくない。以上の理由か
ら、Cr:0.05%〜0.5%、Ni:0.1〜3.
5%とした。
A third aspect of the present invention is that by adding Cr and Ni,
It is a steel material for shaft parts, which is intended to suppress the hardness below in the torsional fatigue process and to improve hardenability. In addition, in Ni,
It also has the effect of improving the toughness near the grain boundaries and suppressing brittle fracture. However, Cr: less than 0.05%, Ni: 0.1%
If it is less than, this effect is insufficient. On the other hand, Cr: 0.5
If it exceeds%, the cementite in the structure before induction hardening is stabilized, it becomes difficult to dissolve the cementite during heating by induction hardening, and the hardness of the effect layer after induction hardening becomes insufficient. Further, the addition of a large amount of Ni exceeding 3.5% saturates the effect and is not preferable from the economical viewpoint. For the above reasons, Cr: 0.05% to 0.5%, Ni: 0.1 to 3.
It was set to 5%.

【0016】ここで、本発明の高周波焼入れ軸部品用鋼
材では、製造条件は特に限定せず、本発明の要件を満足
すればいずれの条件でもよい。例えば、鋼材素材の熱間
圧延による製造を仕上げ温度;750〜900℃、仕上
げ圧延後700〜500℃の温度範囲の平均冷却速度;
0.1〜1.7℃/秒の条件で行う方法が挙げられる
が、本発明では特に限定するものではない。また、本発
明では、本発明の要件を満足すれば熱間圧延後、高周波
焼入れの前に焼準、焼鈍、熱間鍛造等の加工熱処理を必
要に応じて行うことができる。
In the steel material for induction hardened shaft parts of the present invention, the manufacturing conditions are not particularly limited, and any condition may be satisfied as long as the requirements of the present invention are satisfied. For example, the finishing temperature in the production of the steel material by hot rolling; the average cooling rate in the temperature range of 750 to 900 ° C. and 700 to 500 ° C. after the finish rolling;
The method may be performed under the condition of 0.1 to 1.7 ° C./second, but the present invention is not particularly limited thereto. Further, in the present invention, if the requirements of the present invention are satisfied, it is possible to perform thermomechanical treatment such as normalizing, annealing, and hot forging after hot rolling and before induction hardening, if necessary.

【0017】[0017]

【実施例】以下に、本発明の効果を実施例により、さら
に具体的に示す。表1,2の組成を有する鋼材を34m
mφの棒鋼に圧延した。この棒鋼から、光学顕微鏡観察
試験片を採取し、5%ナイタール液で腐食して200
倍、400倍で観察しフェライト分率およびフェライト
結晶粒径を求めた。表1,2にフェライト分率、フェラ
イト結晶粒径を示す。また、比較鋼材23,24,25
の材料については圧延後850度×1時間加熱し、85
0〜500℃の温度範囲を1.2℃/秒の冷却速度で冷
却した。本材料に新規に23M,24M,25Mと記号
を付し、フェライト分率およびフェライト結晶粒径を測
定した。その結果を表3に示す。これらの材料から、平
行部直径20mmの静的捩り試験片、捩り疲労試験片を
採取した。
EXAMPLES The effects of the present invention will be more specifically described below with reference to examples. 34m steel material having the composition of Tables 1 and 2
Rolled to mφ steel bar. An optical microscope observation test piece was taken from this steel bar and corroded with a 5% Nital solution to give 200
Double observation and 400 times observation were performed to determine the ferrite fraction and the ferrite crystal grain size. Tables 1 and 2 show the ferrite fraction and the ferrite crystal grain size. In addition, comparative steel materials 23, 24, 25
For the material of, after rolling, heat at 850 ° C for 1 hour, and
The temperature range of 0 to 500 ° C was cooled at a cooling rate of 1.2 ° C / sec. This material was newly labeled with 23M, 24M, and 25M, and the ferrite fraction and the ferrite crystal grain size were measured. Table 3 shows the results. From these materials, a static torsion test piece and a torsion fatigue test piece having a parallel part diameter of 20 mm were collected.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】静的捩り試験片、捩り疲労試験片について
周波数8.5kHzで高周波焼入れを行い、その後17
0℃×1時間の条件で焼戻しを行った。いずれも有効硬
化層深さは約5mmである。その後、静的捩り試験、捩
り疲労試験を行った。捩り疲労特性は5×105 サイク
ルでの時間強度で評価した。表4,5に各供試材の静的
捩り強度、捩り疲労強度を示す。また、捩り疲労過程で
の材質劣化挙動を評価するために、応力振幅700MP
aで1×104 サイクル疲労試験を行った試験片につい
て、表面での圧縮残留応力の減衰量およびフェライ
ト(211)面のX線回折ピークの単価幅の減衰量を評
価した。X線回折ピークの半価幅の減衰量は、疲労過程
での正味の硬さの低下量を評価するために用いた。X線
発生源としては、Cr管球を使用した。表4,5のN
o.1〜25Mは本発明鋼材であるが、本発明鋼材で
は、いずれも優れた静的捩り強度、捩り疲労強度を有し
ている。特に捩り疲労強度は、0.4%C鋼で概ね60
0MPa以上、0.5%C鋼で概ね700MPa以上と
優れた特性が得られている。
The static torsion test piece and the torsion fatigue test piece were induction hardened at a frequency of 8.5 kHz, and then 17
Tempering was performed under the condition of 0 ° C. × 1 hour. In each case, the effective hardened layer depth is about 5 mm. Then, a static torsion test and a torsion fatigue test were conducted. The torsional fatigue property was evaluated by the time strength at 5 × 10 5 cycles. Tables 4 and 5 show the static torsional strength and torsional fatigue strength of each test material. In addition, in order to evaluate the material deterioration behavior in the torsional fatigue process, the stress amplitude 700MP
With respect to the test piece subjected to the 1 × 10 4 cycle fatigue test in a, the attenuation amount of the compressive residual stress on the surface and the attenuation amount of the unit price width of the X-ray diffraction peak of the ferrite (211) plane were evaluated. The attenuation of the full width at half maximum of the X-ray diffraction peak was used to evaluate the net decrease in hardness during the fatigue process. A Cr tube was used as the X-ray source. N in Tables 4 and 5
o. 1 to 25 M are steel materials of the present invention, but the steel materials of the present invention all have excellent static torsional strength and torsional fatigue strength. Especially, the torsional fatigue strength is about 60 for 0.4% C steel.
Excellent properties such as 0 MPa or more and 0.5% C steel of approximately 700 MPa or more are obtained.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】一方、比較鋼材23,24,25はフェラ
イト分率またはフェライト結晶粒径のいずれか、または
両者が本発明の範囲を上回った場合であり、比較鋼材2
6,27,28はSi,Mo,Bの含有量が本発明の範
囲を下回った場合であり、比較鋼材29,30はP,C
rの含有量が本発明の範囲を上回った場合であり、比較
鋼材31はSi,Mn,Mo,Ti,Bの含有量が本発
明の範囲を下回り、フェライト分率、フェライト結晶粒
径が本発明の範囲を上回った場合であり、いずれも同一
炭素量の本発明鋼材に比較して、静的捩り強度、捩り疲
労強度が劣っている。特に捩り疲労強度は、0.4%C
鋼で、いずれも600MPa未満、0.5%C鋼で70
0MPa未満であり、本発明鋼材に比較して顕著に劣っ
ている。比較鋼材の「疲労過程での残留応力減衰量」
「疲労過程での半価幅の減少量」は、同一炭素量の本発
明鋼に比較して相対的に大きい。つまり、本発明鋼材で
は、捩り疲労過程での材質劣化が抑制されたことによ
り、優れた捩り疲労強度が得られていることが明らかで
ある。
On the other hand, the comparative steel materials 23, 24, and 25 are cases in which either the ferrite fraction or the ferrite crystal grain size, or both exceeds the range of the present invention.
6, 27 and 28 are cases where the contents of Si, Mo and B are below the range of the present invention, and the comparative steel materials 29 and 30 are P and C.
In the case where the content of r exceeds the range of the present invention, the comparative steel material 31 has the content of Si, Mn, Mo, Ti, B below the range of the present invention, and the ferrite fraction and the ferrite crystal grain size are the same. This is the case where the range of the invention is exceeded, and in both cases, the static torsional strength and torsional fatigue strength are inferior to the steel materials of the present invention having the same carbon content. Especially torsional fatigue strength is 0.4% C
Steel, less than 600 MPa, 0.5% C steel 70
It is less than 0 MPa, which is significantly inferior to the steel material of the present invention. "Residual stress attenuation during fatigue process" of comparative steels
The “amount of decrease in half-value width in the fatigue process” is relatively large as compared with the steel of the present invention having the same carbon content. In other words, it is clear that the steel material of the present invention has excellent torsional fatigue strength due to the suppression of material deterioration in the torsional fatigue process.

【0025】[0025]

【発明の効果】以上述べたごとく、本発明の高周波焼入
れ軸部品用鋼材を用いれば、捩り疲労強度の優れた高周
波焼入れ軸部品の製造が可能となり、産業上の効果は極
めて顕著なるものがある。
As described above, by using the steel material for induction hardened shaft parts of the present invention, it is possible to manufacture an induction hardened shaft part having excellent torsional fatigue strength, and the industrial effect is extremely remarkable. .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はセレーション部を有するシャフ、
(b)はフランジ付シャフト、(c)は外筒付シャフト
を示した図
FIG. 1A is a shuff having a serrated portion,
(B) shows a shaft with a flange, (c) shows a shaft with an outer cylinder

【符号の説明】[Explanation of symbols]

10 シャフト 11,12 セレーション 20,21 シャフト 22 フランジ 30,31,32 シャフト 33 外筒部 10 Shaft 11,12 Serration 20,21 Shaft 22 Flange 30,31,32 Shaft 33 Outer cylinder part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比として、 C :0.35〜0.65% Si:0.35〜2.5% Mn:1.0〜1.8% Mo:0.05〜0.8% S :0.01〜0.15% Al:0.015〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.01% を含有し、 P :0.020%以下、 Cu:0.05%以下、 O :0.0020%以下に制限し、残部が鉄および不
可避的不純物からなり、かつフェライトの組織分率が3
5%以下で、フェライト結晶粒径が20μm以下である
ことを特徴とする捩り疲労強度の優れた高周波焼入れ軸
部品用鋼材。
1. As a weight ratio, C: 0.35 to 0.65% Si: 0.35 to 2.5% Mn: 1.0 to 1.8% Mo: 0.05 to 0.8% S : 0.01 to 0.15% Al: 0.015 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.01% Contained, P: 0.020% or less, Cu: 0.05% or less, O: 0.0020% or less, the balance consisting of iron and unavoidable impurities, and a ferrite microstructure fraction of 3
A steel material for an induction-hardened shaft component having excellent torsional fatigue strength, which is characterized by having a ferrite crystal grain size of 20 μm or less at 5% or less.
【請求項2】 請求項1に記載の成分に加えて、 Nb:0.01〜0.25% V :0.03〜0.5% の1種または2種を含有し、かつフェライトの組織分率
が35%以下で、フェライト結晶粒径が20μm以下で
あることを特徴とする捩り疲労強度の優れた高周波焼入
れ軸部品用鋼材。
2. A ferrite structure containing, in addition to the components of claim 1, one or two of Nb: 0.01 to 0.25% V: 0.03 to 0.5%. A steel material for induction-hardened shaft parts having excellent torsional fatigue strength, characterized by having a fraction of 35% or less and a ferrite crystal grain size of 20 μm or less.
【請求項3】 請求項1または請求項2記載の成分に加
えて、 Cr:0.05〜0.5% Ni:0.1〜3.5% の1種または2種を含有し、かつフェライトの組織分率
が35%以下で、フェライト結晶粒径が20μm以下で
あることを特徴とする捩り疲労強度の優れた高周波焼入
れ軸部品用鋼材。
3. In addition to the component according to claim 1 or 2, it contains one or two of Cr: 0.05 to 0.5% Ni: 0.1 to 3.5%, and A steel material for induction hardened shaft parts having excellent torsional fatigue strength, characterized in that the ferrite has a structural fraction of 35% or less and a ferrite crystal grain size of 20 μm or less.
JP08344795A 1995-03-16 1995-03-16 Steel material for induction hardened shaft parts with excellent torsional fatigue strength Expired - Fee Related JP3432944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08344795A JP3432944B2 (en) 1995-03-16 1995-03-16 Steel material for induction hardened shaft parts with excellent torsional fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08344795A JP3432944B2 (en) 1995-03-16 1995-03-16 Steel material for induction hardened shaft parts with excellent torsional fatigue strength

Publications (2)

Publication Number Publication Date
JPH08253842A true JPH08253842A (en) 1996-10-01
JP3432944B2 JP3432944B2 (en) 2003-08-04

Family

ID=13802701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08344795A Expired - Fee Related JP3432944B2 (en) 1995-03-16 1995-03-16 Steel material for induction hardened shaft parts with excellent torsional fatigue strength

Country Status (1)

Country Link
JP (1) JP3432944B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1584700A1 (en) * 2003-01-17 2005-10-12 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
JP2006045678A (en) * 2003-01-17 2006-02-16 Jfe Steel Kk Steel product having excellent fatigue property after induction hardening, and production method therefor
WO2006110100A1 (en) * 2005-04-12 2006-10-19 Scania Cv Ab (Publ) Boron steel grade for induction hardening and shaft
US7740722B2 (en) 2003-01-23 2010-06-22 Jtekt Corporation Steel for use in high strength pinion shaft and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1069198A4 (en) * 1999-01-28 2002-02-06 Sumitomo Metal Ind Machine structural steel product
US6475305B1 (en) 1999-01-28 2002-11-05 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1584700A1 (en) * 2003-01-17 2005-10-12 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
JP2006045678A (en) * 2003-01-17 2006-02-16 Jfe Steel Kk Steel product having excellent fatigue property after induction hardening, and production method therefor
EP1584700A4 (en) * 2003-01-17 2007-03-28 Jfe Steel Corp High-strength steel product excelling in fatigue strength and process for producing the same
EP1961831A1 (en) * 2003-01-17 2008-08-27 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
JP4517983B2 (en) * 2003-01-17 2010-08-04 Jfeスチール株式会社 Steel material excellent in fatigue characteristics after induction hardening and method for producing the same
US7740722B2 (en) 2003-01-23 2010-06-22 Jtekt Corporation Steel for use in high strength pinion shaft and manufacturing method thereof
WO2006110100A1 (en) * 2005-04-12 2006-10-19 Scania Cv Ab (Publ) Boron steel grade for induction hardening and shaft

Also Published As

Publication number Publication date
JP3432944B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP6452454B2 (en) Rolled material for high strength spring and wire for high strength spring
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
WO2019244503A1 (en) Mechanical component
JP4347999B2 (en) Induction hardening steel and induction hardening parts with excellent torsional fatigue properties
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP3432944B2 (en) Steel material for induction hardened shaft parts with excellent torsional fatigue strength
JP4752800B2 (en) Non-tempered steel
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP3466328B2 (en) Long life steel for induction hardened bearings
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
KR20100019603A (en) Wire for valve spring having excellent tensile strength and fatigue strength and manufacturing method thereeof
JP3458604B2 (en) Manufacturing method of induction hardened parts
JPH07238343A (en) Free cutting carburizing steel and heat treatment therefor before machining
JP2004124190A (en) Induction-tempered steel having excellent twisting property
KR101757754B1 (en) Method of manufacturing cold forging steel capable of being carburized at high temperature
JPH10183296A (en) Steel material for induction hardening, and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees