JPH08253819A - Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density

Info

Publication number
JPH08253819A
JPH08253819A JP7055474A JP5547495A JPH08253819A JP H08253819 A JPH08253819 A JP H08253819A JP 7055474 A JP7055474 A JP 7055474A JP 5547495 A JP5547495 A JP 5547495A JP H08253819 A JPH08253819 A JP H08253819A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
magnetic flux
flux density
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7055474A
Other languages
Japanese (ja)
Other versions
JP3561323B2 (en
Inventor
Norito Abe
憲人 阿部
Yosuke Kurosaki
洋介 黒崎
Kentarou Chikuma
顯太郎 筑摩
Fumio Kurosawa
文夫 黒沢
Kunihide Takashima
邦秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05547495A priority Critical patent/JP3561323B2/en
Publication of JPH08253819A publication Critical patent/JPH08253819A/en
Application granted granted Critical
Publication of JP3561323B2 publication Critical patent/JP3561323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To produce the silicon steel sheet having superior primary film by applying specific amounts of separation agent at annealing, composed essentially of MgO, to a steel sheet, at the time of producing a grain oriented silicon steel sheet with ultrahigh magnetic flux density from a slab of steel with specific composition. CONSTITUTION: A slab, having a composition consisting of, by weight, 0.03-0.15% C, 2.5-4.0% Si, 0.02-4.0% Mn, 0.005-0.040% S and/or Se, 0.015-0.040% acid soluble Al, 0.0030-0.00150% N, 0.0005-0.05% Bi, and the balance Fe with inevitable impurities, is heated and hot-rolled. The resulting hot rolled plate is annealed and finish-cold-rolled, or cold-rolled plural times while process-annealed between the cooling stages, or subjected, after hot rolled plate annealing, to cold rolling plural times while process- annealed between the cold rolling stages, and finished to the product sheet thickness. Then, the resulting cold rolled sheet is subjected to decarburizing annealing, to the application of a separation agent at annealing, and to finish annealing. At this time, the coverage of the separation agent at annealing, composed essentially of MgO, is regulated to >=5g/m<2> per side of the steel sheet. By this method, the grain oriented silicon steel sheet with ultrahigh magnetic flux density, extremely excellent in iron loss characteristics after magnetic domain fractionization treatment, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て用いられる{110}〈001〉方位集積度を高度に
発達させた超高磁束密度一方向性電磁鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet having a highly developed degree of {110} <001> orientation used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/m
の磁場における磁束密度B(これをB8 と以下示す)が
使用される。また鉄損特性を表す代表的数値としては、
17/50 (周波数50Hzにおいて1.7Tまで磁化させ
た時の単位kg当たりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. Normally, 800A / m is used as the numerical value for the excitation characteristics.
The magnetic flux density B in the magnetic field of B (which is shown below as B 8 ) is used. Moreover, as a typical numerical value showing the iron loss characteristic,
W 17/50 (iron loss per unit kg when magnetized to 1.7 T at a frequency of 50 Hz) is used.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。一方向性電磁鋼板は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に〈001〉を有するいわゆるGoss組織を
発達させることによって得られる。その中でB8 ≧1.
88Tの優れた励磁特性を持つものは高磁束密度一方向
性電磁鋼板と呼ばれている。
The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss. However, if the magnetic flux density becomes too high, the abnormal eddy current loss may increase due to the increase in the size of the secondary recrystallized grains, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains. The unidirectional electrical steel sheet undergoes secondary recrystallization during finish annealing in the manufacturing process to cause {110},
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8 ≧ 1.
Those having excellent excitation characteristics of 88T are called high magnetic flux density grain-oriented electrical steel sheets.

【0004】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、田口らによる特公昭40−15644号
公報、および特公昭51−13469号公報が挙げられ
る。Goss組織の二次再結晶を起こさせる主なインヒ
ビターとして前者においては、MnSおよびAlNを、
後者ではMnS,MnSe,Sb等を用いている。上記
特許に基づく製品は現在、世界的規模で生産されてい
る。特公昭40−15644号公報によればその製造方
法は、熱延板焼鈍を施した後、冷延率80〜95%の1
回冷延を行うことを特徴としている。
Typical methods for producing high magnetic flux density unidirectional electrical steel sheets include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 by Taguchi et al. In the former, MnS and AlN were used as the main inhibitors that caused the secondary recrystallization of the Goss structure.
In the latter, MnS, MnSe, Sb, etc. are used. Products based on the above patents are currently produced on a global scale. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is as follows.
It is characterized by performing cold rolling.

【0005】また一方向性電磁鋼板の表面には、電気的
に絶縁性を有する被膜が形成されていることが要求され
る。この被膜は絶縁性を保持する役割の他、鋼板に張力
を付与し鉄損を低減させるといった役割も担っている。
そのため均一に形成させることは極めて重要である。
Further, it is required that a coating having an electrically insulating property is formed on the surface of the grain-oriented electrical steel sheet. In addition to maintaining insulating properties, this coating also plays a role of applying tension to the steel sheet to reduce iron loss.
Therefore, it is extremely important to form it uniformly.

【0006】高磁束密度一方向性電磁鋼板の被膜には、
一次被膜と二次被膜の二段構成である。そのうち一次被
膜は、製造工程の脱炭焼鈍において鋼板表面に形成され
たSiO2 が、その後に塗布された焼鈍分離剤と反応し
て得られる。一般的に焼鈍分離剤はMgOを主成分とし
たものが用いられ、仕上焼鈍時にSiO2 と反応してM
2 SiO4 となり、これが一次被膜となる。
[0006] The coating of high magnetic flux density unidirectional electrical steel sheet,
It has a two-stage structure of a primary coating and a secondary coating. Among them, the primary coating is obtained by reacting SiO 2 formed on the surface of the steel sheet during decarburization annealing in the manufacturing process with the annealing separator applied thereafter. In general, an annealing separator containing MgO as a main component is used, and it reacts with SiO 2 at the time of finish annealing to react with M.
It becomes g 2 SiO 4 , which becomes the primary coating.

【0007】ところで最近、高嶋らによって、B8
1.95Tの極めて優れた励磁特性を持つ超高磁束密度
一方向性電磁鋼板が報告されている。その代表的例とし
ては、特開平6−88174号公報が挙げられる。また
その製造方法の代表的例としては、特開平6−8817
1号公報が挙げられる。いずれもスラブ中にBiを含む
ことを特徴としているが、その他は特段、田口らによる
特公昭40−15644号公報で述べられている製造方
法と変わりなく、大きな制約もない。
By the way, recently, by Takashima et al., B 8
An ultra-high magnetic flux density grain-oriented electrical steel sheet having an extremely excellent excitation characteristic of 1.95T has been reported. As a typical example thereof, there is JP-A-6-88174. Further, as a typical example of the manufacturing method thereof, JP-A-6-8817
No. 1 publication is mentioned. All of them are characterized by containing Bi in the slab, but the others are not different from the manufacturing method described in Japanese Patent Publication No. 40-15644 by Taguchi et al.

【0008】[0008]

【発明が解決しようとする課題】しかし鋼中にBiを含
むことによると考えられる、一次被膜密着性の劣化や、
一次被膜が形成されないための付与張力不足による鉄損
不良が生じて、製品にならない場合が少なくない。その
ため、超高磁束密度一方向性電磁鋼板を一次被膜を安定
して形成させるためには、各工程のそれぞれの条件に対
して、極めて厳しい条件を設ける必要があると考えられ
るが、どの工程にどのような条件を設ける必要があるか
がはっきりしないのが現状である。本発明は、かかる問
題を回避し、極めて磁束密度の高い一方向性電磁鋼板の
一次被膜の安定製造を可能にし、一次被膜密着性の劣化
や、一次被膜が形成されないための付与張力不足による
鉄損不良を改善することを目的とする。
However, deterioration of the adhesion of the primary coating, which is considered to be caused by the inclusion of Bi in the steel,
In many cases, the product does not become a product due to iron loss failure due to insufficient applied tension because the primary coating is not formed. Therefore, in order to stably form the primary coating on the ultra-high magnetic flux density unidirectional electrical steel sheet, it is considered necessary to set extremely strict conditions for each condition of each process, but which process is At present, it is not clear what conditions need to be established. The present invention avoids such a problem, enables stable production of a primary coating of a grain-oriented electrical steel sheet having an extremely high magnetic flux density, deteriorates adhesion of the primary coating, and iron due to insufficient applied tension so that the primary coating is not formed. The purpose is to improve loss and damage.

【0009】[0009]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 (1)重量%で、C :0.03〜0.15%、Si:
2.5〜4.0%、Mn:0.02〜0.30%、Sお
よびSeの1種または2種:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N :
0.0030〜0.0150%、Bi:0.0005〜
0.05%を含有し、残部Feおよび不可避的不純物か
らなるスラブを出発材として加熱した後熱延し、熱延板
焼鈍後仕上冷延、あるいは中間焼鈍を含む複数の冷延、
あるいは熱延板焼鈍後中間焼鈍を含む複数の冷延によっ
て製品板厚に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を
塗布後、仕上焼鈍をする超高磁束密度一方向性電磁鋼板
の製造方法において、MgOを主成分とする焼鈍分離剤
の塗布量を鋼板片面当たり5g/m2 以上とすることを
特徴とする超高磁束密度一方向性電磁鋼板の製造方法。 (2)重量%で、C :0.03〜0.15%、Si:
2.5〜4.0%、Mn:0.02〜0.30%、Sお
よびSeの1種または2種:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N :
0.0030〜0.0150%、Sn:0.05〜0.
50%、Bi:0.0005〜0.05%を含有し、残
部Feおよび不可避的不純物からなるスラブを出発材と
した(1)記載の超高磁束密度一方向性電磁鋼板の製造
方法。 (3)重量%で、C :0.03〜0.15%、Si:
2.5〜4.0%、Mn:0.02〜0.30%、Sお
よびSeの1種または2種:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N :
0.0030〜0.0150%、Sn:0.05〜0.
50%、Cu:0.01〜0.10%、Bi:0.00
05〜0.05%を含有し、残部Feおよび不可避的不
純物からなるスラブを出発材とした(1)記載の超高磁
束密度一方向性電磁鋼板の製造方法。 (4)重量%で、C :0.03〜0.15%、Si:
2.5〜4.0%、Mn:0.02〜0.30%、Sお
よびSeの1種または2種:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N :
0.0030〜0.0150%、SbおよびMoの1種
または2種:0.0030〜0.3%、Bi:0.00
05〜0.05%を含有し、残部Feおよび不可避的不
純物からなるスラブを出発材とした(1)記載の超高磁
束密度一方向性電磁鋼板の製造方法。
The features of the present invention are as follows. (1) C: 0.03 to 0.15% by weight, Si:
2.5-4.0%, Mn: 0.02-0.30%, one or two of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Bi: 0.0005
A plurality of cold-rolled sheets containing 0.05%, the hot-rolled slab consisting of the balance Fe and unavoidable impurities as a starting material and then hot-rolled, followed by hot-rolled sheet annealing, finish cold-rolling, or intermediate annealing.
Alternatively, after finishing the product sheet thickness by multiple cold-rolling including intermediate annealing after hot-rolled sheet annealing, decarburizing annealing, applying an annealing separator, and then finishing annealing.Manufacturing ultra-high magnetic flux density unidirectional electrical steel sheet. A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, characterized in that the coating amount of the annealing separator containing MgO as a main component is 5 g / m 2 or more per side of the steel sheet. (2) C: 0.03 to 0.15% by weight, Si:
2.5-4.0%, Mn: 0.02-0.30%, one or two of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
The method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet according to (1), wherein a slab containing 50% of Bi and 0.0005 to 0.05% and the balance of Fe and inevitable impurities is used as a starting material. (3) By weight%, C: 0.03 to 0.15%, Si:
2.5-4.0%, Mn: 0.02-0.30%, one or two of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
50%, Cu: 0.01 to 0.10%, Bi: 0.00
The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to (1), wherein a slab containing 05 to 0.05% and the balance Fe and unavoidable impurities is used as a starting material. (4) In% by weight, C: 0.03 to 0.15%, Si:
2.5-4.0%, Mn: 0.02-0.30%, one or two of S and Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, 1 or 2 types of Sb and Mo: 0.0030 to 0.3%, Bi: 0.00
The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to (1), wherein a slab containing 05 to 0.05% and the balance Fe and unavoidable impurities is used as a starting material.

【0010】以下本発明の詳細について説明する。本発
明者はいわゆる超高磁束密度一方向性電磁鋼板の一次被
膜を、さらに安定して得るべく種々の研究を鋭意重ねた
結果、Biを含んだMnSとAlNを主インヒビターと
する一方向性電磁鋼板用スラブを出発材として加熱した
後熱延し、熱延板焼鈍後仕上冷延、あるいは中間焼鈍を
含む複数の冷延、あるいは熱延板焼鈍後中間焼鈍を含む
複数の冷延によって製品板厚に仕上げた後に、脱炭焼鈍
し、焼鈍分離剤を塗布後、仕上焼鈍をする超高磁束密度
一方向性電磁鋼板の製造方法において、MgOを主成分
とする焼鈍分離剤の塗布量を鋼板片面当たり5g/m2
以上とすることによって、極めて磁束密度の高い超高磁
束密度一方向性電磁鋼板の一次被膜を安定製造すること
に成功した。なお焼鈍分離剤塗布量の鋼板片面当たりの
上限は、特に限定されるものではないが、コストの観点
から15g/m2 以下とすることが望ましい。
The details of the present invention will be described below. As a result of various studies to further stably obtain a primary coating of a so-called ultra-high magnetic flux density unidirectional electrical steel sheet, the present inventor has found that unidirectional electromagnetic radiation containing Bi-containing MnS and AlN as main inhibitors. A product sheet is produced by heating a steel sheet slab as a starting material and then hot-rolling it, and then finishing cold-rolling after hot-rolling sheet annealing, or cold-rolling including intermediate annealing, or cold-rolling including intermediate annealing after hot-rolling sheet annealing. In a method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises decarburization annealing after applying a thick finish, applying an annealing separator, and then performing finish annealing, the coating amount of the annealing separator containing MgO as a main component 5g / m 2 per side
By the above, it succeeded in stably manufacturing the primary coating of the ultra-high magnetic flux density grain-oriented electrical steel sheet with extremely high magnetic flux density. The upper limit of the amount of the annealing separator applied per one side of the steel sheet is not particularly limited, but is preferably 15 g / m 2 or less from the viewpoint of cost.

【0011】次に本発明の成分条件について説明する。
Cは0.03%未満では、熱延に先立つスラブ加熱時に
おいて結晶粒が異常粒成長し、製品において線状細粒と
呼ばれる二次再結晶不良を起こすので好ましくない。一
方0.15%を超えた場合では、冷延後の脱炭焼鈍にお
いて脱炭時間が長時間必要となり経済的でないばかりで
なく、脱炭が不完全となりやすく、製品での磁気時効と
呼ばれる磁性不良を起こすので好ましくない。
Next, the component conditions of the present invention will be described.
If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, when the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in a magnetic aging called magnetic aging in products. It is not preferable because it causes defects.

【0012】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electrical resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0013】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnSおよび、またはMnSeを形成する重
要な元素である。0.02%未満では、二次再結晶を生
じさせるのに必要なMnSの絶対量が不足するので好ま
しくない。一方0.30%を超えた場合は、スラブ加熱
時の固溶が困難になるばかりでなく、熱延時の析出サイ
ズが粗大化しやすくインヒビターとしての最適サイズ分
布が損なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0014】Sおよび、またはSeは上掲したMnとM
nSおよび、またはMnSeを形成する重要な元素であ
る。上記範囲を逸脱すると充分なインヒビター効果が得
られないので0.005〜0.040%に限定する必要
がある。
S and / or Se are Mn and M listed above.
It is an important element that forms nS and / or MnSe. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.005 to 0.040%.

【0015】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
15%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方0.040%超ではインヒ
ビターとして析出させるAlNが粗大化し、結果として
インヒビター強度を低下させるので好ましくない。
Acid-soluble Al is the main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheets, and is 0.0
If it is less than 15%, the amount is insufficient and the inhibitor strength is insufficient, which is not preferable. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0016】Nは上掲した酸可溶性AlとAlNを形成
する重要な元素である。上記範囲を逸脱すると充分なイ
ンヒビター効果が得られないので0.0030〜0.0
150%に限定する必要がある。
N is an important element that forms AlN with the acid-soluble Al listed above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.0
It should be limited to 150%.

【0017】さらにSnについては薄手製品の二次再結
晶も安定して得る元素として有効であり、また二次再結
晶粒径を小さくする作用もある。この効果を得るために
は、0.05%以上の添加が必要であり、0.50%を
超えた場合にはその作用が飽和するのでコストアップの
点から0.50%以下に限定する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an effect of reducing the secondary recrystallization grain size. In order to obtain this effect, it is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less.

【0018】CuについてはSn添加鋼の一次被膜向上
元素として有効である。0.01%未満では効果が少な
く、0.10%を超えると製品の磁束密度が低下するの
で好ましくない。
Cu is effective as an element for improving the primary coating of Sn-added steel. If it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, which is not preferable.

【0019】Sbおよび、またはMoについては薄手製
品の二次再結晶を安定して得る元素として有効である。
この効果を得るためには、0.0030%以上の添加が
必要であり、0.30%を超えた場合にはその作用が飽
和するのでコストアップの点から0.30%以下に限定
する。
Sb and / or Mo are effective as elements for stably obtaining secondary recrystallization of thin products.
In order to obtain this effect, addition of 0.0030% or more is necessary, and when it exceeds 0.30%, its action is saturated, so from the viewpoint of cost increase, it is limited to 0.30% or less.

【0020】Biは本発明であるB8 ≧1.92Tの超
高磁束密度一方向性電磁鋼板の安定製造において、その
スラブ中に必須の元素である。すなわち磁束密度向上効
果がある。0.0005%未満ではその効果が充分に得
られず、また0.05%を超えた場合は磁束密度向上効
果が飽和するだけでなく、熱延コイルの端部に割れが発
生するので好ましくない。
Bi is an essential element in the slab in the stable production of the ultrahigh magnetic flux density grain-oriented electrical steel sheet of B 8 ≧ 1.92T according to the present invention. That is, there is an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the end of the hot rolled coil, which is not preferable. .

【0021】次に本発明である一次被膜安定製造による
密着性の向上と鉄損改善の方法について説明する。上記
のごとく成分を調整した超高磁束密度一方向性電磁鋼板
製造用溶鋼は、通常の方法で鋳造する。特に鋳造方法に
限定はない。次いで通常の熱間圧延によって熱延コイル
に圧延される。
Next, the method for improving the adhesion and improving the iron loss by the stable production of the primary coating of the present invention will be described. The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0022】引き続いて、熱延板焼鈍後仕上冷延、ある
いは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍後
中間焼鈍を含む複数の冷延によって製品板厚に仕上げる
わけであるが、仕上冷延前の焼鈍では結晶組織の均質化
と、AlNの析出制御を行う。
Subsequently, the product sheet thickness is finished by finish cold rolling after hot-rolled sheet annealing, cold rolling including intermediate annealing, or cold rolling including intermediate annealing after hot-rolled sheet annealing. In annealing before finish cold rolling, homogenization of crystal structure and precipitation control of AlN are performed.

【0023】その後連続脱炭焼鈍を施した後仕上焼鈍を
する前に、MgOを主成分とする焼鈍分離剤鋼板片面当
たり5g/m2 以上となるように塗布することを本発明
の特徴としている。焼鈍分離剤塗布後は仕上焼鈍、連続
歪取り焼鈍・二次被膜塗布および焼き付けを行う。さら
に必要に応じてレーザー照射、溝等の磁区細分化処理を
施す。
The characteristic feature of the present invention is that after the continuous decarburization annealing is performed and before the final annealing, the annealing separator containing MgO as a main component is applied so as to be 5 g / m 2 or more per one side. . After the annealing separator is applied, finish annealing, continuous strain relief annealing / secondary coating application and baking are performed. If necessary, laser irradiation and magnetic domain subdivision processing such as grooves are performed.

【0024】これまで超高磁束密度一方向性電磁鋼板の
製造における一次被膜形成については特に言及されてい
なかった。特開平6−88171号公報では、全く述べ
られていない。それにもかかわらず一次被膜不良になる
場合があり、安定製造には至っていないのが現状であ
る。
So far, no particular reference has been made to the formation of the primary coating in the production of ultra high magnetic flux density unidirectional electrical steel sheets. In JP-A-6-88171, nothing is mentioned. Nevertheless, the primary coating may be defective in some cases, and the current situation is that stable production has not been achieved.

【0025】しかし脱炭焼鈍を施した後仕上焼鈍をする
前に、MgOを主成分とする焼鈍分離剤を鋼板片面当た
り5g/m2 以上となるように塗布することが、{11
0}〈001〉方位集積度の極めて優れた一方向性電磁
鋼板の一次被膜の安定形成に極めて重要であることが判
明した。
However, after the decarburization annealing and before the finish annealing, it is preferable to apply an annealing separating agent containing MgO as a main component so that the amount per surface of the steel sheet is 5 g / m 2 or more.
It has been found that it is extremely important for the stable formation of the primary coating of the grain-oriented electrical steel sheet having an excellent degree of 0} <001> orientation integration.

【0026】図1は、C:0.078%、Si:3.2
2%、Mn:0.08%、S:0.025%、酸可溶性
Al:0.025%、N:0.0088%、Bi:0〜
0.0400%を含有するスラブを通常工程で脱炭焼鈍
まで行い、その後MgOを主成分とする焼鈍分離剤を鋼
板片面当たり1〜10g/m2 塗布し、後工程処理した
時の、Bi含有量とMgO塗布量と一次被膜密着性評点
を示す。評点はAが一番良好で、次いでB,Cと続く。
Bi含有量が5ppm 未満の場合は、焼鈍分離剤の塗布量
が5g/m2 未満でも一次被膜の評点がAであるのに対
して、Bi含有量が5ppm 以上の場合は、5g/m2
上で一次被膜の評点がAであり、それ未満ではB,Cで
あることがわかる。
FIG. 1 shows C: 0.078%, Si: 3.2.
2%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.025%, N: 0.0088%, Bi: 0
A slab containing 0.0400% is subjected to decarburization annealing in a normal process, and then an annealing separator having MgO as a main component is applied at 1 to 10 g / m 2 per one side of a steel plate, and Bi is contained when the post-process is performed. The amount, the amount of MgO applied, and the adhesion of the primary coating are shown below. A is the best score, followed by B and C.
When the Bi content is less than 5 ppm, the primary coating has a rating of A even when the coating amount of the annealing separator is less than 5 g / m 2 , whereas when the Bi content is 5 ppm or more, it is 5 g / m 2. From the above, it can be seen that the primary coating has a rating of A, and if it is less than that, it has B and C.

【0027】図2は、C:0.078%、Si:3.2
2%、Mn:0.08%、S:0.025%、酸可溶性
Al:0.025%、N;0.0088%、Bi:0.
0050%を含有するスラブを通常工程で脱炭焼鈍まで
行い、その後MgOを主成分とする焼鈍分離剤を鋼板片
面当たり1〜10g/m2 塗布し、後工程処理した時
の、MgO塗布量と一次被膜量と鉄損W17/50 を示す。
焼鈍分離剤塗布量を5g/m2 とすることによって、一
次被膜量が2.5g/m2 以上得られるため、付与張力
も充分となり優れた鉄損が得られていることがわかる。
FIG. 2 shows C: 0.078%, Si: 3.2.
2%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.025%, N; 0.0088%, Bi: 0.
A slab containing 0050% is subjected to decarburization annealing in a normal process, and then an annealing separator having MgO as a main component is applied to one side of the steel sheet in an amount of 1 to 10 g / m 2 and the amount of MgO applied at the time of post-treatment is The primary coating amount and iron loss W 17/50 are shown.
It can be seen that by setting the coating amount of the annealing separator to 5 g / m 2 , a primary coating amount of 2.5 g / m 2 or more can be obtained, so that the applied tension is sufficient and excellent iron loss is obtained.

【0028】これは、仕上焼鈍は一般的にコイル状で行
われるが、MgOを主成分とする焼鈍分離剤の塗布量を
5g/m2 以上となるように塗布することによって仕上
焼鈍途中での一次被膜形成後、余剰焼鈍分離剤が一定量
以上存在することによって地鉄中のBiが拡散できるた
め、地鉄中のBiが地鉄と酸化層との界面、あるいは酸
化層中に長時間滞在することなく抜けることが可能とな
り、一次被膜形成後の破壊が行われることなく安定形成
されたと考えられる。
This is because the finish annealing is generally performed in the form of a coil, but by applying the annealing separating agent containing MgO as the main component so that the applied amount is 5 g / m 2 or more, After the primary coating is formed, Bi in the base iron can diffuse due to the presence of a certain amount or more of the excess annealing separator, so that Bi in the base iron stays at the interface between the base iron and the oxide layer or in the oxide layer for a long time. It is considered that the film was stably formed without being destroyed after the formation of the primary film without being destroyed.

【0029】高磁束密度一方向性電磁鋼板の製造におい
て、一次被膜を安定的に形成させる方法は、これまでに
様々述べられている。例えば、特開昭59−56582
号公報、特開昭62−54085号公報、特開平2−2
59017号公報、特開平1−4427号公報が挙げら
れる。これらはいずれも焼鈍分離剤中の成分を規定した
り、焼鈍分離剤塗布量を規定したり、脱炭焼鈍によって
形成された表面酸化層の性質を規定したり、あるいは仕
上焼鈍における持ち込み水分や脱Nに絡んだ条件を規定
するものである。
Various methods have been described so far for stably forming a primary coating in the production of a high magnetic flux density unidirectional electrical steel sheet. For example, JP-A-59-56582
JP-A-62-54085, JP-A-2-2
No. 59017 and Japanese Patent Laid-Open No. 1-4427. All of these define the components in the annealing separator, the amount of the annealing separator applied, the properties of the surface oxide layer formed by decarburizing annealing, or the carried-in moisture and desorption during finish annealing. It defines the conditions related to N.

【0030】これらに対し本発明は、一次被膜形成に多
大な影響を及ぼす地鉄中のBiに関して、その挙動を焼
鈍分離剤塗布量によって制御しようとするものであり、
従来技術とは全く異なる。
On the other hand, the present invention intends to control the behavior of Bi in the base metal, which has a great influence on the formation of the primary coating film, by controlling the coating amount of the annealing separator.
It is completely different from the prior art.

【0031】[0031]

【実施例】【Example】

(実施例1)C:0.078%、Si:3.25%、M
n:0.08%、S:0.025%、酸可溶性Al:
0.025%、N:0.0084%、Bi:0.002
0%を含有するスラブを1360℃で加熱後直ちに熱延
して2.2mm厚の熱延コイルとした。熱延コイルに11
00℃の焼鈍を施し、1回冷延で0.220mm厚とした
後、850℃で脱炭焼鈍を行った。
(Example 1) C: 0.078%, Si: 3.25%, M
n: 0.08%, S: 0.025%, acid-soluble Al:
0.025%, N: 0.0084%, Bi: 0.002
The slab containing 0% was heated at 1360 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.2 mm. 11 for hot rolled coil
After annealing at 00 ° C. and cold rolling once to a thickness of 0.220 mm, decarburization annealing was performed at 850 ° C.

【0032】その後MgOにTiO2 が10%添加され
た焼鈍分離剤を、鋼板片面当たり3.0〜8.0g/m
2 塗布後、1200℃の仕上焼鈍、二次被膜塗布、さら
にはレーザー照射による磁区制御を行った。仕上焼鈍後
に一次被膜測定、レーザー照射による磁区制御後に鉄損
測定を供した。一次被膜量と鉄損W17/50 を表1に示
す。
After that, an annealing separator containing 10% of TiO 2 added to MgO was used in an amount of 3.0 to 8.0 g / m per one side of the steel sheet.
After 2 coatings, finish annealing at 1200 ° C., coating of secondary coating, and further magnetic domain control by laser irradiation were performed. The primary coating was measured after the finish annealing, and the iron loss was measured after controlling the magnetic domains by laser irradiation. Table 1 shows the amount of primary coating and the iron loss W 17/50 .

【0033】[0033]

【表1】 [Table 1]

【0034】表1より明らかなように、MgO塗布量が
5.0g/m2 以上で、2.5g/m2 以上の良好な一
次被膜厚みが形成されている。またこのことによって、
0.7W/kg以下の極めて優れた鉄損が得られる。
As is clear from Table 1, the coating amount of MgO is 5.0 g / m 2 or more, and a good primary coating thickness of 2.5 g / m 2 or more is formed. By this,
An extremely excellent iron loss of 0.7 W / kg or less can be obtained.

【0035】(実施例2)C:0.077%、Si:
3.28%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.022%、N:0.0084%、S
n:0.12%、Bi:0.0031%を含有するスラ
ブを1330℃で加熱後直ちに熱延して2.3mm厚の熱
延コイルとした。酸洗後1.60mmに予備冷延し、10
00℃の焼鈍後0.200mmとした。その後MgOにT
iO2 が10%、Na2 4 7 が0.6%添加された
焼鈍分離剤を、鋼板片面当たり3.0〜8.0g/m2
塗布後、1200℃の仕上焼鈍、二次被膜塗布、さらに
はレーザー照射による磁区制御を行った。仕上焼鈍後に
一次被膜測定、レーザー照射による磁区制御後に鉄損測
定に供した。一次被膜量と鉄損W17/50 を表2に示す。
評点はAが一番良好で、次いでB,Cと続く。
(Example 2) C: 0.077%, Si:
3.28%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.022%, N: 0.0084%, S
A slab containing n: 0.12% and Bi: 0.0031% was heated at 1330 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. After pickling, pre-cold rolling to 1.60 mm, 10
After annealing at 00 ° C., the length was 0.200 mm. Then T to MgO
An annealing separator containing 10% of iO 2 and 0.6% of Na 2 B 4 O 7 was added at 3.0 to 8.0 g / m 2 per one side of the steel sheet.
After coating, finish annealing at 1200 ° C., coating of secondary coating, and magnetic domain control by laser irradiation were performed. After the finish annealing, the primary coating was measured, and the magnetic loss was controlled by irradiating the laser to measure the iron loss. Table 2 shows the amount of primary coating and the iron loss W 17/50 .
A is the best score, followed by B and C.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より明らかなように、MgO塗布量が
鋼板片面当たり5.0g/m2 以上で、2.5g/m2
以上の一次被膜量と密着性が得られている。またこのこ
とによって、0.70W/kg以下の極めて優れた鉄損が
得られる。
As is clear from Table 2, the amount of MgO applied was 5.0 g / m 2 or more per one side of the steel plate, and 2.5 g / m 2
The above primary coating amount and adhesion are obtained. Further, this makes it possible to obtain an extremely excellent iron loss of 0.70 W / kg or less.

【0038】(実施例3)C:0.078%、Si:
3.30%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.033%、N:0.0084%、S
n:0.16%、Cu:0.060%を含有する溶鋼に
Biを0.0115%添加含有したスラブを1350℃
で加熱後直ちに熱延して2.0mm厚の熱延コイルとし
た。熱延コイルに1050℃の焼鈍を施し、2回冷延で
0.220mm厚とした後、840℃で脱炭焼鈍を行っ
た。
(Example 3) C: 0.078%, Si:
3.30%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.033%, N: 0.0084%, S
1350 ° C. for a slab containing 0.0115% Bi added to molten steel containing n: 0.16% and Cu: 0.060%
Immediately after it was heated in, a hot rolled coil having a thickness of 2.0 mm was obtained. The hot rolled coil was annealed at 1050 ° C., cold rolled twice to a thickness of 0.220 mm, and then decarburized and annealed at 840 ° C.

【0039】その後MgOにTiO2 が8%、Sb
2 (SO4 3 が0.1%添加された焼鈍分離剤を鋼板
片面当たり1.0〜6.0g/m2 となるように塗布
後、1200℃の仕上焼鈍を行った。水洗後、一次被膜
測定に供した。一次被膜密着性評点と一次被膜量を表3
に示す。評点はAが一番良好で、次いでB,Cと続く。
Thereafter, 8% of TiO 2 was added to MgO and Sb
2 (SO 4) 3 is after coating so that the steel plate per one surface 1.0~6.0g / m 2 an annealing separator agent added 0.1%, was finish annealing of 1200 ° C.. After washing with water, it was subjected to primary film measurement. Table 3 shows the primary coating adhesion rating and the primary coating amount.
Shown in A is the best score, followed by B and C.

【0040】[0040]

【表3】 [Table 3]

【0041】表3より明らかなように、MgO塗布量が
鋼板片面当たり5.0g/m2 以上で、2.5g/m2
以上の良好な一次被膜厚みが評点Aで得られている。
As is clear from Table 3, when the amount of MgO applied is 5.0 g / m 2 or more per side of the steel sheet, 2.5 g / m 2
The favorable primary coating thickness described above is obtained with the score A.

【0042】(実施例4)C:0.078%、Si:
3.30%、Mn:0.08%、Se:0.025%、
酸可溶性Al:0.05%、N:0.0084%、S
b:0.022%、Mo:0.014%、Bi:0.0
080%を含有するスラブを1350℃で加熱後直ちに
熱延して2.3mm厚の熱延コイルとした。1000℃の
中間焼鈍を含む2回冷延で0.220mm厚とした後、8
60℃で脱炭焼鈍を行った。
(Example 4) C: 0.078%, Si:
3.30%, Mn: 0.08%, Se: 0.025%,
Acid-soluble Al: 0.05%, N: 0.0084%, S
b: 0.022%, Mo: 0.014%, Bi: 0.0
The slab containing 080% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm. After being cold-rolled twice including intermediate annealing at 1000 ° C to a thickness of 0.220 mm, 8
Decarburization annealing was performed at 60 ° C.

【0043】その後MgOにTiO2 が12%、SrS
4 が0.3%添加された焼鈍分離剤を鋼板片面当たり
1.0〜6.0g/m2 となるように塗布後、1200
℃の仕上焼鈍を行った。水洗後、一次被膜測定に供し
た。一次被膜密着性評点と一次被膜量を表4に示す。評
点はAが一番良好で、次いでB,Cと続く。
Thereafter, 12% of TiO 2 was added to MgO and SrS.
After applying an annealing separator containing 0.3% of O 4 so as to be 1.0 to 6.0 g / m 2 per side of the steel sheet, 1200
Finish annealing was performed at ℃. After washing with water, it was subjected to primary film measurement. Table 4 shows the primary coating adhesion rating and the primary coating amount. A is the best score, followed by B and C.

【0044】[0044]

【表4】 [Table 4]

【0045】表4より明らかなように、MgO塗布量が
鋼板片面当たり5.0g/m2 以上で、2.5g/m2
以上の良好な一次被膜厚みが評点Aで得られている。
As is clear from Table 4, the amount of MgO applied is 5.0 g / m 2 or more per one side of the steel sheet, and 2.5 g / m 2
The favorable primary coating thickness described above is obtained with the score A.

【0046】[0046]

【発明の効果】Biを添加含有した一方向性電磁鋼板用
スラブから得た熱延コイルを、熱延板焼鈍後仕上冷延、
あるいは中間焼鈍を含む複数の冷延、あるいは熱延板焼
鈍後中間焼鈍を含む複数の冷延によって製品板厚に仕上
げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍
をする超高磁束密度一方向性電磁鋼板の製造方法におい
て、MgOを主成分とする焼鈍分離剤の塗布量を鋼板片
面当たり5m/g2 以上とすることによって、一次被膜
の良好な超高磁束密度一方向性電磁鋼板が得られるとと
もに、磁区細分化処理後の鉄損特性も極めて優れてお
り、工業的に非常に価値の高い有益なものといえる。
The hot-rolled coil obtained from the slab for unidirectional electrical steel sheet containing Bi is added to the hot-rolled sheet after annealing and finish cold-rolling.
Alternatively, after finishing the product sheet thickness by a plurality of cold rolling including intermediate annealing, or a plurality of cold rolling including hot-rolled sheet annealing and intermediate annealing, decarburization annealing, after applying an annealing separator, finish annealing is performed. In the method for producing a high magnetic flux density unidirectional electrical steel sheet, the coating amount of the annealing separating agent containing MgO as a main component is set to 5 m / g 2 or more per one side of the steel sheet, so that a good super high magnetic flux density unidirectionality of the primary coating is obtained. Magnetic steel sheet is obtained, and the iron loss characteristics after magnetic domain refinement treatment are also extremely excellent, which can be said to be industrially very valuable and useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量とMgO塗布量と一次被膜密着性評
点を示す図。
FIG. 1 is a diagram showing the Bi content, the amount of MgO applied, and the primary film adhesion rating.

【図2】MgO塗布量と一次被膜量と鉄損W17/50 を示
す図。
FIG. 2 is a diagram showing MgO coating amount, primary coating amount, and iron loss W 17/50 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 H01F 1/16 B (72)発明者 黒沢 文夫 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 高嶋 邦秀 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01F 1/16 H01F 1/16 B (72) Inventor Fumio Kurosawa 20-1 Shintomi, Futtsu-shi, Chiba Shin Nippon Steel Co., Ltd.Technology Development Division (72) Inventor Kunihide Takashima 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeの1種または2種:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05%を含有し、残部Feお
よび不可避的不純物からなるスラブを出発材として加熱
した後熱延し、熱延板焼鈍仕上冷延、あるいは中間焼鈍
を含む複数の冷延、あるいは熱延板焼鈍後中間焼鈍を含
む複数の冷延によって製品板厚に仕上げた後に、脱炭焼
鈍し、焼鈍分離剤を塗布後、仕上焼鈍をする超高磁束密
度一方向性電磁鋼板の製造方法において、MgOを主成
分とする焼鈍分離剤の塗布量を鋼板片面当たり5g/m
2 以上とすることを特徴とする超高磁束密度一方向性電
磁鋼板の製造方法。
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, and a slab composed of the balance Fe and inevitable impurities. After heating as a starting material, hot rolling is performed to finish the product sheet thickness by hot-rolled sheet annealing finish cold-rolling, or multiple cold-rolling including intermediate annealing, or hot-rolled sheet annealing followed by multiple cold-rolling including intermediate annealing. Later, in a method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet, which comprises decarburization annealing, applying an annealing separator, and then performing finish annealing, the application amount of the annealing separator containing MgO as a main component is 5 g / side of the steel sheet. m
A method of manufacturing an ultra-high magnetic flux density grain-oriented electrical steel sheet, which is characterized by having 2 or more.
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeの1種または2種:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Bi:0.0005〜0.05%を含有し、残部Feお
よび不可避的不純物からなるスラブを出発材としたこと
を特徴とする請求項1記載の超高磁束密度一方向性電磁
鋼板の製造方法。
2. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.04
0%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sn: 0.05-0.50%, Bi: 0.0005-0.05% The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein a slab containing the balance Fe and unavoidable impurities is used as a starting material.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeの1種または2種:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.05%を含有し、残部Feお
よび不可避的不純物からなるスラブを出発材としたこと
を特徴とする請求項1記載の超高磁束密度一方向性電磁
鋼板の製造方法。
3. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0.10%, Bi The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the starting material is a slab containing 0.0005 to 0.05% and the balance being Fe and unavoidable impurities.
【請求項4】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeの1種または2種:0.005〜0.04
0%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 SbおよびMoの1種または2種:0.0030〜0.
3%、 Bi:0.0005〜0.05%を含有し、残部Feお
よび不可避的不純物からなるスラブを出発材としたこと
を特徴とする請求項1記載の超高磁束密度一方向性電磁
鋼板の製造方法。
4. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.04
0%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, one or two kinds of Sb and Mo: 0.0030 to 0.
3%, Bi: 0.0005 to 0.05%, and a slab containing the balance Fe and unavoidable impurities as a starting material, an ultrahigh magnetic flux density unidirectional electrical steel sheet according to claim 1. Manufacturing method.
JP05547495A 1995-03-15 1995-03-15 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3561323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05547495A JP3561323B2 (en) 1995-03-15 1995-03-15 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05547495A JP3561323B2 (en) 1995-03-15 1995-03-15 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08253819A true JPH08253819A (en) 1996-10-01
JP3561323B2 JP3561323B2 (en) 2004-09-02

Family

ID=12999612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05547495A Expired - Lifetime JP3561323B2 (en) 1995-03-15 1995-03-15 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3561323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same

Also Published As

Publication number Publication date
JP3561323B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
KR101959158B1 (en) METHOD FOR MANUFACTURING AN ILLUMINATED ELECTRIC STEEL
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JPH10121212A (en) Grain-oriented silicon steel sheet and its production
JPH07268469A (en) Sheet material for grain oriented silicon steel sheet with high magnetic flux density

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term