JP3388116B2 - Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3388116B2
JP3388116B2 JP31244996A JP31244996A JP3388116B2 JP 3388116 B2 JP3388116 B2 JP 3388116B2 JP 31244996 A JP31244996 A JP 31244996A JP 31244996 A JP31244996 A JP 31244996A JP 3388116 B2 JP3388116 B2 JP 3388116B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31244996A
Other languages
Japanese (ja)
Other versions
JPH10152725A (en
Inventor
憲人 阿部
洋介 黒崎
潔一 市村
伸夫 立花
英一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18029338&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3388116(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31244996A priority Critical patent/JP3388116B2/en
Publication of JPH10152725A publication Critical patent/JPH10152725A/en
Application granted granted Critical
Publication of JP3388116B2 publication Critical patent/JP3388116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として用いられる{110}〈001〉方位集積度を高
度に発達させた超高磁束密度一方向性電磁鋼板の製造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of an ultrahigh magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation integration degree used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(これをB8 と以下示す)
が使用される。また鉄損特性を表す代表的数値として
は、W17/50 (周波数50Hzにおいて1.7Tまで磁化
させた時の単位Kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (this is shown below as B8)
Is used. W17 / 50 (iron loss per unit Kg when magnetized to 1.7 T at a frequency of 50 Hz) is used as a representative value representing the iron loss characteristic.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。
The magnetic flux density is an important controlling factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss. However, if the magnetic flux density becomes too high, the abnormal eddy current loss may increase due to the increase in the size of the secondary recrystallized grains, which may deteriorate the iron loss. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0004】一方向性電磁鋼板は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に〈001〉を有するいわゆるGoss組織を
発達させることによって得られる。そのなかでB8 ≧
1.88Tの優れた励磁特性を持つものは高磁束密度一
方向性電磁鋼板と呼ばれている。
The unidirectional electrical steel sheet undergoes secondary recrystallization during finish annealing in the manufacturing process to cause {110},
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B8 ≧
A material having an excellent excitation characteristic of 1.88T is called a high magnetic flux density grain-oriented electrical steel sheet.

【0005】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、田口らによる特公昭40−15644号
公報、および特公昭51−13469号公報が挙げられ
る。Goss組織の二次再結晶を起こさせる主なインヒ
ビターとして前者においては、MnSおよびAlNを、
後者ではMnS,MnSe,Sb等を用いている。上記
発明に基づく製品は現在、世界的規模で生産されてい
る。特公昭40−15644号公報によればその製造方
法は、熱延板焼鈍を施した後、冷延率80〜95%の一
回冷延を行うことを特徴としている。
Typical methods for producing a high magnetic flux density unidirectional electrical steel sheet include Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 by Taguchi et al. In the former, MnS and AlN were used as the main inhibitors that caused the secondary recrystallization of the Goss structure.
In the latter, MnS, MnSe, Sb, etc. are used. Products according to the above invention are currently produced on a global scale. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized by performing hot-rolled sheet annealing and then performing cold rolling once at a cold rolling rate of 80 to 95%.

【0006】また一方向性電磁鋼板の表面には、電気的
に絶縁性を有する被膜が形成されていることが要求され
る。この被膜は絶縁性を保持する役割の他、鋼板に張力
を付与し鉄損を低減させるといった役割も担っている。
そのため均一に形成させることは極めて重要である。
Further, it is required that a coating having an electrically insulating property is formed on the surface of the grain-oriented electrical steel sheet. In addition to maintaining insulating properties, this coating also plays a role of applying tension to the steel sheet to reduce iron loss.
Therefore, it is extremely important to form it uniformly.

【0007】高磁束密度一方向性電磁鋼板の被膜には、
一次被膜と二次被膜の二段構成である。そのうち一次被
膜は、製造工程の脱炭焼鈍において鋼板表面に形成され
たSiO2 が、その後に塗布された焼鈍分離剤と反応し
て得られる。一般的に焼鈍分離剤はMgOを主成分とし
たものが用いられ、仕上げ焼鈍時にSiO2 と反応して
Mg2 SiO4 となり、これが一次被膜となる。
[0007] The coating of high magnetic flux density unidirectional electrical steel sheet,
It has a two-stage structure of a primary coating and a secondary coating. Among them, the primary coating is obtained by reacting SiO 2 formed on the surface of the steel sheet during decarburization annealing in the manufacturing process with the annealing separator applied thereafter. In general, an annealing separator containing MgO as a main component is used and reacts with SiO 2 during finish annealing to form Mg 2 SiO 4 , which becomes a primary coating.

【0008】ところで最近、高嶋らによって、B8 ≧
1.95Tの極めて優れた励磁特性を持つ超高磁束密度
一方向性電磁鋼板が報告されている。その代表的例とし
ては、特開平6−89805号公報が挙げられる。また
その製造方法の代表的例としては、特開平6−8817
1号公報が挙げられる。いずれもスラブ中にBiを含む
ことを特徴としているが、その他は特段、田口らによる
特公昭40−15644号公報で述べられている製造方
法と変わりなく、大きな制約もない。
By the way, recently, by Takashima et al., B8 ≧
An ultra-high magnetic flux density grain-oriented electrical steel sheet having an extremely excellent excitation characteristic of 1.95T has been reported. As a typical example thereof, JP-A-6-89805 can be cited. Further, as a typical example of the manufacturing method thereof, JP-A-6-8817
No. 1 publication is mentioned. All of them are characterized by containing Bi in the slab, but the others are not different from the manufacturing method described in Japanese Patent Publication No. 40-15644 by Taguchi et al.

【0009】[0009]

【発明が解決しようとする課題】しかし鋼中にBiを含
むことによると考えられる、一次被膜密着性の劣化や、
一次被膜形成不良により、製品にならない場合が少なく
ない。
However, deterioration of the adhesion of the primary coating, which is considered to be caused by the inclusion of Bi in the steel,
There are many cases where the product does not become a product due to defective formation of the primary film.

【0010】本発明は、かかる問題を回避し、極めて鉄
損の優れた、かつ磁束密度の高い一方向性電磁鋼板の一
次被膜の安定製造を可能にし、一次被膜密着性の劣化
や、一次被膜形成不良を改善をすることを目的とする。
The present invention avoids such a problem and enables stable production of a primary coating of a grain-oriented electrical steel sheet having an excellent iron loss and a high magnetic flux density, resulting in deterioration of adhesion of the primary coating and primary coating. The purpose is to improve poor formation.

【0011】[0011]

【発明の実施の形態】本発明の特徴とするところは、次
の通りである。 (1)重量%で、C :0.03〜0.15%、
Si:2.5〜4.0%、Mn:0.02〜0.30
%、S,Seの1種または2種:0.005〜0.04
0%、酸可溶性Al:0.015〜0.040%、N
:0.0030〜0.0150%、Bi:0.000
5〜0.05%、残部:Feおよび不可避的不純物から
なるスラブを出発材とし、該スラブを加熱した後熱延
し、熱延板焼鈍後仕上げ冷延によって製品板厚に仕上げ
た後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍を
する超高磁束密度一方向性電磁鋼板の製造方法におい
て、脱炭焼鈍後の鋼板表面の酸素目付量(地鉄以外の部
分)を550〜850ppm にし、Biガスのエッチング
にも耐えられる一次被膜を鋼板表面に形成させることを
特徴とする超高磁束密度一方向性電磁鋼板の製造方法。 ()重量%で、C :0.03〜0.15%、
Si:2.5〜4.0%、Mn:0.02〜0.30
%、S,Seの1種または2種:0.005〜0.04
0%、酸可溶性Al:0.015〜0.040%、N
:0.0030〜0.0150%、Bi:0.000
5〜0.05%、残部:Feおよび不可避的不純物から
なるスラブを出発材とし、該スラブを加熱した後熱延
し、中間焼鈍を含む複数回の冷延によって製品板厚に仕
上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼
鈍をする超高磁束密度一方向性電磁鋼板の製造方法にお
いて、脱炭焼鈍後の鋼板表面の酸素目付量(地鉄以外の
部分)を550〜850ppm にし、Biガスのエッチン
グにも耐えられる一次被膜を鋼板表面に形成させること
を特徴とする超高磁束密度一方向性電磁鋼板の製造方
法。 ()重量%で、C :0.03〜0.15%、
Si:2.5〜4.0%、Mn:0.02〜0.30
%、S,Seの1種または2種:0.005〜0.04
0%、酸可溶性Al:0.015〜0.040%、N
:0.0030〜0.0150%、Bi:0.000
5〜0.05%、残部:Feおよび不可避的不純物から
なるスラブを出発材とし、該スラブを加熱した後熱延
し、熱延板焼鈍後中間焼鈍を含む複数回の冷延によって
製品板厚に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗
布後、仕上焼鈍をする超高磁束密度一方向性電磁鋼板の
製造方法において、脱炭焼鈍後の鋼板表面の酸素目付量
(地鉄以外の部分)を550〜850ppm にし、Biガ
スのエッチングにも耐えられる一次被膜を鋼板表面に形
成させることを特徴とする超高磁束密度一方向性電磁鋼
板の製造方法。(4)一次被膜の被膜量を2.5〜4g/m 2 とするこ
とを特徴とする前記(1)乃至(3)のいずれか1項に
記載の超高磁束密度一方向性電磁鋼板の製造方法。 (5) 重量%でさらに、Sn:0.05〜0.50%
含有するスラブを出発材とした前記(1)乃至(4)の
いずれか1項に記載の超高磁束密度一方向性電磁鋼板の
製造方法。(6) 重量%でさらに、Sn:0.05〜0.50%、
Cu:0.01〜0.10%を含有するスラブを出発材
とした前記(1)乃至(4)のいずれか1項に記載の超
高磁束密度一方向性電磁鋼板の製造方法。(7) 重量%でさらに、Sb,Moの1種または2種:
0.0030〜0.3%を含有するスラブを出発材とし
た(1)乃至(4)のいずれか1項に記載の超高磁束密
度一方向性電磁鋼板の製造方法。
BEST MODE FOR CARRYING OUT THE INVENTION The features of the present invention are as follows. (1)% by weight, C: 0.03 to 0.15%,
Si: 2.5-4.0%, Mn: 0.02-0.30
%, 1 type or 2 types of S, Se: 0.005-0.04
0%, acid soluble Al: 0.015 to 0.040%, N
: 0.0030 to 0.0150%, Bi: 0.000
5 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material, the slab is heated and hot-rolled, and then hot-rolled sheet is annealed and finished cold-rolled to a product sheet thickness, and then removed. In the method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet which is charcoal-annealed, applies an annealing separator, and is then finish-annealed, the oxygen basis weight (portion other than base iron) of the steel sheet surface after decarburization-annealing is 550 to Etching of Bi gas to 850ppm
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises forming a primary coating capable of withstanding even the above on the steel sheet surface . ( 2 ) in% by weight, C: 0.03 to 0.15%,
Si: 2.5-4.0%, Mn: 0.02-0.30
%, 1 type or 2 types of S, Se: 0.005-0.04
0%, acid soluble Al: 0.015 to 0.040%, N
: 0.0030 to 0.0150%, Bi: 0.000
5 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material, the slab is heated and then hot rolled, and finished into a product sheet thickness by a plurality of cold rolling including intermediate annealing , In the method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet, which comprises decarburization annealing, applying an annealing separator, and then performing finish annealing, the oxygen basis weight (portion other than base iron) of the steel sheet surface after decarburizing annealing is set to 550. ~ 850ppm, Bi gas etch
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises forming a primary coating on the surface of the steel sheet that can withstand even the presence of magnetism. ( 3 )% by weight, C: 0.03 to 0.15%,
Si: 2.5-4.0%, Mn: 0.02-0.30
%, 1 type or 2 types of S, Se: 0.005-0.04
0%, acid soluble Al: 0.015 to 0.040%, N
: 0.0030 to 0.0150%, Bi: 0.000
5 to 0.05%, balance: Fe and a slab consisting of inevitable impurities as a starting material, the slab is heated, hot- rolled, hot-rolled sheet is annealed, and then cold-rolled a plurality of times including intermediate annealing. In the manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet, which is decarburization annealed, applied with an annealing separator, and then finish annealed after finishing to the part) to 550~850ppm, Bi moth
Formed on the surface of the steel sheet with a primary coating that can withstand etching
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet characterized by comprising: (4) The coating amount of the primary coating should be 2.5 to 4 g / m 2 .
In any one of the above items (1) to (3),
A method for producing the described super high magnetic flux density unidirectional electrical steel sheet. (5) Further , by weight%, Sn: 0.05 to 0.50%
Starting from the contained slab, the above (1) to (4)
The method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet according to any one of claims 1 . (6) Further, by weight%, Sn: 0.05~0.50%,
The method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet according to any one of (1) to (4) above, wherein a slab containing Cu: 0.01 to 0.10% is used as a starting material. (7) 1% or 2 types of Sb and Mo in addition by weight%:
The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to any one of (1) to (4), which uses a slab containing 0.0030 to 0.3% as a starting material.

【0012】[0012]

【発明の実施の形態】以下本発明の詳細について説明す
る。本発明者はいわゆる超高磁束密度一方向性電磁鋼板
の一次被膜を、さらに安定して得るべく種々の研究を鋭
意重ねた結果、Biを含んだMnSとAlNを主インヒ
ビターとする一方向性電磁鋼板用スラブを出発材とし、
該スラブを加熱した後熱延し、熱延板焼鈍後仕上げ冷
延、あるいは中間焼鈍を含む複数回の冷延、あるいは熱
延板焼鈍後中間焼鈍を含む複数回の冷延によって製品板
厚に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、
仕上焼鈍をする超高磁束密度一方向性電磁鋼板の製造方
法において、脱炭焼鈍後の鋼板表面の酸素目付量を55
0〜850ppm にすることによって、鉄損の極めて優
れ、かつ極めて磁束密度の高い超高磁束密度一方向性電
磁鋼板の一次被膜を安定製造することに成功した。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below. As a result of various researches conducted by the present inventor to further stably obtain a primary coating of a so-called ultra-high magnetic flux density unidirectional electrical steel sheet, the unidirectional electromagnetic field containing Bi-containing MnS and AlN as main inhibitors was studied. Starting from a steel plate slab,
The slab is heated and then hot-rolled, and then hot-rolled sheet is finished and cold-rolled, or cold-rolled a plurality of times including intermediate annealing, or hot-rolled sheet-annealed and then cold-rolled a plurality of times including intermediate annealing to obtain a product sheet thickness. After finishing, decarburization annealing, after applying the annealing separator,
In the method of manufacturing a super high magnetic flux density unidirectional electrical steel sheet for finish annealing, the oxygen basis weight of the steel sheet surface after decarburization annealing is set to 55
By setting the content to 0 to 850 ppm, it was possible to stably manufacture the primary coating of an ultra-high magnetic flux density unidirectional electrical steel sheet with extremely excellent iron loss and extremely high magnetic flux density.

【0013】次に本発明の成分条件について説明する。
Cは0.03%未満では、熱延に先立つスラブ加熱時に
おいて結晶粒が異常粒成長し、製品において線状細粒と
呼ばれる二次再結晶不良を起こすので好ましくない。一
方0.15%を超えた場合では、冷延後の脱炭焼鈍にお
いて脱炭時間が長時間必要となり経済的でないばかりで
なく、脱炭が不完全となりやすく、製品での磁気時効と
呼ばれる磁性不良を起こすので好ましくない。
Next, the component conditions of the present invention will be described.
If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, if the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization tends to be incomplete, resulting in a magnetic aging called magnetic aging in the product. It is not preferable because it causes defects.

【0014】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electric resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0015】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnSおよび、またはMnSeを形成する重
要な元素である。0.02%未満では、二次再結晶を生
じさせるのに必要なMnSの絶対量が不足するので好ま
しくない。一方0.30%を超えた場合は、スラブ加熱
時の固溶が困難になるばかりでなく、熱延時の析出サイ
ズが粗大化しやすくインヒビターとしての最適サイズ分
布が損なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0016】Sおよび、またはSeは上掲したMnとM
nSおよび、またはMnSeを形成する重要な元素であ
る。上記範囲を逸脱すると充分なインヒビター効果が得
られないので0.005〜0.040%に限定する必要
がある。
S and / or Se are Mn and M listed above.
It is an important element that forms nS and / or MnSe. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.005 to 0.040%.

【0017】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
15%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方0.040%超ではインヒ
ビターとして析出させるAlNが粗大化し、結果として
インヒビター強度を低下させるので好ましくない。
Acid-soluble Al is the main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheets, and is 0.0
If it is less than 15%, the amount is insufficient and the inhibitor strength is insufficient, which is not preferable. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0018】Nは上掲した酸可溶性AlとAlNを形成
する重要な元素である。上記範囲を逸脱すると充分なイ
ンヒビター効果が得られないので0.0030〜0.0
150%に限定する必要がある。
N is an important element which forms AlN with the acid-soluble Al mentioned above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.0
It should be limited to 150%.

【0019】さらにSnについては薄手製品の二次再結
晶を安定して得る元素として有効であり、また二次再結
晶粒径を小さくする作用もある。この効果を得るために
は、0.05%以上の添加が必要であり、0.50%を
超えた場合にはその作用が飽和するのでコストアップの
点から0.50%以下に限定する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an effect of reducing the secondary recrystallization grain size. In order to obtain this effect, it is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less.

【0020】CuについてはSn添加鋼の一次被膜向上
元素として有効である。0.01%未満では効果が少な
く、0.10%を超えると製品の磁束密度が低下するの
で好ましくない。
Cu is effective as an element for improving the primary coating of Sn-added steel. If it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, which is not preferable.

【0021】Sbおよび、またはMoについては薄手製
品の二次再結晶を安定して得る元素として有効である。
この効果を得るためには、0.0030%以上の添加が
必要であり、0.30%を超えた場合にはその作用が飽
和するのでコストアップの点から0.30%以下に限定
する。
Sb and / or Mo are effective as elements for stably obtaining secondary recrystallization of thin products.
In order to obtain this effect, addition of 0.0030% or more is necessary, and when it exceeds 0.30%, its action is saturated, so from the viewpoint of cost increase, it is limited to 0.30% or less.

【0022】Biは本発明であるB8 ≧1.92Tの超
高磁束密度一方向性電磁鋼板の安定製造において、その
スラブ中に必須の元素である。すなわち磁束密度向上効
果がある。0.0005%未満ではその効果が充分に得
られず、また0.05%を超えた場合は磁束密度向上効
果が飽和するだけでなく、熱延コイルの端部に割れが発
生するので好ましくない。
Bi is an essential element in the slab in the stable production of the ultrahigh magnetic flux density grain-oriented electrical steel sheet of B8 ≧ 1.92T according to the present invention. That is, there is an effect of improving the magnetic flux density. If it is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the effect of improving the magnetic flux density is saturated, but also cracks occur at the end of the hot rolled coil, which is not preferable. .

【0023】次に本発明である一次被膜安定製造と鉄損
改善の方法について説明する。上記のごとく成分を調整
した超高磁束密度一方向性電磁鋼板製造用溶鋼は、通常
の方法で鋳造する。特に鋳造方法に限定はない。次いで
通常の熱間圧延によって熱延コイルに圧延される。
Next, a method for stable production of the primary coating and improvement of iron loss according to the present invention will be described. The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0024】引き続いて、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数回の冷延、あるいは熱延板焼
鈍後中間焼鈍を含む複数回の冷延によって製品板厚に仕
上げるわけであるが、仕上げ冷延前の焼鈍では結晶組織
の均質化と、AlNの析出制御を行う。
Successively, the product sheet thickness is finished by hot-rolled sheet annealing followed by finish cold-rolling, or cold rolling including intermediate annealing a plurality of times, or hot-rolled sheet annealing and intermediate annealing followed by a plurality of cold-rolling steps. However, in the annealing before finish cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.

【0025】その後連続脱炭焼鈍を施した後の鋼板表面
の酸素目付量(地鉄以外の部分)を、550〜850pp
m にすることを本発明の特徴としている。酸素目付量を
制御する方法としては、雰囲気露点で行う方法、湿式雰
囲気中の焼鈍温度、時間で行う方法、あるいはこれらを
組み合わせて行う等の方法がある。特にどの方法が好ま
しいということはなく、結晶組織、再結晶集合組織を最
適に制御することも考えて選択するばよい。
After that, the oxygen basis weight (portion other than base iron) on the surface of the steel sheet after continuous decarburization annealing is 550 to 850 pp.
The feature of the present invention is to set m. As a method for controlling the oxygen basis weight, there are a method of performing the dew point of the atmosphere, a method of performing the annealing temperature and time in a wet atmosphere, a method of combining these methods, and the like. There is no particular preference as to which method is preferable, and it may be selected in consideration of optimal control of the crystal structure and recrystallization texture.

【0026】焼鈍分離剤塗布後は仕上げ焼鈍、連続歪取
り焼鈍・二次被膜塗布および焼き付けを行う。さらに必
要に応じてレーザー照射、溝等の磁区細分化処理を施
す。
After the annealing separator is applied, finish annealing, continuous strain relief annealing / secondary coating application and baking are performed. If necessary, laser irradiation and magnetic domain subdivision processing such as grooves are performed.

【0027】これまで超高磁束密度一方向性電磁鋼板の
製造における一次被膜形成については特に言及されてい
なかった。特開平6−88171号公報では、全く述べ
られていない。それにもかかわらず一次被膜不良になる
場合があり、安定製造には至っていないのが現状であ
る。
Up to now, no particular reference has been made to the formation of the primary coating in the production of ultrahigh magnetic flux density unidirectional electrical steel sheet. In JP-A-6-88171, nothing is mentioned. Nevertheless, the primary coating may be defective in some cases, and the current situation is that stable production has not been achieved.

【0028】しかし脱炭焼鈍を施した後の鋼板表面の酸
素目付量を550〜850ppm にすることが、{11
0}〈001〉方位集積度の極めて優れた一方向性電磁
鋼板の一次被膜の安定形成に極めて重要であることが判
明した。
However, the oxygen basis weight on the surface of the steel sheet after decarburization annealing can be set to 550 to 850 ppm by {11
It has been found that it is extremely important for the stable formation of the primary coating of the grain-oriented electrical steel sheet having an excellent degree of 0} <001> orientation integration.

【0029】鋼板の酸素目付量が550ppm 未満では、
一次被膜が安定して形成しない。一方、850ppm を超
えた場合は、必要以上に非強磁性物である一次被膜が形
成するため、磁気特性上、好ましくない。
If the oxygen basis weight of the steel sheet is less than 550 ppm,
The primary coating does not form stably. On the other hand, if it exceeds 850 ppm, a primary coating film which is a non-ferromagnetic material is formed more than necessary, which is not preferable in terms of magnetic properties.

【0030】図1に、C:0.080、Si:3.22
%、Mn:0.08%、S:0.024%、酸可溶性A
l:0.025%、N:0.0088%、Bi:0〜
0.0400%を含有するスラブを通常工程で冷延まで
行い、脱炭焼鈍は、露点の変更によって鋼板表面の酸素
目付量を変えて行い、続いて仕上げ焼鈍、平坦化・張力
付与二次被膜コーティング、レーザー照射による磁区制
御し、製品とした時の、Bi含有量と鋼板表面の酸素目
付量と一次被膜評点、磁区制御後の鉄損W17/50を示
す。一次被膜評点は以下のようにして決めた。20mmφ
の丸棒に沿って製品を曲げても剥離しない場合をA、3
0mmφの丸棒に沿って製品を曲げれば剥離しない場合を
B、30mmφの丸棒に沿って製品を曲げても剥離する場
合をCとした。すなわち評点Aが最も良好で、B,Cと
続く。また、酸素目付量の測定方法は、臭素の4%メチ
ルアルコール溶液中Ar雰囲気下で脱炭焼鈍板の地鉄の
みを溶解して、得られた残渣を化学分析する方法で行っ
た。
In FIG. 1, C: 0.080, Si: 3.22
%, Mn: 0.08%, S: 0.024%, acid-soluble A
1: 0.025%, N: 0.0088%, Bi: 0
A slab containing 0.0400% is cold-rolled in the usual process, and decarburization annealing is performed by changing the oxygen basis weight of the steel sheet surface by changing the dew point, followed by finish annealing, flattening / tensioning secondary coating. The Bi content, the oxygen areal weight of the steel sheet surface, the primary coating film rating, and the iron loss W17 / 50 after magnetic domain control when the magnetic domain is controlled by coating and laser irradiation to obtain a product are shown. The primary coating rating was determined as follows. 20 mmφ
If the product does not peel off even if the product is bent along the round bar of A, A3
The case where the product was not peeled off when bent along the 0 mmφ round bar was designated as B, and the case where the product was peeled off even when bent along the 30 mmφ round bar was designated as C. That is, the score A is the best, followed by B and C. The oxygen basis weight was measured by dissolving only the base iron of the decarburized annealed plate in a 4% methyl alcohol solution of bromine in an Ar atmosphere and chemically analyzing the obtained residue.

【0031】Bi含有量が5ppm 未満の場合は、鋼板表
面の酸素目付量が550ppm 未満でも一次被膜の評点が
Aであるが、W17/50 は0.70W/kg以上と悪い。こ
れに対して、Bi含有量が5ppm 以上の場合は、鋼板表
面の酸素目付量が550〜850ppm の場合は一次被膜
の評点がA,Bで、かつW17/50 が0.70W/kg未満
と、一次被膜評点、鉄損ともに良好である。鋼板表面の
酸素目付量が850ppm を超えた場合は一次被膜の評点
がAであるが、W17/50 が0.70W/kg以上と悪い。
When the Bi content is less than 5 ppm, the primary coating has a rating of A even when the oxygen basis weight of the steel sheet surface is less than 550 ppm, but W17 / 50 is poor at 0.70 W / kg or more. On the other hand, when the Bi content is 5 ppm or more, when the oxygen basis weight of the steel sheet surface is 550 to 850 ppm, the primary coating scores are A and B, and W17 / 50 is less than 0.70 W / kg. The primary coating score and iron loss are good. When the oxygen basis weight on the surface of the steel sheet exceeds 850 ppm, the primary coating has a rating of A, but W17 / 50 is poor at 0.70 W / kg or more.

【0032】図2は、C:0.079%、Si:3.1
5%、Mn:0.08%、S:0.025%、酸可溶性
Al:0.025%、N:0.0078%、Bi:0.
0050%を含有するスラブを通常工程で冷延まで行
い、脱炭焼鈍は、露点の変更によって鋼板表面の酸素目
付量を変えて行い、続いて仕上げ焼鈍、平坦化・張力付
与二次被膜コーティング、レーザー照射による磁区制御
し、製品とした時の、後工程処理した時の、鋼板表面の
酸素目付量と一次被膜量と鉄損W17/50 を示す。
FIG. 2 shows C: 0.079%, Si: 3.1.
5%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.025%, N: 0.0078%, Bi: 0.
A slab containing 0050% is cold rolled in a normal process, and decarburization annealing is performed by changing the oxygen basis weight of the steel sheet surface by changing the dew point, followed by finish annealing, flattening / tensioning secondary coating, The oxygen basis weight of the steel sheet surface, the amount of primary coating, and the iron loss W17 / 50 when the magnetic domain is controlled by laser irradiation and the product is subjected to a post-process, are shown.

【0033】鋼板表面の酸素目付量を550〜850pp
m では、一次被膜量が2.5〜4.0g/m2 得られる
ため、付与張力も充分となり優れた鉄損が得られている
ことがわかる。850ppm を超えた場合、一次被膜量が
4.0g/m2 を超えて得られて鋼板全体に占める非強
磁性物の割合が増えるため、励磁特性が悪くなり鉄損も
悪くなる。
Oxygen basis weight of the steel plate surface is 550 to 850 pp
In the case of m, the amount of primary coating is 2.5 to 4.0 g / m 2, so that the applied tension is sufficient and excellent iron loss is obtained. When it exceeds 850 ppm, the primary coating amount exceeds 4.0 g / m 2 and the proportion of non-ferromagnetic material in the entire steel sheet increases, so that the excitation characteristics and iron loss also deteriorate.

【0034】Bi含有量が5ppm 以上含んだ鋼板におい
て一次被膜を形成させるために、脱炭焼鈍後の酸素目付
量が550ppm 以上必要とする理由としては、以下のよ
うに考えている。Biは仕上げ焼鈍の昇温過程で鋼中か
ら拡散して、ガス化することが知られている。このガス
化したBiがコイルラップ間に滞留すると、既に形成し
ている一次被膜をエッチングすると考えられる。したが
って、このエッチングにも耐えられる一次被膜を形成さ
せるために、脱炭焼鈍後の鋼板表面に所定量以上の酸化
層を形成させる必要があり、そのためには酸素目付量を
制御することが重要である。
The reason why the oxygen basis weight after decarburization annealing is required to be 550 ppm or more in order to form a primary coating on a steel sheet containing Bi content of 5 ppm or more is considered as follows. It is known that Bi is diffused and gasified from the steel in the temperature rising process of finish annealing. When this gasified Bi stays between the coil wraps, it is considered that the already formed primary film is etched. Therefore, in order to form a primary coating that can withstand this etching, it is necessary to form an oxide layer of a predetermined amount or more on the steel sheet surface after decarburization annealing, and for that purpose it is important to control the oxygen basis weight. is there.

【0035】高磁束密度一方向性電磁鋼板の製造におい
て、一次被膜を形成させる方法は、これまでに様々述べ
られている。例えば、特開昭55−10726号公報、
特開昭55−65367号公報、特開昭56−7217
8号公報が挙げられる。
Various methods have been described so far for forming a primary coating in the production of a high magnetic flux density unidirectional electrical steel sheet. For example, JP-A-55-10726,
JP-A-55-65367, JP-A-56-7217
No. 8 publication is mentioned.

【0036】これらはいずれも、脱炭焼鈍によって形成
された表面酸化層の量や性質を規定することによって、
均一で密着性に優れ、かつ欠陥の少ないMg2 SiO4
形成反応が行われることを述べている。
By defining the amount and properties of the surface oxide layer formed by decarburization annealing in any of these,
Mg 2 SiO 4 that is uniform, has excellent adhesion, and has few defects
It states that a formation reaction takes place.

【0037】これらに対し本発明は、仕上げ焼鈍中にM
2 SiO4 形成反応は良好に行わた後の地鉄中からの
抜けたBiガスのエッチングによる一次被膜破壊に耐え
られる一次被膜とするために、鋼板表面の酸素目付量を
制御しようとするものであり、従来技術とは全く異な
る。
On the other hand, the present invention uses M during finish annealing.
g 2 SiO 4 formation reaction is performed satisfactorily to control the amount of oxygen weighted on the surface of the steel sheet in order to form a primary coating that can withstand the destruction of the primary coating due to the etching of Bi gas that escapes from the base steel. Which is completely different from the prior art.

【0038】また特開昭55−10726号公報、特開
昭55−65367号公報、特開昭56−72178号
公報では、鋼板表面の酸化層量としてg/m2 で規定し
ているが、本発明は酸素目付量としてppm で規定して、
制御項目を実生産で管理しやすい項目としていることも
異なる。
In JP-A-55-10726, JP-A-55-65367 and JP-A-56-72178, the amount of oxide layer on the surface of the steel sheet is specified in g / m 2 , but The present invention defines the oxygen basis weight in ppm,
Another difference is that the control items are easy to manage in actual production.

【0039】[0039]

【実施例】【Example】

(実施例1)C:0.079%、Si:3.25%、M
n:0.08%、S:0.025%、酸可溶性Al:
0.025%、N:0.0082%、Bi:0.003
6%を含有するスラブを1360℃で加熱後直ちに熱延
して2.2mm厚の熱延コイルとした。
(Example 1) C: 0.079%, Si: 3.25%, M
n: 0.08%, S: 0.025%, acid-soluble Al:
0.025%, N: 0.0082%, Bi: 0.003
A slab containing 6% was heated at 1360 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.2 mm.

【0040】熱延コイルに1080℃の焼鈍を施し、一
回冷延で0.285mm厚とした後、脱炭焼鈍を850℃
で露点を制御して行い、脱炭焼鈍後の鋼板表面の酸素目
付量を480〜930ppm とした。
The hot-rolled coil is annealed at 1080 ° C., cold rolled once to a thickness of 0.285 mm, and then decarburized annealed at 850 ° C.
Was performed by controlling the dew point, and the oxygen basis weight of the steel sheet surface after decarburization annealing was set to 480 to 930 ppm.

【0041】その後、MgOを主成分とする焼鈍分離剤
を塗布した脱炭焼鈍コイルに、1200℃の仕上げ焼
鈍、二次被膜塗布、さらにはレーザー照射による磁区制
御を行った。仕上げ焼鈍後に一次被膜測定、レーザー照
射による磁区制御後に鉄損測定に供した。一次被膜量と
鉄損W17/50 を表1に示す。一次被膜評点は、図1の実
験の評価方法と同じである。
After that, the decarburizing annealing coil coated with the annealing separating agent containing MgO as the main component was subjected to finish annealing at 1200 ° C., secondary film coating, and magnetic domain control by laser irradiation. After the final annealing, the primary coating was measured, and the magnetic loss was controlled by laser irradiation, and then the iron loss was measured. Table 1 shows the amount of primary coating and the iron loss W17 / 50. The primary coating score is the same as the evaluation method of the experiment of FIG.

【0042】[0042]

【表1】 [Table 1]

【0043】表1より明らかなように、酸素目付量が5
50〜850ppm で、一次被膜評点がB以上と、2.5
〜4.0g/m2 の適切な一次被膜厚みが形成されてい
る。またこのことによって、0.85W/kg未満の極め
て優れた鉄損が得られている。
As is clear from Table 1, the oxygen basis weight is 5
50-850ppm, the primary coating score is B or more, 2.5
Suitable primary film thickness to 4.0 g / m 2 is formed. Further, this results in an extremely excellent iron loss of less than 0.85 W / kg.

【0044】(実施例2)C:0.076%、Si:
3.22%、Mn:0.08%、S:0.027%、酸
可溶性Al:0.024%、N:0.0084%、S
n:0.12%、Bi:0.0044%を含有するスラ
ブを1330℃で加熱後直ちに熱延して2.3mm厚の熱
延コイルとした。
(Example 2) C: 0.076%, Si:
3.22%, Mn: 0.08%, S: 0.027%, acid-soluble Al: 0.024%, N: 0.0084%, S
A slab containing n: 0.12% and Bi: 0.0044% was heated at 1330 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm.

【0045】酸洗後1.60mmに予備冷延し、1000
℃の焼鈍後0.200mmに仕上げ冷延した。その後、脱
炭焼鈍を845℃で露点を制御して行い、脱炭焼鈍後の
鋼板表面の酸素目付量を528〜988ppm とした。
After pickling, pre-cold rolled to 1.60 mm,
After annealing at ℃, finish cold rolling to 0.200 mm. Then, decarburization annealing was performed at 845 ° C. while controlling the dew point, and the oxygen basis weight of the steel sheet surface after decarburizing annealing was set to 528 to 988 ppm.

【0046】その後、MgOを主成分とする焼鈍分離剤
を塗布した脱炭焼鈍コイルに、1200℃の仕上げ焼
鈍、二次被膜塗布、さらにはレーザー照射による磁区制
御を行った。仕上げ焼鈍後に一次被膜測定、レーザー照
射による磁区制御後に鉄損測定に供した。一次被膜評
点、一次被膜量と鉄損W17/50 を表2に示す。一次被膜
評点は、図1の実験の評価方法と同じである。
After that, the decarburizing annealing coil coated with the annealing separating agent containing MgO as the main component was subjected to finish annealing at 1200 ° C., application of the secondary coating, and magnetic domain control by laser irradiation. After the final annealing, the primary coating was measured, and the magnetic loss was controlled by laser irradiation, and then the iron loss was measured. Table 2 shows the primary coating rating, primary coating amount and iron loss W17 / 50. The primary coating score is the same as the evaluation method of the experiment of FIG.

【0047】[0047]

【表2】 [Table 2]

【0048】表2より明らかなように、酸素目付量が5
68ppm 以上で、2.6g/m2 以上の一次被膜量と一
次被膜評点B以上が得られている。またこのことによっ
て、0.70W/kg未満の極めて優れた鉄損が得られて
いる。酸素目付量が988ppm では、2.5g/m2
上の一次被膜量と一次被膜評点Aが得られているもの
の、鉄損は0.70W/kg以上である。
As is clear from Table 2, the oxygen basis weight is 5
At 68 ppm or more, a primary coating amount of 2.6 g / m 2 or more and a primary coating rating of B or more were obtained. Further, this results in an extremely excellent iron loss of less than 0.70 W / kg. When the oxygen basis weight is 988 ppm, the primary coating amount of 2.5 g / m 2 or more and the primary coating rating A are obtained, but the iron loss is 0.70 W / kg or more.

【0049】(実施例3)C:0.078%、Si:
3.29%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.029%、N:0.0084%、S
n:0.14%、Cu:0.060%を含有する溶鋼に
Biを0.0122%添加含有したスラブを1350℃
で加熱後直ちに熱延して2.0mm厚の熱延コイルとし
た。
(Example 3) C: 0.078%, Si:
3.29%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.029%, N: 0.0084%, S
A molten steel containing n: 0.14% and Cu: 0.060% with a slab containing 0.0122% of Bi added at 1350 ° C.
Immediately after it was heated in, a hot rolled coil having a thickness of 2.0 mm was obtained.

【0050】熱延コイルに1050℃の焼鈍を施し、二
回冷延で0.220mm厚とした後、脱炭焼鈍を840℃
で露点を制御して行い、脱炭焼鈍後の鋼板表面の酸素目
付量を456〜848ppm とした。
The hot rolled coil was annealed at 1050 ° C., cold rolled twice to a thickness of 0.220 mm, and then decarburized and annealed at 840 ° C.
Was performed by controlling the dew point, and the oxygen basis weight of the steel sheet surface after decarburization annealing was set to 456 to 848 ppm.

【0051】その後、MgOを主成分とする焼鈍分離剤
を塗布した脱炭焼鈍コイルに、1180℃の仕上げ焼鈍
を行った。水洗後、一次被膜測定に供した。一次被膜評
点と一次被膜量を表3に示す。一次被膜評点は、図1の
実験の評価方法と同じである。
Thereafter, the decarburization annealing coil coated with the annealing separating agent containing MgO as a main component was subjected to finish annealing at 1180 ° C. After washing with water, it was subjected to primary film measurement. Table 3 shows the primary coating score and the primary coating amount. The primary coating score is the same as the evaluation method of the experiment of FIG.

【0052】[0052]

【表3】 [Table 3]

【0053】表3より明らかなように、酸素目付量が5
52ppm 以上で、2.5g/m2 以上の良好な一次被膜
厚みが評点A,Bで得られている。またこのことによっ
て、0.70W/kg未満の極めて優れた鉄損が得られて
いる。
As is clear from Table 3, the oxygen basis weight is 5
A good primary coating thickness of 2.5 g / m 2 or more is obtained at the ratings A and B at 52 ppm or more. Further, this results in an extremely excellent iron loss of less than 0.70 W / kg.

【0054】(実施例4)C:0.078%、Si:
3.30%、Mn:0.08%、Se:0.025%、
酸可溶性Al:0.028%、N:0.0084%、S
b:0.022%、Mo:0.014%、Bi:0.0
088%を含有するスラブを1350℃で加熱後直ちに
熱延して2.3mm厚の熱延コイルとした。
(Example 4) C: 0.078%, Si:
3.30%, Mn: 0.08%, Se: 0.025%,
Acid-soluble Al: 0.028%, N: 0.0084%, S
b: 0.022%, Mo: 0.014%, Bi: 0.0
The slab containing 088% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm.

【0055】1000℃の中間焼鈍を含む二回冷延で
0.220mm厚とした後、脱炭焼鈍を860℃で露点を
制御して行い、脱炭焼鈍後の鋼板表面の酸素目付量を4
95〜883ppm とした。
After double cold rolling including an intermediate annealing at 1000 ° C. to a thickness of 0.220 mm, decarburization annealing was performed at 860 ° C. while controlling the dew point, and the oxygen basis weight of the steel sheet surface after decarburization annealing was 4
It was set to 95 to 883 ppm.

【0056】その後、MgOを主成分とする焼鈍分離剤
を塗布した脱炭焼鈍コイルは、1200℃の仕上げ焼鈍
を行った。二次被膜塗布、さらにはレーザー照射による
磁区制御後に鉄損測定に供した。一次被膜評点、一次被
膜量と鉄損W17/50 を表4に示す。一次被膜評点は、図
1の実験の評価方法と同じである。
Thereafter, the decarburized annealing coil coated with the annealing separating agent containing MgO as the main component was subjected to finish annealing at 1200 ° C. After the secondary coating was applied and the magnetic domains were controlled by laser irradiation, the iron loss was measured. Table 4 shows the primary coating rating, primary coating amount and iron loss W17 / 50. The primary coating score is the same as the evaluation method of the experiment of FIG.

【0057】[0057]

【表4】 [Table 4]

【0058】表4より明らかなように、酸素目付量が4
95ppm 以上で、2.5g/m2 以上の一次被膜量と一
次被膜評点B以上が得られている。またこのことによっ
て、0.70W/kg未満の極めて優れた鉄損が得られて
いる。酸素目付量が883ppm では、2.5g/m2
上の一次被膜量と一次被膜評点Aが得られているもの
の、鉄損は0.70W/kg以上である。
As is clear from Table 4, the oxygen basis weight is 4
At 95 ppm or more, a primary coating amount of 2.5 g / m 2 or more and a primary coating rating of B or more were obtained. Further, this results in an extremely excellent iron loss of less than 0.70 W / kg. When the oxygen basis weight is 883 ppm, the primary coating amount of 2.5 g / m 2 or more and the primary coating rating A are obtained, but the iron loss is 0.70 W / kg or more.

【0059】[0059]

【発明の効果】Biを添加含有した一方向性電磁鋼板用
スラブから得た熱延コイルを、熱延板焼鈍後仕上げ冷
延、あるいは中間焼鈍を含む複数回の冷延、あるいは熱
延板焼鈍後中間焼鈍を含む複数回の冷延によって製品板
厚に仕上げた後に、脱炭焼鈍し、焼鈍分離剤を塗布後、
仕上焼鈍をする超高磁束密度一方向性電磁鋼板の製造方
法において、脱炭焼鈍後の鋼板表面の酸素目付量を55
0〜850ppm とすることによって、一次被膜が良好で
あるとともに、磁区細分化処理後の鉄損特性も極めて優
れている超高磁束密度一方向性電磁鋼板を得ることがで
きる。
EFFECT OF THE INVENTION A hot rolled coil obtained from a slab for unidirectional electrical steel sheet containing Bi is added to a hot rolled sheet after annealing and finish cold rolling, or a plurality of times of cold rolling including intermediate annealing, or hot rolled sheet annealing. After finishing the product sheet thickness by multiple cold rolling including post-intermediate annealing, decarburization annealing, after applying the annealing separator,
In the method of manufacturing a super high magnetic flux density unidirectional electrical steel sheet for finish annealing, the oxygen basis weight of the steel sheet surface after decarburization annealing is set to 55
By setting the content to 0 to 850 ppm, it is possible to obtain an ultra-high magnetic flux density unidirectional electrical steel sheet which has a good primary coating and also has extremely excellent iron loss characteristics after the magnetic domain refinement treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量と鋼板表面の酸素目付量の関係での
一次被膜評点、磁区制御後の鉄損W17/50 を示す図。
FIG. 1 is a diagram showing a primary coating film score in the relation between a Bi content and an oxygen basis weight of a steel sheet surface, and an iron loss W17 / 50 after magnetic domain control.

【図2】鋼板表面の酸素目付量と一次被膜量の関係での
磁区制御後の鉄損W17/50 を示す図。
FIG. 2 is a graph showing the iron loss W17 / 50 after magnetic domain control in the relationship between the oxygen basis weight of the steel sheet surface and the primary coating amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立花 伸夫 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (72)発明者 難波 英一 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (56)参考文献 特開 平7−166305(JP,A) 特開 平6−184640(JP,A) 特開 昭59−185725(JP,A) 特開 平4−202713(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/60 H01F 1/16 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Nobuo Tachibana, No. 1 Fuji-cho, Hirohata-ku, Himeji-shi, Hyogo Prefecture Nippon Steel Corporation Hirohata Works (72) Inventor, Eiichi Namba Fuji, Hirohata-shi, Himeji-shi, Hyogo Prefecture Town No. 1 Nippon Steel Corporation Hirohata Works (56) Reference JP-A-7-166305 (JP, A) JP-A-6-184640 (JP, A) JP-A-59-185725 (JP, A) JP-A-4-202713 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/60 H01F 1 / 16

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの1種または2種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05%、 残部:Feおよび不可避的不純物からなるスラブを出発
材とし、該スラブを加熱した後熱延し、熱延板焼鈍後仕
上げ冷延によって製品板厚に仕上げた後に、脱炭焼鈍
し、焼鈍分離剤を塗布後、仕上焼鈍をする超高磁束密度
一方向性電磁鋼板の製造方法において、脱炭焼鈍後の鋼
板表面の酸素目付量(地鉄以外の部分)を550〜85
0ppm にし、Biガスのエッチングにも耐えられる一次
被膜を鋼板表面に形成させることを特徴とする超高磁束
密度一方向性電磁鋼板の製造方法。
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.040
%, Acid soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material After heating the slab, it is hot rolled, annealed after hot-rolled sheet is finished to a product sheet thickness by cold rolling , decarburized and annealed, and an annealing separator is applied, followed by finish annealing. In the method for producing a grain-oriented electrical steel sheet, the oxygen basis weight of the steel sheet surface after decarburization annealing (a portion other than the base steel) is set to 550 to 85.
Primary to withstand 0ppm and withstand Bi gas etching
A method of manufacturing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises forming a coating film on the surface of a steel sheet .
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの1種または2種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05%、 残部:Feおよび不可避的不純物からなるスラブを出発
材とし、該スラブを加熱した後熱延し、中間焼鈍を含む
複数回の冷延によって製品板厚に仕上げた後に、脱炭焼
鈍し、焼鈍分離剤を塗布後、仕上焼鈍をする超高磁束密
度一方向性電磁鋼板の製造方法において、脱炭焼鈍後の
鋼板表面の酸素目付量(地鉄以外の部分)を550〜8
50ppm にし、Biガスのエッチングにも耐えられる一
次被膜を鋼板表面に形成させることを特徴とする超高磁
束密度一方向性電磁鋼板の製造方法。
2. By weight%, C: 0.03-0.15%, Si: 2.5-4.0%, Mn: 0.02-0.30%, one or two of S and Se. Species: 0.005-0.040
%, Acid soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material And heat-rolling the slab , including intermediate annealing
In the manufacturing method of the super high magnetic flux density unidirectional electrical steel sheet, after finishing the product sheet thickness by cold rolling a plurality of times, decarburizing annealing, applying the annealing separator, and then finishing annealing, the steel sheet after decarburizing and annealing. Oxygen basis weight of the surface (portion other than base iron) is 550-8
50ppm to withstand the etching of Bi gas
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises forming a secondary coating on the steel sheet surface .
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S,Seの1種または2種:0.005〜0.040
%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05%、 残部:Feおよび不可避的不純物からなるスラブを出発
材とし、該スラブを加熱した後熱延し、熱延板焼鈍後中
間焼鈍を含む複数回の冷延によって製品板厚に仕上げた
後に、脱炭焼鈍し、焼鈍分離剤を塗布後、仕上焼鈍をす
る超高磁束密度一方向性電磁鋼板の製造方法において、
脱炭焼鈍後の鋼板表面の酸素目付量(地鉄以外の部分)
を550〜850ppm にし、Biガスのエッチングにも
耐えられる一次被膜を鋼板表面に形成させることを特徴
とする超高磁束密度一方向性電磁鋼板の製造方法。
3. In weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or two of S and Se. Species: 0.005-0.040
%, Acid soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and a slab consisting of unavoidable impurities as a starting material And then hot-rolling the slab and annealing after hot-rolled sheet annealing
After finishing the product sheet thickness by multiple times of cold rolling including interannealing, decarburization annealing, after applying the annealing separator, in the method of manufacturing a super high magnetic flux density unidirectional electrical steel sheet for finish annealing,
Oxygen basis weight of the steel sheet surface after decarburization annealing (portions other than base iron)
Is set to 550 to 850 ppm and also for etching of Bi gas
A method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet, which comprises forming a withstandable primary coating on the steel sheet surface .
【請求項4】 一次被膜の被膜量を2.5〜4g/m2
とすることを特徴とする請求項1乃至3のいずれか1項
に記載の超高磁束密度一方向性電磁鋼板の製造方法。
4. The coating amount of the primary coating is 2.5 to 4 g / m 2.
The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein:
【請求項5】 重量%でさらに、 Sn:0.05〜0.50%を含有する スラブを出発材とした請求項1乃至4のいず
れか1項に記載の超高磁束密度一方向性電磁鋼板の製造
方法。
5. A further, by weight%, Sn: slab containing 0.05 to 0.50% was used as a starting material according to claim 1 to 4 Noise
The method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet according to item 1 .
【請求項6】 重量%でさらに、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%を含有する スラブを出発材とした請求項1乃至4のいず
れか1項に記載の超高磁束密度一方向性電磁鋼板の製造
方法。
6. Further, by weight%, Sn: 0.05~0.50%, Cu : a slab containing 0.01 to 0.10% was used as a starting material according to claim 1 to 4 Noise
The method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet according to item 1 .
【請求項7】 重量%でさらに、 Sb,Moの1種または2種:0.0030〜0.3
%、を含有する スラブを出発材とした請求項1乃至4のいず
れか1項に記載の超高磁束密度一方向性電磁鋼板の製造
方法。
7. Further , by weight%, one or two of Sb and Mo: 0.0030 to 0.3.
% Of any one of claims 1 to 4 , wherein the starting material is a slab containing
The method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet according to item 1 .
JP31244996A 1996-11-22 1996-11-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3388116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31244996A JP3388116B2 (en) 1996-11-22 1996-11-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31244996A JP3388116B2 (en) 1996-11-22 1996-11-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10152725A JPH10152725A (en) 1998-06-09
JP3388116B2 true JP3388116B2 (en) 2003-03-17

Family

ID=18029338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31244996A Expired - Lifetime JP3388116B2 (en) 1996-11-22 1996-11-22 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3388116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411139B1 (en) 2001-07-16 2011-05-11 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor

Also Published As

Publication number Publication date
JPH10152725A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2019163516A (en) Production method of grain-oriented electromagnetic steel sheet
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3388239B2 (en) Manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet with high magnetic field iron loss and excellent film properties
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2562257B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4910539B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3885391B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0741861A (en) Production of grain-oriented silicon steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

EXPY Cancellation because of completion of term