JPH0824875A - Granulation dephosphorization device - Google Patents

Granulation dephosphorization device

Info

Publication number
JPH0824875A
JPH0824875A JP16001294A JP16001294A JPH0824875A JP H0824875 A JPH0824875 A JP H0824875A JP 16001294 A JP16001294 A JP 16001294A JP 16001294 A JP16001294 A JP 16001294A JP H0824875 A JPH0824875 A JP H0824875A
Authority
JP
Japan
Prior art keywords
granulation tower
tower
granulation
ammonium phosphate
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16001294A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
中村  剛
Masahiro Fujii
正博 藤井
Tadatoshi Ariyama
忠俊 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP16001294A priority Critical patent/JPH0824875A/en
Publication of JPH0824875A publication Critical patent/JPH0824875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To granulate a crystal of magnesium ammonium phosphate efficiently by installing a cylindrical structure upright in a granulation tower, then aerating from the bottom of a device, and stirring/mixing the magnesium ammonium phosphate solid particle in the granulation tower. CONSTITUTION:The granulation tower is composed of a granulation tower straight barrel part 1, a granulation tower conical part 2 and a granulation tower sedimentation part 3, and a slit 5 is formed between a crossing point between the gradient part of the sedimentation part 3 and the straight barrel part 1, and a cover 4. In addition, a waste water containing ammonium ion and phosphate ion is injected into the granulation tower from a waste water injection pipe 7, and at the same time, a magnesium compound is injected into the granulation tower from a magnesium compound injection pipe 11. Further, a gas for stirring is supplied from a pipe 8 for blowing in a gas for stirring so that an aeration and stirring action takes place in the granulation tower to produce a solid particle of magnesium ammonium phosphate. The solid particle thus obtained descends to the straight barrel part 1 through the slit 5, then is accumulated in the straight barrel, and is delivered from a delivery pipe 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、造粒脱リン装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granulation dephosphorization apparatus.

【0002】[0002]

【従来の技術】近年、閉鎖性水域で特に問題となってい
る富栄養化の一因子であるリンの除去技術には、アルミ
ニウム塩や鉄塩等の金属塩とリンを反応させる凝集分離
法、リン鉱石や骨炭等の種晶にヒドロキシアパタイトの
形でリンを析出させる晶析法(接触脱リン法)、微生物
のリン過剰摂取作用を利用した生物学的脱リン法、例え
ば、嫌気・好気法などがある。しかし、これらの処理プ
ロセスから発生するリン化合物を含有した2次生成物の
処分及び安定化が問題となっている。
2. Description of the Related Art In recent years, phosphorus removal technology, which is one factor of eutrophication, which has been a particular problem in closed water areas, includes a coagulation separation method in which a metal salt such as an aluminum salt or an iron salt is reacted with phosphorus. Crystallization method that deposits phosphorus in the form of hydroxyapatite on seed crystals of phosphate rock or bone charcoal (catalytic dephosphorization method), biological dephosphorization method that uses the excessive intake of phosphorus by microorganisms, for example, anaerobic / aerobic There is a law. However, the disposal and stabilization of secondary products containing phosphorus compounds generated from these treatment processes has become a problem.

【0003】このような状況に鑑み、近年、アンモニウ
ムイオン及びリン酸イオンを含む廃水に、マグネシウム
化合物を添加するとともにpHを8以上に調整し、廃水
中のリン酸イオンをリン酸マグネシウムアンモニウムの
固体粒子として除去し、生成されたリン酸マグネシウム
アンモニウムの固体粒子を有効利用する技術が開発され
た。すなわち、特開平1-119392号公報には、アンモニウ
ムイオン及びリン酸イオンを含む原水に、マグネシウム
化合物を添加するとともにpHを8以上に調整し、通気
によって廃水を撹拌し、リン酸マグネシウムアンモニウ
ムの微細結晶を生成させ、廃水中の浮遊物質と上記リン
酸マグネシウムアンモニウムの微細結晶とを分離して浮
遊物質を系外に排出し、さらに上記リン酸マグネシウム
アンモニウムの微細結晶を含む廃水を通気によって撹拌
しながら連続的に廃水を供給し、上記リン酸マグネシウ
ムアンモニウムの微細結晶核としてリン酸マグネシウム
アンモニウムの固体粒子を形成し、これを除去する装置
及び方法が記載されている。
In view of such a situation, in recent years, magnesium compounds have been added to wastewater containing ammonium ions and phosphate ions and the pH has been adjusted to 8 or higher so that phosphate ions in the wastewater are solidified with magnesium ammonium phosphate. A technology has been developed in which solid particles of magnesium ammonium phosphate produced by removing them as particles are effectively used. That is, in JP-A-1-119392, a magnesium compound is added to raw water containing ammonium ions and phosphate ions, the pH is adjusted to 8 or more, and waste water is agitated by aeration to obtain fine particles of magnesium ammonium phosphate. Crystals are generated, the suspended solids in the waste water and the fine crystals of magnesium ammonium phosphate are separated, and the suspended solids are discharged out of the system, and the waste water containing the fine crystals of magnesium ammonium phosphate is stirred by aeration. However, an apparatus and a method for continuously supplying wastewater to form solid particles of magnesium ammonium phosphate as fine crystal nuclei of the magnesium ammonium phosphate and removing the solid particles are described.

【0004】[0004]

【発明が解決しようとする課題】上記の装置及び方法に
よって、水中のリンをリン酸マグネシウムアンモニウム
の固体粒子として回収する際に、この反応を促進し、リ
ン酸マグネシウムアンモニウムの結晶を造粒するため
に、装置底部より曝気を行って攪拌する必要があるが、
リン酸マグネシウムアンモニウムの真比重は1.72であ
り、装置内を十分に攪拌するためには、多大の攪拌動力
が必要であった。本発明は、わずかな攪拌動力で、装置
内のリン酸マグネシウムアンモニウムの固体粒子を効率
良く撹拌混合してリン酸マグネシウムアンモニウムの結
晶を造粒することのできる造粒脱リン装置を提供するこ
とを目的とするものである。
By the above apparatus and method, when phosphorus in water is collected as solid particles of magnesium ammonium phosphate, this reaction is promoted to granulate magnesium ammonium phosphate crystals. It is necessary to aerate from the bottom of the device and stir,
The true specific gravity of magnesium ammonium phosphate was 1.72, and a large amount of stirring power was required to sufficiently stir the inside of the device. The present invention provides a granulation dephosphorization apparatus capable of efficiently agitating and mixing solid particles of magnesium ammonium phosphate in the apparatus with a slight stirring power to granulate magnesium ammonium phosphate crystals. It is intended.

【0005】[0005]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意検討の結果、造粒塔内部に
円筒体を立設して、装置底部から曝気することにより、
造粒塔内部のリン酸マグネシウムアンモニウムの固体粒
子を効率良く攪拌混合してリン酸マグネシウムアンモニ
ウムの結晶を造粒することができるという事実を見出
し、本発明に到達した。すなわち、本発明は、リン酸マ
グネシウムアンモニウムを造粒するためのリン酸マグネ
シウムアンモニウム造粒塔を備え、この内部にアンモニ
ウムイオン及びリン酸イオンを含む廃水を注入するため
の廃水注入管と、同じく造粒塔の内部にマグネシウム化
合物を注入するための注入管と、同じく造粒塔の内部に
アルカリ剤を注入するためのアルカリ剤注入管とをそれ
ぞれ設け、前記造粒塔の底部に攪拌用気体吹き込み管
と、固体粒子と廃水とを造粒塔の外に引き抜くための固
体粒子払い出し管とを設け、さらに、造粒塔内部に円筒
体を立設したことを特徴とする造粒脱リン装置を要旨と
するものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have established a cylindrical body inside the granulation tower and aerated from the bottom of the apparatus.
The present inventors have found the fact that solid particles of magnesium ammonium phosphate inside a granulation tower can be efficiently stirred and mixed to granulate crystals of magnesium ammonium phosphate, and have reached the present invention. That is, the present invention comprises a magnesium ammonium phosphate granulation tower for granulating magnesium ammonium phosphate, and a waste water injection pipe for injecting waste water containing ammonium ions and phosphate ions into the inside thereof, as well as a granulation tower. An injection pipe for injecting a magnesium compound into the inside of the granulation tower and an alkali agent injection pipe for injecting an alkali agent inside the granulation tower are respectively provided, and a stirring gas is blown into the bottom of the granulation tower. A pipe, a solid particle delivery pipe for extracting solid particles and waste water to the outside of the granulation tower are provided, and further, a granulation dephosphorization apparatus characterized by having a cylindrical body standing inside the granulation tower. It is a summary.

【0006】以下、図面を参照しつつ、本発明を具体的
に説明する。図1は、本発明の造粒脱リン装置の一例を
示す概略図である。図1において、造粒塔は、造粒塔直
胴部1とその下部の造粒塔円錐部2及び造粒塔沈殿部3
とから構成され、造粒塔直胴部1の上部には、攪拌用気
体を捕集するためのカバー4が設けられている。また、
造粒塔沈澱部3の傾斜部分と造粒塔直胴部1との交点と
カバー4との間には、廃水とリン酸マグネシウムアンモ
ニウムの固体粒子が流通可能なスリット5が形成されて
いる。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic view showing an example of the granulation dephosphorization apparatus of the present invention. In FIG. 1, the granulating tower comprises a granulating tower straight body part 1, a granulating tower conical part 2 and a granulating tower settling part 3 below it.
And a cover 4 for collecting the stirring gas is provided on the upper part of the granulating tower straight body part 1. Also,
A slit 5 through which waste water and solid particles of magnesium ammonium phosphate can flow is formed between the cover 4 and the intersection of the slanting part of the granulating tower settling part 3 and the straight part 1 of the granulating tower.

【0007】アンモニウムイオン及びリン酸イオンを含
む廃水は、廃水注入管7によってリン酸マグネシウムア
ンモニウム造粒塔内に注入される。また、マグネシウム
化合物は、廃水中のリン酸と等モルになるようにマグネ
シウム化合物注入管11を通して、造粒塔内に注入され
る。なお、アルカリ剤、例えば苛性ソーダをアルカリ剤
注入管12を通して、造粒塔内に注入し、造粒塔内をp
H8以上に調整している。
Waste water containing ammonium ions and phosphate ions is injected into the magnesium ammonium phosphate granulation tower through the waste water injection pipe 7. Further, the magnesium compound is injected into the granulation tower through the magnesium compound injection pipe 11 so as to be equimolar to phosphoric acid in the waste water. In addition, an alkali agent, for example, caustic soda is injected into the granulation tower through the alkali agent injection pipe 12, and the inside of the granulation tower is p.
Adjusted to H8 or higher.

【0008】さらに、造粒塔底部に連結した攪拌用気体
吹き込み管8より、攪拌用気体を供給して、造粒塔内の
曝気・攪拌を行うことにより,リン酸マグネシウムアン
モニウムの固体粒子が生成する。すなわち、アンモニウ
ムイオン及びリン酸イオンを含む廃水にマグネシウム化
合物及びアルカリ剤を添加するとともに、pHを8以上
に調整して攪拌を行うことにより、直径0.2 〜0.8 mmの
リン酸マグネシウムアンモニウムの固体粒子を生成させ
ることができる。
Further, a stirring gas is supplied from a stirring gas blowing pipe 8 connected to the bottom of the granulating tower to aerate and stir the inside of the granulating tower to produce solid particles of magnesium ammonium phosphate. To do. That is, by adding a magnesium compound and an alkaline agent to wastewater containing ammonium ions and phosphate ions, adjusting the pH to 8 or more, and stirring the mixture, solid particles of magnesium ammonium phosphate having a diameter of 0.2 to 0.8 mm can be obtained. Can be generated.

【0009】スリット5を通過した、廃水とリン酸マグ
ネシウムアンモニウムの固体粒子のうち、リン酸マグネ
シウムアンモニウムの固体粒子は造粒塔沈殿部3におい
て沈降し、スリット5から造粒塔直胴部1へ降下して直
胴部1の内部に蓄積され、1〜2週間の間隔で、造粒塔
底部の固体粒子払い出し管9よりリン酸マグネシウムア
ンモニウムの固体粒子が払い出される。一方、処理水は
造粒塔沈殿部2の上部より処理水流出管10を通して排
出される。
Of the wastewater and magnesium ammonium phosphate solid particles that have passed through the slit 5, magnesium ammonium phosphate solid particles settle in the granulating tower settling section 3, and the slit 5 moves to the granulating tower straight body section 1. It descends and accumulates inside the straight body part 1, and solid particles of magnesium ammonium phosphate are discharged from the solid particle discharge pipe 9 at the bottom of the granulation tower at intervals of 1 to 2 weeks. On the other hand, the treated water is discharged from the upper part of the granulating tower settling section 2 through the treated water outflow pipe 10.

【0010】本発明においては、上記の造粒塔の内部に
円筒体6を立設することが必要である。円筒体6を立設
する位置として、円筒体6の上端を、スリット5の高さ
より100 〜1000mm上部の位置に設置することが好まし
い。また、円筒体6下端の位置については、特に限定さ
れるものではないが,造粒塔直胴部1とその下部に位置
する円錐部2の継ぎ目付近の高さに設置することが好ま
しい。
In the present invention, it is necessary to vertically install the cylindrical body 6 inside the granulation tower. As a position where the cylindrical body 6 is erected, it is preferable to install the upper end of the cylindrical body 6 at a position 100 to 1000 mm above the height of the slit 5. The position of the lower end of the cylindrical body 6 is not particularly limited, but it is preferable that the lower end of the cylindrical body 6 is installed at a height near the joint between the granulating tower straight body part 1 and the conical part 2 located therebelow.

【0011】また,円筒体6の断面積と造粒塔直胴部1
の断面積との比率(円筒体断面積/直胴部断面積)とし
ては、0.1 〜0.5 であることが好ましい。造粒塔内部に
円筒体6を立設することにより、攪拌用気体吹き込み管
8より供給された攪拌用気体の大部分が円筒体6の下端
に導入されて円筒体6内部を上昇し、それに同伴して、
廃水とリン酸マグネシウムアンモニウムの固体粒子の上
昇流が形成される。さらに、円筒体6の内部を上昇して
円筒体6の上端より流出した廃水と固体粒子の一部は、
円筒体6の外側を沈降し、沈降した固体粒子は、円筒体
6の下端より内部に滑り込んで再び上方に送られるとい
う、スムーズな循環が起こり、造粒塔内部の固体粒子の
攪拌混合を効率良く、十分に行うことができる。
Further, the cross-sectional area of the cylindrical body 6 and the straight body portion 1 of the granulating tower 1
It is preferable that the ratio (cross-sectional area of the cylindrical body / cross-sectional area of the straight body portion) to the cross-sectional area of 0.1 to 0.5 is 0.1 to 0.5. By arranging the cylindrical body 6 upright inside the granulation tower, most of the stirring gas supplied from the stirring gas blowing pipe 8 is introduced to the lower end of the cylindrical body 6 and rises inside the cylindrical body 6, With me,
An upflow of wastewater and solid particles of magnesium ammonium phosphate is formed. Further, part of the waste water and solid particles that have risen inside the cylindrical body 6 and flowed out from the upper end of the cylindrical body 6,
The solid particles settled on the outer side of the cylindrical body 6 are slid inward from the lower end of the cylindrical body 6 and are sent again upward. Smooth circulation occurs, and the stirring and mixing of the solid particles inside the granulation tower is efficiently performed. Good and well done.

【0012】一方、造粒塔内部に円筒体6を立設しない
場合には、撹拌用気体が造粒塔底部の固体粒子層の中で
短絡を起こし、固体粒子が造粒塔上部まで浮遊せず、十
分な攪拌混合がなされない。なお、良好な撹拌混合を成
すためには多大の攪拌動力が必要となり、動力の損失が
大きくなる。
On the other hand, when the cylindrical body 6 is not erected inside the granulating tower, the stirring gas causes a short circuit in the solid particle layer at the bottom of the granulating tower, and the solid particles float to the upper part of the granulating tower. Insufficient stirring and mixing is not done. It should be noted that a large amount of stirring power is required to achieve good stirring and mixing, resulting in a large power loss.

【0013】[0013]

【実施例】次に、本発明を実施例によって具体的に説明
する。図1に示す造粒脱リン装置を用いて、廃水の処理
を行った。廃水注入管7から注入させる廃水として消化
汚泥脱水ろ液を用い、実効容積10m3のリン酸マグネシウ
ムアンモニウム造粒塔の底部に、6.25 m3/hrの流量で、
廃水注入管7から廃水を供給した。また、マグネシウム
槽内の30%の塩化マグネシウムを、廃水中のリン酸と等
モルになるように造粒塔内部にマグネシウム化合物注入
管11から注入し、また、アルカリ槽内の48%の苛性ソ
ーダを、造粒塔内部にアルカリ剤注入管12から注入す
ることにより、pHを9.0 に調整して造粒塔内部の攪拌
を行った。
EXAMPLES Next, the present invention will be specifically described with reference to examples. Wastewater was treated using the granulation dephosphorization apparatus shown in FIG. Using the digested sludge dehydration filtrate as the waste water injected from the waste water injection pipe 7, at the bottom of the magnesium ammonium phosphate granulation tower with an effective volume of 10 m 3 , at a flow rate of 6.25 m 3 / hr,
Waste water was supplied from the waste water injection pipe 7. In addition, 30% magnesium chloride in the magnesium tank is injected into the inside of the granulation tower from the magnesium compound injection pipe 11 so that the phosphoric acid in the waste water is equimolar, and 48% caustic soda in the alkaline tank is injected. Then, the pH was adjusted to 9.0 by injecting into the inside of the granulation tower from the alkaline agent injection pipe 12, and the inside of the granulation tower was stirred.

【0014】造粒塔底部からの撹拌用曝気量は22 m3/hr
で、造粒塔直胴部1に対し、単位面積当たり30 m3/m2/h
r の撹拌用曝気を行った。直胴部1の直径を960 mmと
し、円筒体6の直径を500 mmとし、円筒体断面積と直胴
部断面積の比率を、円筒体断面積/直胴部断面積=0.27
とした。なお、円筒体6の下端は、造粒塔直胴部1とそ
の下部に位置する円錐部2の繋ぎ目付近の高さに設置
し、円筒体6の上端は、スリット5の高さより500 mm上
部の位置に設置し、円筒体6の全長を1400 mm とした。
The amount of aeration for stirring from the bottom of the granulation tower is 22 m 3 / hr
Per unit area of 30 m 3 / m 2 / h for the straight body part of the granulating tower
A stirring aeration of r was performed. The diameter of the straight body portion 1 is 960 mm, the diameter of the cylindrical body 6 is 500 mm, and the ratio of the sectional area of the cylindrical body to the sectional area of the straight body portion is: cylindrical body sectional area / straight body sectional area = 0.27
And The lower end of the cylindrical body 6 is installed at a height near the joint between the straight body part 1 of the granulating tower and the conical part 2 located therebelow, and the upper end of the cylindrical body 6 is 500 mm from the height of the slit 5. It was installed at the upper position, and the total length of the cylindrical body 6 was 1400 mm.

【0015】これによって、水中のリン酸態リンの96
%、アンモニア態窒素の18%が除去され、直径0.2 〜0.
8 mmのリン酸マグネシウムアンモニウムの固体粒子が生
成し、造粒塔の内部にリン酸マグネシウムアンモニウム
の固体粒子が蓄積される1〜2週間の間隔で、リン酸マ
グネシウムアンモニウムの引き抜きを行った。表1に、
円筒体6の上端より585 mm下の地点及び円筒体6の下端
より215 mm上の地点における、円筒体6の内外のリン酸
マグネシウムアンモニウムの固体粒子の容積百分率を示
す。容積百分率は、まず、カバー4の上部より採水器に
よってリン酸マグネシウムアンモニウムの固体粒子を含
有する溶液を採取し、1リットルのメスシリンダー中で
静置した後、メスシリンダーの下部に沈んだリン酸マグ
ネシウムと固体粒子の層の容積を測定し、全体量に対す
る百分率を求めて、容積百分率とした。
[0015] As a result, 96% of phosphate phosphorus in water is obtained.
%, 18% of ammonia nitrogen is removed, diameter 0.2-0.
The magnesium ammonium phosphate was extracted at intervals of 1 to 2 weeks when solid particles of magnesium ammonium phosphate of 8 mm were generated and solid particles of magnesium ammonium phosphate were accumulated inside the granulation tower. In Table 1,
The volume percentage of solid particles of magnesium ammonium phosphate inside and outside the cylindrical body 6 at a point 585 mm below the upper end of the cylindrical body 6 and at a point 215 mm above the lower end of the cylindrical body 6 is shown. The volume percentage was determined by first collecting a solution containing solid particles of magnesium ammonium phosphate from the upper part of the cover 4 with a water sampler, leaving it standing in a 1 liter graduated cylinder, and then immersing it in the bottom of the graduated cylinder. The volume of the layer of magnesium oxide and the solid particles was measured, and the percentage to the total amount was determined to be the volume percentage.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より明らかなように、円筒体6内部の
上下及び円筒体6上部付近における円筒体6の内外にお
いては、リン酸マグネシウムアンモニウム固体粒子の容
積百分率には顕著な差がなかったため、均一に混合され
ていることが判明した。また、円筒体6下部付近におけ
る円筒体6の外部では、リン酸マグネシウムアンモニウ
ム固体粒子の一部が沈降して蓄積されるため、容積百分
率が大幅に高くなっていた。このようにして円筒体6外
側を沈降したリン酸マグネシウムアンモニウム固体粒子
は、再び円筒体6の内部に滑り込んで上方に送られると
いう、スムーズな循環が起こるため、造粒塔内部を効率
良く、攪拌混合することができた。
As is clear from Table 1, there is no significant difference in the volume percentage of magnesium ammonium phosphate solid particles between the inside and outside of the cylinder 6 above and below the inside of the cylinder 6 and near the top of the cylinder 6. It was found to be homogeneously mixed. Further, outside the cylindrical body 6 near the lower portion of the cylindrical body 6, a part of the magnesium ammonium phosphate solid particles settles and accumulates, so that the volume percentage was significantly increased. The magnesium ammonium phosphate solid particles that have settled on the outside of the cylinder 6 in this way slip smoothly into the inside of the cylinder 6 and are sent upward, so that a smooth circulation occurs, so that the inside of the granulation tower can be efficiently stirred. Could be mixed.

【0018】また、造粒塔上部の水面付近では、造粒塔
底部の円筒体6内部の約4倍のリン酸マグネシウムアン
モニウム固体粒子の容積百分率を示したが、固体粒子の
粒径分布は、造粒塔の沈殿部3以外では、どの地点にお
いてもほぼ同じであった。この点からも、廃水と固体粒
子は十分に撹拌混合されていたといえる。
Further, in the vicinity of the water surface at the upper part of the granulation tower, the volume percentage of the magnesium ammonium phosphate solid particles was about 4 times that in the inside of the cylindrical body 6 at the bottom part of the granulation tower. Except for the sedimentation part 3 of the granulation tower, it was almost the same at all points. From this point as well, it can be said that the waste water and the solid particles were sufficiently stirred and mixed.

【0019】[0019]

【発明の効果】本発明の造粒脱リン装置は、廃水中のリ
ンを効率良く除去することができ、さらにわずかな動力
でリン酸マグネシウムアンモニウムの固体粒子を効率良
く、十分に撹拌混合して、リン酸マグネシウムアンモニ
ウムの結晶を造粒することができる。
The granulating and dephosphorizing apparatus of the present invention is capable of efficiently removing phosphorus in wastewater, and is capable of efficiently and sufficiently stirring and mixing solid particles of magnesium ammonium ammonium phosphate with a small amount of power. It is possible to granulate crystals of magnesium ammonium phosphate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の造粒脱リン装置の一例を示す概略図で
ある。
FIG. 1 is a schematic view showing an example of a granulation dephosphorization apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 造粒塔直胴部 2 造粒塔円錐部 3 造粒塔沈殿部 4 カバー 5 スリット 6 円筒体 7 廃水注入管 8 攪拌用気体吹き込み管 9 固体粒子払い出し管 10 処理水流出管 11 マグネシウム化合物注入管 12 アルカリ剤注入管 1 Granulator Tower Straight Body 2 Granulator Tower Cone 3 Granulator Tower Precipitator 4 Cover 5 Slit 6 Cylinder 7 Waste Water Injection Pipe 8 Stirring Gas Blow Pipe 9 Solid Particle Discharge Pipe 10 Treated Water Outflow Pipe 11 Magnesium Compound Injection Tube 12 Alkaline injection tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リン酸マグネシウムアンモニウムを造粒
するためのリン酸マグネシウムアンモニウム造粒塔を備
え、この内部にアンモニウムイオン及びリン酸イオンを
含む廃水を注入するための廃水注入管と、同じく造粒塔
の内部にマグネシウム化合物を注入するためのマグネシ
ウム化合物注入管と、同じく造粒塔の内部にアルカリ剤
を注入するためのアルカリ剤注入管とをそれぞれ設け、
前記造粒塔の底部に攪拌用気体吹き込み管と、固体粒子
と廃水とを造粒塔の外に引き抜くための固体粒子払い出
し管とを設け、さらに、造粒塔内部に円筒体を立設した
ことを特徴とする造粒脱リン装置。
1. A magnesium ammonium phosphate granulation tower for granulating magnesium ammonium phosphate, a waste water injection pipe for injecting waste water containing ammonium ions and phosphate ions into the inside thereof, and the same granulation A magnesium compound injection pipe for injecting a magnesium compound into the inside of the tower and an alkali agent injection pipe for injecting an alkali agent into the inside of the granulation tower are respectively provided,
A stirring gas blowing pipe at the bottom of the granulation tower, and a solid particle discharge pipe for withdrawing solid particles and wastewater to the outside of the granulation tower were provided, and a cylinder was erected inside the granulation tower. A granulation dephosphorization device characterized in that
JP16001294A 1994-07-12 1994-07-12 Granulation dephosphorization device Pending JPH0824875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16001294A JPH0824875A (en) 1994-07-12 1994-07-12 Granulation dephosphorization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16001294A JPH0824875A (en) 1994-07-12 1994-07-12 Granulation dephosphorization device

Publications (1)

Publication Number Publication Date
JPH0824875A true JPH0824875A (en) 1996-01-30

Family

ID=15706074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16001294A Pending JPH0824875A (en) 1994-07-12 1994-07-12 Granulation dephosphorization device

Country Status (1)

Country Link
JP (1) JPH0824875A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206760A (en) * 1996-02-07 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Method for dephosphorylating waste water and device therefor
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
WO2012022099A1 (en) * 2010-08-17 2012-02-23 南京大学 Continuous flow reactor and method for treating wastewater having high-concentration nitrogen and phosphorus
JP2014036945A (en) * 2012-08-20 2014-02-27 Daiki Ataka Engineering Co Ltd Phosphorous removal-recovery device and phosphorous removal-recovery method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206760A (en) * 1996-02-07 1997-08-12 Ishikawajima Harima Heavy Ind Co Ltd Method for dephosphorylating waste water and device therefor
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP4586582B2 (en) * 2004-04-20 2010-11-24 株式会社Ihi Dephosphorization device
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
JP4586581B2 (en) * 2005-03-07 2010-11-24 株式会社Ihi Dephosphorization device
WO2012022099A1 (en) * 2010-08-17 2012-02-23 南京大学 Continuous flow reactor and method for treating wastewater having high-concentration nitrogen and phosphorus
JP2014036945A (en) * 2012-08-20 2014-02-27 Daiki Ataka Engineering Co Ltd Phosphorous removal-recovery device and phosphorous removal-recovery method

Similar Documents

Publication Publication Date Title
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
US4897196A (en) Two-stage batch wastewater treatment
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
JPH1080693A (en) Treatment of waste water and waste water treating device
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
JPH0712477B2 (en) How to remove phosphorus in water
JPH0824875A (en) Granulation dephosphorization device
JPH0777640B2 (en) Dephosphorization device
JP2576679B2 (en) Dephosphorization device
JP3362276B2 (en) Wastewater treatment equipment
JP3883222B2 (en) Granulation dephosphorization equipment
JPH08155469A (en) Apparatus for granulating and removing phosphorus compound
JPS60179190A (en) Dephosphorizing apparatus
JP2006289299A (en) Phosphorus removal method
JP2578136B2 (en) Wastewater treatment method and apparatus
JP4439040B2 (en) Wastewater treatment equipment
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JPH10323677A (en) Waste water treatment device
JPH11277073A (en) Dephosphorizing apparatus
JP2000301166A (en) Waste water treatment apparatus
CN220376455U (en) Pellet reactor device for inducing crystallization
JP2001009472A (en) Granulating and dephosphorizing apparatus
JPH0231895A (en) Process and apparatus for treating filthy water
JP3723601B2 (en) How to remove phosphorus
JP3537495B2 (en) Granulation dephosphorization equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Effective date: 20040423

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201