JPH08261600A - Recovering method for exhaust heat - Google Patents

Recovering method for exhaust heat

Info

Publication number
JPH08261600A
JPH08261600A JP7062514A JP6251495A JPH08261600A JP H08261600 A JPH08261600 A JP H08261600A JP 7062514 A JP7062514 A JP 7062514A JP 6251495 A JP6251495 A JP 6251495A JP H08261600 A JPH08261600 A JP H08261600A
Authority
JP
Japan
Prior art keywords
steam
heat
temperature
evaporator
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7062514A
Other languages
Japanese (ja)
Inventor
Jun Kanai
恂 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Engineering Corp
Original Assignee
Asahi Engineering Co Ltd Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd Osaka filed Critical Asahi Engineering Co Ltd Osaka
Priority to JP7062514A priority Critical patent/JPH08261600A/en
Publication of JPH08261600A publication Critical patent/JPH08261600A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To recover exhaust heat by introducing entire amount of exhaust vapor to an evaporator, introducing it to a regenerator as heat sources, and then generating vapor of high temperature from a recovery vapor tube of an absorber by a method for externally exhausting it. CONSTITUTION: The entire amount of exhaust vapor 5 at 95 deg.C or lower containing non-condensible gas exhausted, for example, from a waste liquid incinerating furnace is introduced to the evaporator 1 of a heat pump 15 without dividing as the heat sources of an evaporator 1 and a regenerator 3. Further, it is introduced to the regenerator 3 as heat source, then exhausted externally, and vapor of high temperature is generated from the recovery vapor tube 17 of an absorber 2. Since the outlet temperature of the vapor 5 is raised by the evaporator 1, the steam of higher temperature is generated from the evaporator. The temperature of lithium bromide water solution in the absorber 2 is raised from the vapor-liquid balanced relationship between the higher temperature steam and moisture absorption liquid. Accordingly, pure water in the tube 17 in the absorber 2 is heated, can be output as high-temperature vapor, and exhaust heat can be recovered by effectively utilizing the heat quantity of the vapor 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば化学工場等から
排出される濃厚な廃液を噴霧焼却して処理する廃液焼却
炉において、水噴霧により増湿冷却されて排出される不
凝縮性ガスを含む排蒸気から排熱を回収する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-condensable gas discharged in a waste liquid incinerator for spraying and treating a thick waste liquid discharged from a chemical factory or the like, which is discharged and humidified and cooled by water spray. The present invention relates to a method for recovering exhaust heat from exhaust steam containing the same.

【0002】[0002]

【従来の技術】例えば廃液焼却炉から排出される排蒸気
は、燃焼排ガスと、この排ガスを冷却するに用いた水が
蒸発した水蒸気とから構成されている。この燃焼排ガス
は不凝縮性ガスとして、N2 を約80%含み、他にCO
2 、O2 を含んでおり、焼却炉内では通常700〜10
00℃程度の高温度であるが、焼却炉出口付近で水噴射
されて冷却される。この冷却は増湿冷却操作であり、従
って水蒸気が大量に発生し、同時に排ガスの温度は低下
する。通常温度は95℃以下となり、水蒸気の量は燃焼
排ガスと同量程度である。即ち、この排蒸気は、焼却炉
内での高温状態の時、有していた熱量を、水蒸気の潜熱
として保持しており、その熱量は膨大なものであり、排
熱回収の必要性が求められている。しかしこの排蒸気
は、温度が95℃以下と低いこと、及び不凝縮性ガスを
多く含んでいることが原因となって、排熱回収を難しく
している。従来、この排蒸気から排熱を回収する方法と
しては、温水として熱回収する方法、焼却処理前の廃液
を濃縮するための熱源として利用する方法があった。し
かしこの方法は温水の利用範囲が少ないこと、廃液の濃
縮に限界があり、排熱の回収率が低い等の欠点があっ
た。そこで最近吸収式ヒートポンプを用いて排熱回収す
る方法が研究されている。これを図2に示す。排蒸気は
通常90℃前後であるが、これを先ず2つの流れに分解
し、排蒸気管(6)、排蒸気管(7)の流れに別ける。
蒸発器(1)と再生器(3)は夫々熱源を必要としてい
るので、これを熱源として夫々に導入するのである。ま
ず、蒸発器(1)の内部には水が仕込まれており、外部
より導入された排蒸気(5)によって加熱管(18)で
加熱されて、水蒸気となる。その水蒸気は水蒸気管(2
7)を介して連管されている吸収器(2)へ移動する。
一方排蒸気(5)は水分の蒸発用に熱を奪われた結果、
温度が低下する。通常の場合、排蒸気は100%水蒸気
であるため90℃の温度で蒸発器(1)に導入すると、
熱回収したとしても同一温度の90℃の温度で蒸発器
(1)から取出すのである。しかし、廃液焼却炉排蒸気
の場合は、排蒸気中に水蒸気は約半分であり、残りの半
分は不凝縮性のガスである。このため蒸発器(1)内で
水に排蒸気(5)の熱を伝達すると、排蒸気中の水蒸気
成分比率が減少することになる。そうすると、この排蒸
気の温度は、この水蒸気成分比率に見合った温度に低下
する。通常は熱回収効率を考えて排蒸気の温度が70℃
程度になるまで熱回収する。即ち蒸発器(1)の出口で
排蒸気の温度を約70℃とする。蒸発器(1)では水が
水蒸気として蒸発するが、その温度は伝熱上排蒸気より
若干低い温度、通常は約65℃の温度である。この水蒸
気は、吸収器(2)内で上部より点滴管(16)でスプ
レーされる水分吸収液としての濃厚な臭化リチウム水溶
液に吸収され、同時に凝縮熱が臭化リチウム水溶液に伝
熱される。この結果、臭化リチウムの水溶液は温度が上
昇する。この温度は水蒸気と臭化リチウム水溶液の気液
平衡関係によって定まり、圧力など濃度にも関係してい
る。この場合は水蒸気温度が約65℃であるので約11
0℃の温度となる。
2. Description of the Related Art Exhaust steam discharged from a waste liquid incinerator, for example, is composed of combustion exhaust gas and water vapor used to cool the exhaust gas. The combustion exhaust gas contains about 80% of N 2 as a non-condensable gas, and CO
2 and O 2 are contained, and usually 700 to 10 in the incinerator.
Although it has a high temperature of about 00 ° C, it is cooled by being sprayed with water near the outlet of the incinerator. This cooling is a humidification cooling operation, so that a large amount of water vapor is generated and at the same time, the temperature of the exhaust gas decreases. The normal temperature is 95 ° C or lower, and the amount of water vapor is about the same as the amount of combustion exhaust gas. That is, this exhaust steam retains the amount of heat it had when it was in a high temperature state in the incinerator as latent heat of steam, and the amount of heat is enormous, and the need for exhaust heat recovery is required. Has been. However, this exhaust vapor has a low temperature of 95 ° C. or less and contains a large amount of non-condensable gas, which makes exhaust heat recovery difficult. Conventionally, as a method of recovering the exhaust heat from the exhaust steam, there are a method of recovering the heat as hot water and a method of using it as a heat source for concentrating the waste liquid before incineration. However, this method has drawbacks such as a limited use range of hot water, a limitation in concentration of waste liquid, and a low recovery rate of exhaust heat. Therefore, a method of recovering exhaust heat using an absorption heat pump has been recently researched. This is shown in FIG. Exhaust steam is usually around 90 ° C., but this is first decomposed into two streams, which are separated into the exhaust steam pipe (6) and the exhaust steam pipe (7).
Since the evaporator (1) and the regenerator (3) each require a heat source, they are introduced as heat sources. First, water is charged in the inside of the evaporator (1), and is heated in the heating pipe (18) by the exhaust steam (5) introduced from the outside to become steam. The water vapor is a water vapor pipe (2
It moves to the absorber (2) which is connected via 7).
On the other hand, the exhaust steam (5) is deprived of heat to evaporate water,
The temperature drops. Normally, the exhaust steam is 100% steam, so if it is introduced into the evaporator (1) at a temperature of 90 ° C,
Even if the heat is recovered, it is taken out from the evaporator (1) at the same temperature of 90 ° C. However, in the case of the waste liquid incinerator exhaust steam, the amount of water vapor in the exhaust steam is about half, and the other half is noncondensable gas. Therefore, when the heat of the exhaust steam (5) is transferred to the water in the evaporator (1), the water vapor component ratio in the exhaust steam is reduced. Then, the temperature of the exhaust steam is lowered to a temperature commensurate with the steam component ratio. Normally, considering the heat recovery efficiency, the temperature of the exhaust steam is 70 ° C.
Heat is recovered to a certain degree. That is, the temperature of the exhaust steam at the outlet of the evaporator (1) is set to about 70 ° C. In the evaporator (1), water evaporates as water vapor, but its temperature is slightly lower than that of the exhaust steam due to heat transfer, usually about 65 ° C. This water vapor is absorbed from the upper part in the absorber (2) by a concentrated lithium bromide aqueous solution as a water absorbing liquid sprayed by the drip tube (16), and at the same time, the heat of condensation is transferred to the lithium bromide aqueous solution. As a result, the temperature of the aqueous solution of lithium bromide rises. This temperature is determined by the vapor-liquid equilibrium relationship between water vapor and lithium bromide aqueous solution, and is also related to the concentration such as pressure. In this case, the steam temperature is about 65 ° C, so about 11
The temperature is 0 ° C.

【0003】この吸収器(2)内には、冷却管(1
7)、すなわち回収蒸気管が設けられており、その内部
には通常常温の純水が導入されている。冷却管は約11
0℃の臭化リチウム水溶液と接しているため、加熱さ
れ、内部の純水に熱が伝達される。その結果、冷却管内
部の純水は蒸発して蒸気となり、外部へ取出される。こ
の蒸気は吸収器(2)内の臭化リチウム水溶液の温度に
対し、伝熱のための温度差を差引いて若干低い温度とな
る。この場合は約105℃の温度の水蒸発(12)とし
て外部へ取出される。これが排熱回収の成果としての水
蒸気であり、他所へ送られて有効利用されることになる
のである。さて、吸収器内の臭化リチウム水溶液は、水
蒸気を吸収する結果、薄い水溶液となる。そこで薄い水
分吸収液管(29)から水溶液の1部を抜出し、同時に
再生器(3)から水分吸収液還元管(23)を介して濃
い水溶液を受入れる操作を行い、吸収器内の水溶液濃度
を一定に保つようになっている。
Inside the absorber (2), a cooling pipe (1
7) That is, a recovery steam pipe is provided, and pure water at normal temperature is usually introduced therein. Cooling tube is about 11
Since it is in contact with an aqueous solution of lithium bromide at 0 ° C., it is heated and the heat is transferred to the pure water inside. As a result, the pure water inside the cooling pipe evaporates to become vapor and is taken out to the outside. This vapor has a temperature slightly lower than the temperature of the aqueous solution of lithium bromide in the absorber (2) by subtracting the temperature difference for heat transfer. In this case, it is taken out as water evaporation (12) at a temperature of about 105 ° C. This is steam as a result of exhaust heat recovery, and it will be sent to another place and used effectively. Now, the lithium bromide aqueous solution in the absorber becomes a thin aqueous solution as a result of absorbing water vapor. Therefore, a part of the aqueous solution is extracted from the thin water absorbing liquid pipe (29), and at the same time, the concentrated aqueous solution is received from the regenerator (3) through the water absorbing liquid reducing pipe (23) to adjust the concentration of the aqueous solution in the absorber. It is designed to be kept constant.

【0004】又、吸収器(2)の薄い水溶液を濃縮して
濃水溶液に再生する必要がある。この再生操作は再生器
(3)で行う。再生器(3)では、吸収器(2)の薄い
水溶液を薄い水分吸収液管(29)を介して点滴管(2
0)で受入れて、これの水分を加熱管(19)で加熱し
て蒸発させることによって濃水溶液に再生するものであ
る。この際、水分の蒸発用の熱が必要であり、従来は排
蒸気(5)を用いてその熱源としている。すなわち、通
常90℃の排蒸気を導入する。再生器(3)で必要な熱
量は、吸収器(2)で使う熱量と略々同一であり、従っ
て排蒸気は吸収器(2)の場合と同様に、熱回収され
て、約70℃の温度で取出される。再生器(3)内では
排蒸気(5)の熱が臭化リチウム水溶液に伝達され、臭
化リチウム水溶液中の水分が蒸発して排蒸気温度より若
干低い温度の約65℃の水蒸気として凝縮器(4)へ移
動する。この結果、再生器(3)内の臭化リチウム水溶
液は濃度が上がるので、水分吸収液還元管(23)を介
して吸収器(2)へ戻すことができる。一方蒸発した水
分は水蒸気として水蒸気管(28)を介して凝縮器
(4)へ入り、ここで冷却管(21)による冷水により
冷却され、凝縮して水となる。この水は水還元管(2
2)を介して蒸発器(1)へ送られ、蒸発器(1)内か
ら蒸発して出て行く水分の補充をし、蒸発器(1)内の
水分量を一定に保持するのである。冷却管(21)の入
口側冷水の温度は15℃であり、出口温度は20℃であ
る。なお、図中(24)は凝縮器(4)から蒸発器
(1)へ水を還元する水還元管(22)中に設けられた
ポンプ、(25)は吸収器(2)の薄い水分吸収液を再
生器(3)に導入する薄い水分吸収液管(29)中のポ
ンプ、(26)は再生器(13)の濃い水分吸収液を吸
収器(2)に導入する水分吸収液還元管(23)中に設
けられたポンプである。したがって、従来のものを要約
すると、廃液焼却炉(14)から排出される排蒸気
(5)を吸収式ヒートポンプ(15)に導くに当り、こ
の排蒸気(5)を管(6)と管(7)に二分し、管
(6)は蒸発器(1)へ、管(7)は再生器(3)へと
それぞれ導き、その後合流して放出排蒸気(11)とし
て排出している。一方ヒートポンプ(15)では吸収器
(2)で水蒸気(12)を発生させている。この方法で
排蒸気(5)は通常90℃であり、これを放出排蒸気
(11)の温度を70℃まで、排熱回収する場合、吸収
器(2)より発生する蒸気(12)の温度は約105℃
となる。
It is also necessary to concentrate the thin aqueous solution in the absorber (2) and regenerate it into a concentrated aqueous solution. This regeneration operation is performed by the regenerator (3). In the regenerator (3), the thin aqueous solution of the absorber (2) is passed through the thin water absorbing liquid pipe (29) to the drip tube (2).
It is received in 0), and its water is regenerated into a concentrated aqueous solution by heating it with a heating tube (19) and evaporating it. At this time, heat for evaporating water is required, and conventionally, exhaust steam (5) is used as the heat source. That is, the exhaust steam of 90 ° C. is usually introduced. The amount of heat required in the regenerator (3) is almost the same as the amount of heat used in the absorber (2), so the exhaust steam is recovered in the same manner as in the absorber (2) and the temperature of about 70 ° C is recovered. Taken out at temperature. In the regenerator (3), the heat of the exhaust steam (5) is transferred to the lithium bromide aqueous solution, the water in the lithium bromide aqueous solution evaporates, and as a steam at a temperature of about 65 ° C. slightly lower than the exhaust steam temperature, the condenser. Move to (4). As a result, the concentration of the lithium bromide aqueous solution in the regenerator (3) increases, so that it can be returned to the absorber (2) via the water absorbing solution reducing pipe (23). On the other hand, the evaporated water enters the condenser (4) as water vapor through the water vapor pipe (28), is cooled by the cold water by the cooling pipe (21), and is condensed into water. This water is a water reduction pipe (2
It is sent to the evaporator (1) via (2) and is replenished with water that evaporates and exits from the inside of the evaporator (1) to keep the amount of water in the evaporator (1) constant. The temperature of the inlet side cold water of the cooling pipe (21) is 15 ° C, and the outlet temperature thereof is 20 ° C. In the figure, (24) is a pump provided in the water reduction pipe (22) for reducing water from the condenser (4) to the evaporator (1), and (25) is a thin water absorption of the absorber (2). A pump in the thin water absorbing liquid pipe (29) for introducing the liquid into the regenerator (3), and (26) a water absorbing liquid reducing pipe for introducing the thick water absorbing liquid of the regenerator (13) into the absorber (2). It is a pump provided in (23). Therefore, in summary of the conventional one, when introducing the exhaust steam (5) discharged from the waste liquid incinerator (14) to the absorption heat pump (15), the exhaust steam (5) is connected to the pipe (6) and the pipe (6). 7), the pipe (6) is led to the evaporator (1), the pipe (7) is led to the regenerator (3), and then they are merged and discharged as discharge exhaust vapor (11). On the other hand, in the heat pump (15), water vapor (12) is generated in the absorber (2). In this method, the exhaust steam (5) is usually 90 ° C., and the temperature of the exhaust steam (11) that releases the exhaust steam (11) to 70 ° C. Is about 105 ℃
Becomes

【0005】[0005]

【発明が解決しようとする課題】従来方式の骨子は図2
に示す通りであるが、実用的には熱効率向上、設備の経
済性向上等の目的で種々の工夫を加えている。例えば、
蒸発器、吸収器、再生器、凝縮器の構造を伝熱効率の良
い構造にしたり、吸収器の吸収液を循環方式にして吸収
性能を向上させたり、吸収器と再生器の濃厚水溶液を希
薄水溶液の熱交換を行って効率アップを行う等してい
る。従来の方式では、以上に説明した如く、排蒸気につ
いて実用上最大限である熱回収量、即ち約70℃と低下
するまで熱回収しているが、回収できる蒸気の温度は約
105℃である。これは以上に説明した通りであり、臭
化リチウム水溶液の気液平衡関係より定ってくるもの
で、いかんともし難い。しかし、熱回収した水蒸気を有
効利用する際、蒸気温度が高いことが望まれ、高い程利
用範囲が広がるものである。そこで105℃以上の、も
っと高い温度の蒸気を回収する方法が望まれる。ただし
熱回収量を犠牲にして、排蒸気の出口温度を70℃より
高くすると、回収する蒸気の温度は高くなるが、これで
は熱回収効果が低減し、実用的ではない。そこで本発明
は廃液焼却炉の排蒸気からの排熱回収で、その熱量を有
効活用して高温度の蒸気を発生することにより排熱を回
収することを目的とするものである。
The outline of the conventional method is shown in FIG.
As shown in, the various measures have been added for the purpose of practically improving the thermal efficiency and the economical efficiency of the equipment. For example,
The structure of the evaporator, absorber, regenerator, and condenser has a structure with good heat transfer efficiency, the absorption liquid of the absorber is circulated to improve the absorption performance, and the concentrated aqueous solution of the absorber and the regenerator is a dilute aqueous solution. The heat is exchanged to improve efficiency. In the conventional method, as described above, the heat recovery amount of the exhaust steam is practically the maximum, that is, the heat recovery is performed until the temperature decreases to about 70 ° C. However, the temperature of the recoverable steam is about 105 ° C. . This is as explained above, and it is determined from the gas-liquid equilibrium relationship of the aqueous solution of lithium bromide, which is difficult to say. However, when the steam recovered by heat is effectively used, it is desired that the steam temperature is high, and the higher the temperature, the wider the range of use. Therefore, a method of recovering steam having a higher temperature of 105 ° C. or higher is desired. However, if the outlet temperature of the exhaust steam is set higher than 70 ° C. at the expense of the heat recovery amount, the temperature of the recovered steam will increase, but this reduces the heat recovery effect and is not practical. Therefore, an object of the present invention is to recover the exhaust heat from the exhaust steam of the waste liquid incinerator by effectively utilizing the amount of heat and generating high-temperature steam.

【0006】[0006]

【課題を解決するための手段】本発明は以上のような目
的を達成するために次のような排熱の回収方法を提供す
るものである。すなわち、不凝縮性ガスを含む排蒸気を
熱源として水蒸気を発生せしめる蒸発器と、該蒸発器か
らの水蒸気を濃い水分吸収液で吸収することによって発
生する凝縮熱によって回収蒸気管を加熱する吸収器と、
該吸収器からの水蒸気を吸収した薄い水分吸収液を、排
蒸気を熱源として加熱して水蒸気と水分吸収液とに分離
する再生器と、該再生器からの水蒸気を凝縮せしめる凝
縮器とからなり、凝縮器で凝縮した水を蒸発器に供給
し、かつ再生器からの濃い水分吸収液を吸収器に供給す
る吸収式ヒートポンプであって、排蒸気の全量を蒸発器
に導き、ここから再生器に導いてそれぞれの熱源とした
後に外部に排出する方法によって吸収器における回収蒸
気管から高温の蒸気を発生させることを特徴とする排熱
の回収方法であり、又、廃液焼却炉装置より排出される
不凝縮性ガスを多く含む温度が95℃以下の排蒸気の全
量を蒸発器に導き、ここから再生器に導いてそれぞれの
熱源とした後に外部に排出する方法によって吸収器にお
ける回収蒸気管から110℃以上の温度の蒸気を発生さ
せることを特徴とする排熱の回収方法である。
The present invention provides the following method for recovering exhaust heat in order to achieve the above objects. That is, an evaporator that generates steam by using exhaust steam containing a non-condensable gas as a heat source, and an absorber that heats a recovery steam pipe by the heat of condensation generated by absorbing the steam from the evaporator with a concentrated moisture absorbing liquid. When,
It consists of a regenerator that heats a thin water absorbing liquid that has absorbed the water vapor from the absorber into a water vapor and a water absorbing liquid by using exhaust steam as a heat source, and a condenser that condenses the water vapor from the regenerator. , An absorption heat pump that supplies the water condensed by the condenser to the evaporator and also supplies the concentrated moisture absorbing liquid from the regenerator to the absorber. It is a method of recovering exhaust heat, which is characterized in that high-temperature steam is generated from the recovery steam pipe in the absorber by the method of introducing it to each heat source and then discharging it to the outside, and it is also discharged from the waste liquid incinerator device. The total amount of exhaust steam containing a large amount of non-condensable gas below 95 ° C is introduced to the evaporator, and then it is introduced to the regenerator to be used as each heat source and then discharged to the outside. Possible to generate a 10 ° C. above the temperature of the steam is a method of recovering waste heat, characterized in.

【0007】[0007]

【作用】廃液焼却炉排出の排蒸気からの排熱回収の例で
説明すると、この排蒸気に固有の特性があり、この特性
によって、排熱回収プロセスも特徴的なものとなってい
る。この固有の特性とは、この排蒸気は約半分は不凝縮
性ガスであり、残りの約半分が水蒸気である点にある。
このため、排蒸気中の水蒸気の潜熱を回収しようとする
と、水蒸気を凝縮させてその際の潜熱を回収するのであ
るが、約50%の不凝縮性ガスがあるため、排蒸気の凝
縮温度が、水蒸気の凝縮につれてどんどん低下していく
のである。この排蒸気の場合では、通常90℃が凝縮温
度となっており、水蒸気分の約70%を凝縮させると排
蒸気の温度は約70℃に低下する。通常の水蒸気の場合
は、その時の圧力に応じて、凝縮温度は一定している。
常圧の場合は100℃が凝縮温度であり、水蒸気を70
%凝縮させても凝縮温度は100℃である。この様な排
蒸気特性があるため、本発明の図1に示す如きプロセス
とする場合、即ち排蒸気を先ずヒートポンプ(15)の
蒸発器(1)に全量導入する場合は、排蒸気中の水蒸気
は凝縮し、温度も低下して行くが、排蒸気の温度が70
℃に低下しないうちに85℃程度で取出し、続いて再生
器(3)に導入するのである。その再生器(3)では、
排蒸気中の水蒸気の凝縮がさらに進み、70℃程度まで
低下させた後、取出す。この様なプロセスとすると、ヒ
ートポンプの蒸発器(1)での蒸発温度が80℃程度の
高温度とすることができ、吸収器(2)で発生する蒸気
の温度は125℃程度まで高めることができるのであ
る。一方、再生器(3)では約85℃の排蒸気を導入
し、70℃まで熱を回収するがこれは従来と同様であ
る。
Operation Explaining an example of exhaust heat recovery from the exhaust steam discharged from the waste liquid incinerator, there is a characteristic peculiar to this exhaust steam, and this characteristic also makes the exhaust heat recovery process characteristic. This unique property is that about half of this exhaust vapor is non-condensable gas and the other half is water vapor.
Therefore, when trying to recover the latent heat of the steam in the exhaust steam, the steam is condensed and the latent heat at that time is recovered. However, since there is about 50% of non-condensable gas, the condensation temperature of the exhaust steam is As the water vapor condenses, it gradually decreases. In the case of this exhaust steam, the condensing temperature is usually 90 ° C., and when about 70% of the steam content is condensed, the temperature of the exhaust steam falls to about 70 ° C. In the case of ordinary steam, the condensation temperature is constant depending on the pressure at that time.
At atmospheric pressure, the condensing temperature is 100 ° C, and steam is
The condensation temperature is 100.degree. C. even if the condensation is 100%. Due to such exhaust steam characteristics, when the process as shown in FIG. 1 of the present invention is performed, that is, when the exhaust steam is first introduced into the evaporator (1) of the heat pump (15) in its entirety, the steam in the exhaust steam is Is condensed and the temperature drops, but the temperature of the exhaust steam is 70
It is taken out at about 85 ° C before it is lowered to ℃ and then introduced into the regenerator (3). In the regenerator (3),
Condensation of water vapor in the exhaust steam further proceeds, the temperature is lowered to about 70 ° C., and then the steam is taken out. With such a process, the evaporation temperature in the evaporator (1) of the heat pump can be as high as about 80 ° C, and the temperature of the steam generated in the absorber (2) can be increased to about 125 ° C. You can do it. On the other hand, in the regenerator (3), waste steam of about 85 ° C. is introduced to recover heat up to 70 ° C., which is the same as the conventional one.

【0008】[0008]

【実施例】本発明は請求項1の発明を特徴とするもので
あるが、以下請求項2の発明に基づいて図面に示す実施
例について説明する。本発明では、従来のもののよう
に、排蒸気を2分割せずに全量を蒸発器に導入し、その
後約85℃の温度まで低下したところで取出し、次いで
再生器に導入し約70℃の温度まで低下したところで取
出す。すなわち、図1において排蒸気(5)は蒸発器
(1)の加熱管(18)に導いてこれを熱源として蒸発
器(1)内の水を蒸発させ、排蒸気(5)が約85℃の
温度まで低下したところで放出排蒸気管(9)から取出
し、次いで再生器(3)の加熱管(19)に導入し、約
70℃の温度まで低下したところで放出排蒸気(11)
として取出すものである。それ以外のヒートポンプの構
成は図2と同様であるので同一の部分には同一の符号を
附した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized by the invention of claim 1, but an embodiment shown in the drawings will be described below based on the invention of claim 2. According to the present invention, unlike the conventional one, the entire amount of exhaust steam is introduced into the evaporator without being divided into two, and then taken out when the temperature has dropped to about 85 ° C. and then introduced into the regenerator to a temperature of about 70 ° C. Take it out when it drops. That is, in FIG. 1, the exhaust steam (5) is guided to the heating pipe (18) of the evaporator (1) and the water in the evaporator (1) is evaporated by using this as a heat source. When the temperature of the exhaust gas is reduced to the temperature of 1, the discharged exhaust steam pipe (9) is taken out and then introduced into the heating pipe (19) of the regenerator (3).
Is taken out as. Since the configuration of the heat pump other than that is the same as that of FIG. 2, the same portions are denoted by the same reference numerals.

【0009】この様にすると、蒸発器(1)では排蒸気
は約90℃で入り、約85℃で出ることになり、蒸発器
(1)中の水はこれにより若干低い温度の約80℃とな
り、同時に約80℃の水蒸気が発生する。この水蒸気が
水蒸気管(27)を介して吸収器(2)に入り、臭化リ
チウム水溶液に吸収され、同時にこの水溶液の温度も上
昇する。この時、80℃の水蒸気との気液平衡関係から
臭化リチウム水溶液の温度は約130℃となる。そうす
ると、吸収器(2)内の冷却管中(17)の30℃の純
水は加熱されて約125℃の水蒸気(12)となって取
出すことができる。従来方式では約105℃であった水
蒸気が、125℃とすることができるのである。この理
由は排蒸気に関し、約90℃のものを約85℃まで低下
したところで蒸発器(1)より取出している点にある。
この場合熱量的には従来方式のものと同一である。とい
うのは本方式では排蒸気を全量導入しているからであ
る。
In this way, in the evaporator (1), the exhaust steam enters at about 90 ° C. and exits at about 85 ° C., and the water in the evaporator (1) thereby has a slightly lower temperature of about 80 ° C. At the same time, steam of about 80 ° C. is generated. This water vapor enters the absorber (2) through the water vapor pipe (27), is absorbed by the lithium bromide aqueous solution, and at the same time, the temperature of this aqueous solution rises. At this time, the temperature of the lithium bromide aqueous solution is about 130 ° C. due to the vapor-liquid equilibrium relationship with water vapor at 80 ° C. Then, the pure water at 30 ° C. in the cooling pipe (17) in the absorber (2) is heated and can be taken out as water vapor (12) at about 125 ° C. Water vapor, which was about 105 ° C in the conventional method, can be changed to 125 ° C. The reason for this is that with respect to the exhaust steam, when the temperature of about 90 ° C. is lowered to about 85 ° C., it is taken out from the evaporator (1).
In this case, the amount of heat is the same as in the conventional system. This is because all the exhaust steam is introduced in this method.

【0010】次に本発明では再生器(3)の熱源として
蒸発器(1)より取出した約85℃の排蒸気を用いる。
これを約70℃まで低下させ、この際の放出熱を使用し
ている。この場合に排蒸気から取出す熱量としては先の
蒸発器(1)で取出した熱量と略同一である。このため
従来方式の如く、約90℃の排蒸気を導入しなくても熱
量としては十分足りるのである。さらに、この再生器
(3)では臭化リチウム水溶液を加熱蒸発させて、水分
を水蒸気として凝縮器(4)に移動させる。この時水蒸
気の温度は、排蒸気の温度より若干低い約65℃とな
る。この点では従来方式と同一であり、さらに凝縮器
(4)での操作も従来方式と同一である。
Next, in the present invention, the waste steam at about 85 ° C. taken out from the evaporator (1) is used as the heat source of the regenerator (3).
This is lowered to about 70 ° C., and the heat released at this time is used. In this case, the amount of heat extracted from the exhaust steam is substantially the same as the amount of heat extracted by the evaporator (1). Therefore, unlike the conventional method, the amount of heat is sufficient without introducing the exhaust steam at about 90 ° C. Furthermore, in this regenerator (3), the aqueous solution of lithium bromide is heated and evaporated, and the moisture is transferred to the condenser (4) as water vapor. At this time, the temperature of the steam becomes about 65 ° C., which is slightly lower than the temperature of the exhaust steam. This point is the same as the conventional method, and the operation of the condenser (4) is also the same as the conventional method.

【0011】次に排蒸気の特性について考察してみる
と、通常燃焼系統より出てくる燃焼ガスは窒素と炭酸ガ
スを主成分としたガスである。これに水を直接スプレー
して冷却すると通常95℃以下の温度に冷却される。こ
の温度は露点と呼ばれる。この排蒸気は通常600℃〜
1200℃の温度の燃焼排ガスを水スプレーで冷却した
ものであり、不凝縮ガスを大量に含んだものである。そ
こでこの排蒸気から熱回収する場合の特性について説明
すると、図3は排蒸気の保有している熱量(エンタルピ
ー)と温度の関係を図示している。この図より排蒸気か
ら熱を回収する場合、即ち排蒸気の熱量を下げると、そ
れにつれて温度が低下していくことがわかる。また、単
位温度当りの保有熱量は各温度によって異なっており、
高温度になる程、保有熱量は大きいこともわかる。これ
に対し排蒸気が100%水蒸気の場合は、排蒸気からど
んどん熱を回収したとしても、排蒸気の温度はその時の
圧力に対応した温度で一定値を保つのである。実施例の
場合、排蒸気は約90℃の温度で約900kcal/kg DryG
asの熱量を保有しており、これが蒸発器(1)で熱回収
されて約85℃の温度となり、保有熱量は約550kcal
/kg DryGasとなる。即ち、この差分の熱量が蒸発器
(1)で使われたことになる。更に再生器(3)で、こ
の排蒸気はさらに熱回収されて、約70℃の温度まで低
下する。この時排蒸気の保有熱量は約200kcal/kg Dr
yGasであり、この差分の熱量が再生器で回収されたこと
になる。
Next, considering the characteristics of the exhaust steam, the combustion gas that normally comes out from the combustion system is a gas containing nitrogen and carbon dioxide as main components. If water is directly sprayed onto this and cooled, it is usually cooled to a temperature of 95 ° C or lower. This temperature is called the dew point. This exhaust steam is usually 600 ℃ ~
The combustion exhaust gas at a temperature of 1200 ° C. is cooled with a water spray, and contains a large amount of non-condensable gas. Then, the characteristic in the case of recovering heat from this exhaust steam will be described. FIG. 3 shows the relationship between the amount of heat (enthalpy) possessed by the exhaust steam and the temperature. From this figure, it is understood that when heat is recovered from the exhaust steam, that is, when the amount of heat of the exhaust steam is reduced, the temperature decreases accordingly. Also, the amount of heat possessed per unit temperature is different for each temperature,
It can also be seen that the higher the temperature, the greater the amount of heat that is possessed. On the other hand, when the exhaust steam is 100% steam, the temperature of the exhaust steam maintains a constant value at a temperature corresponding to the pressure at that time even if heat is recovered from the exhaust steam. In the case of the embodiment, the exhaust steam is about 900 kcal / kg DryG at a temperature of about 90 ° C.
It retains as heat quantity, which is recovered by the evaporator (1) to a temperature of about 85 ° C, and the heat quantity held is about 550 kcal.
/ kg Dry Gas. That is, this difference in heat quantity is used in the evaporator (1). Further, in the regenerator (3), the exhaust steam is further heat-recovered and is lowered to a temperature of about 70 ° C. At this time, the heat capacity of the exhaust steam is approximately 200 kcal / kg Dr
This is yGas, which means that the heat quantity of this difference was recovered by the regenerator.

【0012】何れにしても本発明のものによれば、24
T/Hの90℃の排蒸気から約4.5T/Hの125℃
の水蒸気を回収することができた。なお、実施例は12
5℃の水蒸気を回収しているが蒸発器、吸収器等の設備
仕様を大きくすることによって125℃以上、130〜
140℃の水蒸気を回収することも可能である。
In any case, according to the invention, 24
From T / H 90 ℃ exhaust steam to about 4.5T / H 125 ℃
It was possible to recover the water vapor. The example is 12
Although it collects water vapor at 5 ℃, 125 ℃ or higher, 130 ~
It is also possible to recover 140 ° C. steam.

【0013】[0013]

【発明の効果】本発明によれば、例えば廃液焼却炉装置
から排出される不凝縮ガスを多く含む温度が95℃以下
の排蒸気の全量を蒸発器と再生器の熱源として分量する
ことなく、吸収式ヒートポンプの蒸発器に導き、ここか
ら再生器に導いてそれぞれの熱源とした後で外部に排出
する方法によってヒートポンプの吸収器における回収蒸
気管から高温度の蒸気を発生させるものであって、蒸発
器での排蒸気の出口温度を高めることによって蒸発器で
高めの水蒸気を発生せしめ、この水蒸気が吸収器に入
り、この高めの水蒸気と水分吸収液との気液平衡関係か
ら吸収器内の水分吸収液としての臭化リチウム水溶液の
温度を高めのものとすることができ、これによって吸収
器内の回収蒸気管中の純水は加熱されて高温度の蒸気と
して取出すことができるものであり、廃液焼却炉の排蒸
気の熱量を有効活用して排熱を回収することができる。
EFFECTS OF THE INVENTION According to the present invention, for example, the total amount of exhaust vapor containing a large amount of non-condensable gas discharged from a waste liquid incinerator and having a temperature of 95 ° C. or lower is not used as a heat source for an evaporator and a regenerator, A high temperature steam is generated from the recovery steam pipe in the absorber of the heat pump by the method of introducing the heat to the evaporator of the absorption heat pump, and then guiding it to the regenerator to make it the respective heat source and then discharging it to the outside. By raising the outlet temperature of the exhaust steam in the evaporator, higher vapor is generated in the evaporator, this vapor enters the absorber, and due to the vapor-liquid equilibrium relationship between this higher vapor and the water absorbing liquid, It is possible to raise the temperature of the aqueous solution of lithium bromide as a water absorbing liquid so that the pure water in the recovery steam pipe in the absorber can be heated and taken out as high temperature steam. A shall, can be recovered waste heat by effectively utilizing the heat of the exhaust steam of the waste incinerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を示す説明図FIG. 1 is an explanatory diagram showing a method of the present invention.

【図2】従来方法を示す説明図FIG. 2 is an explanatory diagram showing a conventional method.

【図3】排蒸気の温度と排蒸気の保有熱量との関係を示
す図
FIG. 3 is a diagram showing a relationship between a temperature of exhaust steam and a heat quantity of exhaust steam.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 再生器 4 凝縮器 5 排蒸気 6 排蒸気管 7 排蒸気管 8 放出排蒸気 9 放出排蒸気管 10 放出排蒸気管 11 放出排蒸気 12 回収水蒸気 13 冷却水 14 廃液焼却炉 15 吸収式ヒートポンプ 16 吸収器点滴管 17 回収蒸気管 18 蒸発器加熱管 19 再生器加熱管 20 再生器点滴管 21 凝縮器冷却管 22 水還元管 23 水分吸収液還元管 24 ポンプ 25 ポンプ 26 ポンプ 27 水蒸気管 28 水蒸気管 29 薄い水分吸収液管 1 Evaporator 2 Absorber 3 Regenerator 4 Condenser 5 Exhaust steam 6 Exhaust steam pipe 7 Exhaust steam pipe 8 Discharged exhaust steam 9 Discharged exhaust steam pipe 10 Discharged exhaust steam pipe 11 Discharged exhaust steam 12 Collected steam 13 Cooling water 14 Waste liquid incineration Furnace 15 Absorption heat pump 16 Absorber drip pipe 17 Recovery steam pipe 18 Evaporator heating pipe 19 Regenerator heating pipe 20 Regenerator drip pipe 21 Condenser cooling pipe 22 Water reduction pipe 23 Moisture absorbing liquid reduction pipe 24 Pump 25 Pump 26 Pump 27 Steam pipe 28 Steam pipe 29 Thin water absorbing liquid pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不凝縮性ガスを含む排蒸気を熱源として
水蒸気を発生せしめる蒸発器と、該蒸発器からの水蒸気
を濃い水分吸収液で吸収することによって発生する凝縮
熱によって回収蒸気管を加熱する吸収器と、該吸収器か
らの水蒸気を吸収した薄い水分吸収液を、排蒸気を熱源
として加熱して水蒸気と水分吸収液とに分離する再生器
と、該再生器からの水蒸気を凝縮せしめる凝縮器とから
なり、凝縮器で凝縮した水を蒸発器に供給し、かつ再生
器からの濃い水分吸収液を吸収器に供給する吸収式ヒー
トポンプであって、排蒸気の全量を蒸発器に導き、ここ
から再生器に導いてそれぞれの熱源とした後に外部に排
出する方法によって吸収器における回収蒸気管から高温
の蒸気を発生させることを特徴とする排熱の回収方法。
1. An evaporator for generating steam using waste steam containing a non-condensable gas as a heat source, and a recovery steam pipe heated by condensation heat generated by absorbing steam from the evaporator with a concentrated moisture absorbing liquid. Which absorbs water vapor from the absorber, a regenerator that heats the thin water absorbing liquid that has absorbed the water vapor from the absorber into the water vapor and the water absorbing liquid, and condenses the water vapor from the regenerator. An absorption heat pump that consists of a condenser and supplies the water condensed by the condenser to the evaporator, and the concentrated moisture absorption liquid from the regenerator to the absorber, and guides the entire amount of exhaust steam to the evaporator. , A method for recovering exhaust heat, characterized in that high-temperature steam is generated from a recovery steam pipe in an absorber by a method in which the steam is guided to the regenerator from here and used as respective heat sources and then discharged to the outside.
【請求項2】 廃液焼却炉装置より排出される不凝縮性
ガスを多く含む温度が95℃以下の排蒸気の全量を蒸発
器に導き、ここから再生器に導いてそれぞれの熱源とし
た後に外部に排出する方法によって吸収器における回収
蒸気管から110℃以上の温度の蒸気を発生させること
を特徴とする請求項1記載の排熱の回収方法。
2. The whole amount of exhaust vapor discharged from the waste liquid incinerator apparatus and containing a large amount of non-condensable gas and having a temperature of 95 ° C. or lower is introduced into an evaporator, and from there, introduced into a regenerator to be used as a heat source for each, and then externally. The exhaust heat recovery method according to claim 1, wherein steam having a temperature of 110 ° C. or higher is generated from the recovery steam pipe in the absorber by the method of exhausting the exhaust heat.
JP7062514A 1995-03-22 1995-03-22 Recovering method for exhaust heat Withdrawn JPH08261600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7062514A JPH08261600A (en) 1995-03-22 1995-03-22 Recovering method for exhaust heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7062514A JPH08261600A (en) 1995-03-22 1995-03-22 Recovering method for exhaust heat

Publications (1)

Publication Number Publication Date
JPH08261600A true JPH08261600A (en) 1996-10-11

Family

ID=13202371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7062514A Withdrawn JPH08261600A (en) 1995-03-22 1995-03-22 Recovering method for exhaust heat

Country Status (1)

Country Link
JP (1) JPH08261600A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump
CN100458290C (en) * 2004-01-12 2009-02-04 张跃 Apparatus for refrigeration or pyrogenicity or sanitary hot water using generator exhaust or residual heat
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
CN102242982A (en) * 2010-05-14 2011-11-16 荏原冷热***株式会社 Absorption heat pump
JP2011242013A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
JP2011242014A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR20110136778A (en) 2009-03-11 2011-12-21 쓰키시마 간쿄 엔지니어링 가부시키가이샤 Method of generating electricity by burning waste and waste burning facility
WO2015058462A1 (en) * 2013-10-24 2015-04-30 温海泉 Gas turbine intake air cooling device using waste heat as driving force
JP2015183967A (en) * 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN108590779A (en) * 2018-04-26 2018-09-28 东莞理工学院 Geothermal energy cogeneration cooling heating system based on Kalina cycles and lithium bromide refrigerating
CN110407277A (en) * 2019-09-10 2019-11-05 南京人天环保科技有限公司 A kind of apparatus and method that low cost high-salt wastewater is separated by solid-liquid separation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458290C (en) * 2004-01-12 2009-02-04 张跃 Apparatus for refrigeration or pyrogenicity or sanitary hot water using generator exhaust or residual heat
JP2006138614A (en) * 2004-10-13 2006-06-01 Ebara Corp Absorbing type heat pump
JP4588425B2 (en) * 2004-10-13 2010-12-01 株式会社荏原製作所 Absorption heat pump
JP2009270754A (en) * 2008-05-07 2009-11-19 Tsukishima Kankyo Engineering Ltd Combustion method and combustion device of waste fluid
JP4542171B2 (en) * 2008-05-07 2010-09-08 月島環境エンジニアリング株式会社 Waste liquid combustion method and combustion apparatus therefor
US8893498B2 (en) 2009-03-11 2014-11-25 Tsukishima Kankyo Engineering Ltd. Method of power generation by waste combustion and waste combustion system
KR20110136778A (en) 2009-03-11 2011-12-21 쓰키시마 간쿄 엔지니어링 가부시키가이샤 Method of generating electricity by burning waste and waste burning facility
JP2011242013A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
JP2011242014A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
CN102242982A (en) * 2010-05-14 2011-11-16 荏原冷热***株式会社 Absorption heat pump
WO2015058462A1 (en) * 2013-10-24 2015-04-30 温海泉 Gas turbine intake air cooling device using waste heat as driving force
JP2015183967A (en) * 2014-03-25 2015-10-22 荏原冷熱システム株式会社 absorption heat pump
CN108590779A (en) * 2018-04-26 2018-09-28 东莞理工学院 Geothermal energy cogeneration cooling heating system based on Kalina cycles and lithium bromide refrigerating
CN110407277A (en) * 2019-09-10 2019-11-05 南京人天环保科技有限公司 A kind of apparatus and method that low cost high-salt wastewater is separated by solid-liquid separation

Similar Documents

Publication Publication Date Title
US6076369A (en) Evaporative concentration apparatus for waste water
US20010037728A1 (en) Method for removing carbon dioxide from the exhaust gas from a gas turbine plant, and device for carrying out the method
EP0485375B1 (en) Method and apparatus for evaporation of liquids
US4294590A (en) Removal of undesired gaseous components from hot waste gases
CA1222940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
JPH08261600A (en) Recovering method for exhaust heat
US4860548A (en) Air conditioning process and apparatus therefor
US4102388A (en) Heat recovery process
US4672821A (en) Absorption-type heat pump
US4094355A (en) Heat recovery process
FI72799C (en) SAETT ATT AOSTADKOMMA LAERMEAOTERVINNING UR FUKTIG GAS GENOM VATTENAONGABSORPTION OCH ANLAEGGNING FOER SAETTETS UTFOERANDE.
JP2019162591A (en) Evaporation concentrator
US4662191A (en) Absorption - type refrigeration system
US4615177A (en) Solution heat pump apparatus and method
JP2858908B2 (en) Absorption air conditioner
JPH07198222A (en) Heat pump including reverse rectifying part
JPH0821209A (en) Power generating facility by steam turbine utilising exhaust heat
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
JP2005098551A (en) Method and facility for recovering energy generated in sewage treatment plant
KR102558299B1 (en) Waste heat recycling system using absorption chiller
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JPH05263610A (en) Power generating facility
JP3387671B2 (en) Absorption type heat pump device
JPH05301002A (en) Evaporating concentrator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604