JPH08246142A - Oxide sintered compact - Google Patents

Oxide sintered compact

Info

Publication number
JPH08246142A
JPH08246142A JP7043711A JP4371195A JPH08246142A JP H08246142 A JPH08246142 A JP H08246142A JP 7043711 A JP7043711 A JP 7043711A JP 4371195 A JP4371195 A JP 4371195A JP H08246142 A JPH08246142 A JP H08246142A
Authority
JP
Japan
Prior art keywords
phase
tin
sintered body
powder
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7043711A
Other languages
Japanese (ja)
Inventor
Shoji Takanashi
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7043711A priority Critical patent/JPH08246142A/en
Publication of JPH08246142A publication Critical patent/JPH08246142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE: To provide an ITO target ensuring very low frequency of abnormal electric discharge during sputtering and not causing nodules even after use for a long time. CONSTITUTION: This oxide sintered compact consists essentially of indium, tin and oxygen and consists of an In2 O3 phase, an SnO2 phase and a metal tin phase. The integral intensity of the X-ray diffraction peak of the (110) face of the SnO2 phase is <=2% of that of the X-ray diffraction peak of the (222) face of the In2 O3 phase and the integral intensity of the X-ray diffraction peak of the (101) face of the metal tin phase is <=4% of that of the X-ray diffraction peak of the (222) face of the In.O. phase. Elemental tin may be allowed to enter into solid soln. in the In2 O3 phase by >=2wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化インジウム・酸化
錫(以下、「ITO」という)焼結体に関し、特にスパ
ッタリング法によって透明導電膜を形成する際のスパッ
タリング用ターゲットとして極めて優れた性能を有する
ITO焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body of indium oxide / tin oxide (hereinafter referred to as "ITO"), which has extremely excellent performance as a sputtering target when a transparent conductive film is formed by a sputtering method. The present invention relates to an ITO sintered body.

【0002】[0002]

【従来の技術】ITO焼結体をスパッタリングして得ら
れる透明導電膜は、その比抵抗値の低さから有望な膜と
して注目されている。例えば300℃程度の高温に加熱
された基板上に適当な条件でITOを物理蒸着すること
により、透明性が良く且つ比抵抗値が2.0×10-4Ω
・cm以下の良質なITO膜が得られる。
2. Description of the Related Art A transparent conductive film obtained by sputtering an ITO sintered body is attracting attention as a promising film because of its low specific resistance value. For example, by physically depositing ITO on a substrate heated to a high temperature of about 300 ° C. under appropriate conditions, the transparency is good and the specific resistance value is 2.0 × 10 −4 Ω.
・ A good quality ITO film of cm or less can be obtained.

【0003】このような高温に加熱された基板上に比抵
抗値の低いITO膜を成膜するためのITO焼結体とし
て、特開昭62−21751号公報にはIn23粉末と
SnO2粉末を適当な量だけ配合し、混合・粉砕を行
い、これを成形して仮焼した後再度粉砕を行って粉末と
し、得られた仮焼済み粉末を更に成形・焼結して製造さ
れたITO焼結体と、混合・粉砕した後ホットプレスの
ような高温加圧下で焼結する方法とが開示されている。
また、特開平2−115326号公報には、In23
末と金属錫粉末を適当な量だけ配合し、仮焼した後再度
粉砕を行って粉末とし、得られた仮焼済み粉末に更にホ
ットプレスを行うITO焼結体の製造方法が開示されて
いる。
As an ITO sintered body for forming an ITO film having a low specific resistance value on a substrate heated to such a high temperature, Japanese Patent Laid-Open No. 62-21751 discloses In 2 O 3 powder and SnO. Produced by mixing 2 powders in an appropriate amount, mixing and crushing, shaping and calcining this, then crushing again to obtain powder, and further shaping and sintering the resulting calcined powder. Also disclosed are an ITO sintered body and a method of mixing and crushing and then sintering under high temperature pressure such as hot pressing.
Further, in Japanese Unexamined Patent Publication No. 2-115326, In 2 O 3 powder and metal tin powder are mixed in appropriate amounts, calcined and then pulverized again to obtain powder, and the resulting calcined powder is further added. A method for manufacturing an ITO sintered body by hot pressing is disclosed.

【0004】しかし、このようにして得られたITO焼
結体を用いてスパッタリングを行うと、異常放電の発生
によりプラズマ状態が不安定になり、安定した成膜が行
われず、スパッタされた膜の構造が悪化し、膜の特性値
が劣化するという不都合が生じる。また、異常放電が頻
繁に発生する状況下において長時間ITOターゲットを
使用していると、ターゲット表面にノジュールが生じ、
これにより成膜速度が低下し、生産性が低下するという
問題も生じる。
However, when the ITO sintered body thus obtained is used for sputtering, the plasma state becomes unstable due to the occurrence of abnormal discharge, so that stable film formation is not performed and the sputtered film The structure deteriorates, and the characteristic value of the film deteriorates. In addition, when the ITO target is used for a long time in a situation where abnormal discharge frequently occurs, nodules are generated on the target surface,
As a result, there is a problem in that the film forming speed is lowered and the productivity is lowered.

【0005】[0005]

【発明が解決しようとする課題】従って本発明は、上述
したITOターゲットのスパッタリングにかかわる問題
点を解決し、異常放電の発生およびノジュールの生成を
有効に抑制することが可能な酸化物焼結体を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention solves the above-mentioned problems associated with the sputtering of an ITO target and can effectively suppress the occurrence of abnormal discharge and the generation of nodules. The purpose is to provide.

【0006】[0006]

【課題を解決するため手段】本発明の酸化物焼結体は、
インジウム、錫および酸素を主成分とする酸化物焼結体
において、In23相、SnO2相、金属錫相から構成
されることを特徴とする。また、上記構成で、SnO2
相の(110)面のX線回折ピークの積分強度が、In
23相の(222)面のX線回折ピークの積分強度の2
%以下であり、且つ金属錫相の(101)面のX線回折
ピークの積分強度が、In23相の(222)面のX線
回折ピークの積分強度の4%以下であることを特徴とす
る。また、上記いずれかの構成で、In23相に2重量
%以上の錫元素が固溶されていることを特徴とする。
The oxide sintered body of the present invention comprises:
An oxide sintered body containing indium, tin and oxygen as main components is characterized by being composed of an In 2 O 3 phase, a SnO 2 phase and a metal tin phase. In addition, with the above configuration, SnO 2
The integrated intensity of the X-ray diffraction peak of the (110) plane of the phase is In
2 of the integrated intensity of the X-ray diffraction peak of the (222) plane of the 2 O 3 phase
% And the integrated intensity of the X-ray diffraction peak of the (101) plane of the metal tin phase is 4% or less of the integrated intensity of the X-ray diffraction peak of the (222) plane of the In 2 O 3 phase. Characterize. Further, in any one of the above configurations, 2% by weight or more of tin element is solid-dissolved in the In 2 O 3 phase.

【0007】[0007]

【作用】異常放電の発生およびノジュールの生成原因を
調べるために従来法で得た焼結体を分析すると、特開昭
62−21751号公報にある方法で作製されるITO
焼結体では、例えば10重量%のSnO2粉末を配合し
て製造される場合、In23相中に固溶される錫原子は
3重量%前後であり、残りの錫は凝集して錫濃度の高い
中間相として形成されている。またこの焼結体は低密度
であるため、大きな空孔部が点在している。一方、高密
度を得るためにホットプレスを用いれば大きな空孔部は
消失するが、600〜800℃程度の低温処理であるた
め、錫原子はほとんど固溶されずに錫は全てSnO2
として形成される。
When the sintered body obtained by the conventional method is analyzed in order to investigate the cause of abnormal discharge and the generation of nodules, the ITO produced by the method disclosed in JP-A-62-21751 is analyzed.
In a sintered body, for example, when 10% by weight of SnO 2 powder is blended, the tin atom dissolved in the In 2 O 3 phase is about 3% by weight, and the remaining tin is agglomerated. It is formed as an intermediate phase having a high tin concentration. Moreover, since this sintered body has a low density, large voids are scattered. On the other hand, if a hot press is used to obtain a high density, large voids disappear, but since it is a low temperature treatment of about 600 to 800 ° C., tin atoms are hardly solid-dissolved and all tin is converted into SnO 2 phase. It is formed.

【0008】さらに特開平2−115326号公報にあ
る方法で焼結体を作製すれば、SnO2相がなく、かつ
高密度である焼結体は得られるが、In23粉末と添加
される金属錫粉末との濡れ性が悪いためにIn23相と
金属錫相に分離され、その界面には大きな空孔部が存在
しやすい。またホットプレスによって焼結体の表面に金
属錫がシミだし、その焼結体を用いて成膜すれば粗悪な
膜質しか得ることができず、さらに異常放電が発生して
放電状態が安定化しない。
Further, if a sintered body is produced by the method disclosed in Japanese Patent Laid-Open No. 2-115326, a sintered body having no SnO 2 phase and high density can be obtained, but it is added with In 2 O 3 powder. Due to its poor wettability with metallic tin powder, it is separated into an In 2 O 3 phase and a metallic tin phase, and large voids are likely to exist at the interface. In addition, metal tin stains on the surface of the sintered body due to hot pressing, and if the sintered body is used to form a film, only poor film quality can be obtained, and abnormal discharge occurs and the discharge state is not stabilized. .

【0009】以上のことから異常放電およびノジュール
は以下の2点が原因となって発生していることがわかっ
た。 1.焼結体中に存在する表面抵抗値の低いSnO2相、
もしくは錫濃度の高い中間相 2.焼結体表面にある大きな空孔部 すなわち、本発明は上記2点を解消することによって異
常放電の発生およびノジュールの生成を有効に抑制する
ことを可能としたものである。
From the above, it has been found that abnormal discharge and nodules are caused by the following two points. 1. SnO 2 phase with low surface resistance existing in the sintered body,
Or an intermediate phase with a high tin concentration 2. Large voids on the surface of the sintered body, that is, the present invention makes it possible to effectively suppress the occurrence of abnormal discharge and the generation of nodules by eliminating the above two points.

【0010】本発明の酸化物焼結体は、例えばIn23
粉末中に添加する錫原料粉末を金属錫粉末とSnO2
末とし、焼結工程を熱間静水圧プレス法(HIP)とす
ることで得られる。即ち、錫原料粉として金属錫粉末と
SnO2粉末を配合することによって、In23粉末と
金属錫粉末との濡れ性を改善し、且つ加圧下における焼
結体表面への金属錫のシミだしを防止することができ
る。そして金属錫粉末を添加することによって、異常放
電、ノジュールの生成の起点となるSnO2相の割合を
低く抑えることができる。
The oxide sintered body of the present invention is, for example, In 2 O 3
The tin raw material powder added to the powder is metal tin powder and SnO 2 powder, and the sintering process is performed by hot isostatic pressing (HIP). That is, by mixing metal tin powder and SnO 2 powder as the tin raw material powder, the wettability between the In 2 O 3 powder and the metal tin powder is improved, and the stain of the metal tin on the surface of the sintered body under pressure is improved. Dashi can be prevented. Then, by adding the metal tin powder, it is possible to suppress the proportion of the SnO 2 phase, which is a starting point of abnormal discharge and generation of nodules, to be low.

【0011】この際の金属錫粉末とSnO2粉末の配合
比は3:7〜7:3の割合が好ましい。また焼結体内に
少量存在するSnO2相は、ボールミル混合を十分に行
うことで微細に分散されて、異常放電、ノジュールの生
成の起点となることはない。更にカプセル内に充填して
真空封止した後、HIP処理を行うことによって金属錫
粉末の酸化防止、焼結体表面への金属錫のシミだしを抑
制することができる。
In this case, the compounding ratio of the metal tin powder and the SnO 2 powder is preferably 3: 7 to 7: 3. Further, the SnO 2 phase, which is present in a small amount in the sintered body, is finely dispersed by thorough ball mill mixing, and does not become a starting point of abnormal discharge and generation of nodules. Further, by filling the inside of the capsule and vacuum-sealing, HIP treatment can be performed to prevent oxidation of the metal tin powder and to suppress stain of the metal tin on the surface of the sintered body.

【0012】このようにして得られた焼結体は、SnO
2相の(110)面のX線回折ピークの積分強度が、I
23相の(222)面のX線回折ピークの積分強度の
2%以下であり、且つ金属錫相の(101)面のX線回
折ピークの積分強度が、In23相の(222)面のX
線回折ピークの積分強度の4%以下である。また、In
23相中に固溶される錫原子は2重量%以上である。更
に、焼結密度は相対密度90%以上が達成される。
The sintered body thus obtained is SnO.
The integrated intensity of the X-ray diffraction peak of the two- phase (110) plane is I
The integrated intensity of the X-ray diffraction peak of the (222) plane of the n 2 O 3 phase is 2% or less, and the integrated intensity of the X-ray diffraction peak of the (101) plane of the metal tin phase of the In 2 O 3 phase is X of (222) plane
It is 4% or less of the integrated intensity of the line diffraction peak. Also, In
The tin atom solid-dissolved in the 2 O 3 phase is 2% by weight or more. Further, the relative density of the sintered density is 90% or more.

【0013】(ITO焼結体)本発明のITO焼結体は
実質的にインジウム、錫および酸素からなるものであ
り、In23−SnO2系のものである。この組成自体
は公知のITO焼結体と同様であり、一般に錫の平均組
成は3〜12重量%であり、インジウムの平均組成は7
0〜78重量%にある。
(ITO Sintered Body) The ITO sintered body of the present invention consists essentially of indium, tin and oxygen, and is of the In 2 O 3 —SnO 2 system. This composition itself is the same as that of a known ITO sintered body, and in general, the average composition of tin is 3 to 12% by weight, and the average composition of indium is 7%.
0 to 78% by weight.

【0014】(ITO焼結体の製造)本発明のITO焼
結体の製造には、平均粒径が1μm以下の微細なIn2
3粉末中に平均粒径が5μm以下のSnO2粉末と金属
錫粉末を添加して原料粉末として用いることができる。
原料粉末の混合には湿式ボールミルを用いることができ
る。この場合、例えばボールはジルコニアボールを用
い、混合時間は18時間とする。また従来技術の例に述
べられている仮焼は行わう必要はない。仮焼による錫の
凝集を防止するためである。仮焼を行わない場合、焼結
工程で割れ、欠け等の不良が発生しやすくなるが、この
問題については焼結工程を工夫することにより解決でき
る。
(Production of ITO Sintered Body) In order to produce the ITO sintered body of the present invention, fine In 2 having an average particle size of 1 μm or less is used.
SnO 2 powder having an average particle size of 5 μm or less and metal tin powder can be added to O 3 powder to be used as a raw material powder.
A wet ball mill can be used for mixing the raw material powders. In this case, for example, balls are zirconia balls and the mixing time is 18 hours. Also, it is not necessary to perform the calcination described in the prior art example. This is to prevent aggregation of tin due to calcination. When calcination is not performed, defects such as cracks and chips are likely to occur in the sintering process, but this problem can be solved by devising the sintering process.

【0015】焼結体の作製方法はHIP処理によって行
う。まず原料粉末をカプセル内に充填して真空封止した
後、800℃以上、100MPa以上でHIP処理を行
う。
The sintered body is manufactured by HIP processing. First, the raw material powder is filled in a capsule and vacuum-sealed, and then HIP treatment is performed at 800 ° C. or higher and 100 MPa or higher.

【0016】[0016]

【実施例】以下に実施例を用いて本発明の優れた効果を
説明する。 実施例1 ・・・ 平均粒経5.0μmからなる金属錫
粉末と平均粒径1.0μmからなるSnO2粉末とを重
量割合が7:3になるように配合して、これを錫原料粉
末とした。そして該原料粉末を錫組成が7.8重量%と
なるように平均粒径0.2μmからなるIn23粉末中
に配合し、湿式ボールミルで18時間混合し乾燥を行っ
た。そして銅製のカプセルに原料粉末を充填して真空封
止後、1000℃、100MPaで2時間のHIP処理
した。得られた焼結体の大きさは、φ127mm×厚さ
6mmの円盤状の焼結体である。
EXAMPLES The excellent effects of the present invention will be described below with reference to examples. Example 1 ... Metal tin powder having an average particle size of 5.0 μm and SnO 2 powder having an average particle size of 1.0 μm were mixed in a weight ratio of 7: 3, and this was used as a tin raw material powder. And Then, the raw material powder was blended into In 2 O 3 powder having an average particle size of 0.2 μm so that the tin composition was 7.8% by weight, and was mixed for 18 hours in a wet ball mill and dried. Then, a copper capsule was filled with the raw material powder, vacuum-sealed, and then subjected to HIP treatment at 1000 ° C. and 100 MPa for 2 hours. The size of the obtained sintered body is a disk-shaped sintered body having a diameter of 127 mm and a thickness of 6 mm.

【0017】この焼結体の一部を切断し切断面を研磨し
た後、X線回折測定を2θ=25゜〜37゜の角度範囲
で行い、10回積算した結果、In23相の(222)
面のX線回折ピークの積分強度に対するSnO2相の
(110)面のX線回折ピークの積分強度、及び金属錫
相の(101)面のX線回折ピークの積分強度の強度
比、焼結体の相対密度、ビ−ム径1μmの電子線マイク
ロアナライザ−(EPMA)線分析により錫原子の固溶
量を測定した。さらに焼結体をφ100mm×厚さ6mmの
円盤状に加工してスパッタリング用ターゲット材として
使用し、DCマグネトロンスパッタ法によってスパッタ
リングを行った。使用開始から20時間経過後の10分
間当たりの異常放電回数の測定と、40時間経過後のタ
ーゲット表面のノジュールの生成状況の観察を行った。
得られた結果を表1に示す。
After cutting a part of this sintered body and polishing the cut surface, X-ray diffraction measurement was performed in the angle range of 2θ = 25 ° to 37 °, and 10 times integration was performed. As a result, the In 2 O 3 phase was confirmed. (222)
Intensity ratio of the integrated intensity of the X-ray diffraction peak of the (110) plane of the SnO 2 phase and the integrated intensity of the X-ray diffraction peak of the (101) plane of the metal tin phase to the integrated intensity of the X-ray diffraction peak of the plane, sintering The solid solution amount of tin atoms was measured by relative density of the body and electron beam microanalyzer (EPMA) ray analysis with a beam diameter of 1 μm. Further, the sintered body was processed into a disk shape having a diameter of 100 mm and a thickness of 6 mm, which was used as a sputtering target material, and was sputtered by a DC magnetron sputtering method. After the lapse of 20 hours from the start of use, the number of abnormal discharges per 10 minutes was measured, and after 40 hours, the generation of nodules on the target surface was observed.
The results obtained are shown in Table 1.

【0018】実施例2 ・・・ 平均粒経5.0μmか
らなる金属錫粉末と平均粒径1.0μmからなるSnO
2粉末の重量割合が5:5になるように配合して、これ
を錫原料粉末とした。そして該原料粉末を錫組成が7.
8重量%となるように平均粒径0.2μmからなるIn
23粉末中に配合し、湿式ボールミルで18時間混合し
乾燥を行った。そして銅製のカプセルに原料粉末を充填
して真空封止後、800℃、100MPaで2時間のH
IP処理した。得られた焼結体の大きさはφ127mm
×厚さ6mmの円盤状の焼結体である。得られた焼結体
を実施例1と同様に試験した結果を表1に示す。
Example 2 Metal Sn powder having an average particle size of 5.0 μm and SnO having an average particle size of 1.0 μm
The two powders were blended in a weight ratio of 5: 5 to obtain a tin raw material powder. Then, the raw material powder has a tin composition of 7.
In having an average particle size of 0.2 μm so that the content of In becomes 8% by weight.
2 O 3 powder was blended, mixed with a wet ball mill for 18 hours and dried. Then, after filling the raw material powder in a copper capsule and vacuum-sealing, H at 800 ° C. and 100 MPa for 2 hours
IP treated. The size of the obtained sintered body is φ127 mm
A disc-shaped sintered body having a thickness of 6 mm. The results of testing the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0019】実施例3 ・・・ 平均粒経5.0μmか
らなる金属錫粉末と平均粒径1.0μmからなるSnO
2粉末の重量割合が3:7になるように配合して、これ
を錫原料粉末とした。そして該原料粉末を錫組成が7.
8重量%となるように平均粒径0.2μmからなるIn
23粉末中に配合し、湿式ボールミルで18時間混合し
乾燥を行った。そして銅製のカプセルに原料粉末を充填
して真空封止後、1000℃、100MPaで2時間の
HIP処理した。得られた焼結体の大きさはφ127m
m×厚さ6mmの円盤状の焼結体である。得られた焼結
体を実施例1と同様に試験した結果を表1に示す。
EXAMPLE 3 Metal tin powder having an average particle size of 5.0 μm and SnO having an average particle size of 1.0 μm
The two powders were blended in a weight ratio of 3: 7 to obtain a tin raw material powder. Then, the raw material powder has a tin composition of 7.
In having an average particle size of 0.2 μm so that the content of In becomes
2 O 3 powder was blended, mixed with a wet ball mill for 18 hours and dried. Then, a copper capsule was filled with the raw material powder, vacuum-sealed, and then subjected to HIP treatment at 1000 ° C. and 100 MPa for 2 hours. The size of the obtained sintered body is φ127 m
It is a disc-shaped sintered body of m × 6 mm in thickness. The results of testing the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0020】比較例1 ・・・ 平均粒径0.2μmか
らなるIn23粉末中に平均粒径1.0μmからなるS
nO2粉末を錫組成が7.8重量%となるように配合
し、湿式ボールミルで18時間混合し乾燥を行った。そ
して銅製のカプセルに原料粉末を充填して真空封止後、
1000℃、100MPaで2時間のHIP処理した。
得られた焼結体の大きさはφ127mm×厚さ6mmの
円盤状の焼結体である。得られた焼結体を実施例1と同
様に試験した結果を表1に示す。
[0020] consisting of an average particle diameter of 1.0μm to In 2 O 3 powder consisting of Comparative Example 1.. Average particle size 0.2 [mu] m S
The nO 2 powder was blended so that the tin composition was 7.8% by weight, mixed for 18 hours in a wet ball mill and dried. And after filling the raw material powder into a copper capsule and vacuum sealing,
HIP treatment was performed at 1000 ° C. and 100 MPa for 2 hours.
The size of the obtained sintered body is a disk-shaped sintered body having a diameter of 127 mm and a thickness of 6 mm. The results of testing the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0021】比較例2 ・・・ 平均粒径0.2μmか
らなるIn23粉末中に平均粒径5.0μmからなる金
属錫粉末を錫組成が7.8重量%となるように配合し、
湿式ボールミルで18時間混合し乾燥を行った。そして
銅製のカプセルに原料粉末を充填して真空封止後、10
00℃、100MPaで2時間のHIP処理した。得ら
れた焼結体の大きさはφ127mm×厚さ6mmの円盤
状の焼結体である。得られた焼結体を実施例1と同様に
試験した結果を表1に示す。
Comparative Example 2 ... In 2 O 3 powder having an average particle size of 0.2 μm was mixed with metal tin powder having an average particle size of 5.0 μm so that the tin composition would be 7.8% by weight. ,
The mixture was mixed for 18 hours with a wet ball mill and dried. After filling the raw material powder into a copper capsule and vacuum-sealing, 10
HIP treatment was carried out at 00 ° C. and 100 MPa for 2 hours. The size of the obtained sintered body is a disk-shaped sintered body having a diameter of 127 mm and a thickness of 6 mm. The results of testing the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0022】比較例3 ・・・ 平均粒径0.2μmか
らなるIn23粉末中に平均粒径1.0μmからなるS
nO2粉末を錫組成が7.8重量%となるように配合
し、バインダーとして1重量%のPVAを添加後、湿式
ボールミルで18時間混合し乾燥・造粒を行った。そし
て造粒粉末をビニル製の型に充填し、3ton/cm2
にて静水圧プレスにて成形した。成形体を炉内の容器に
配置した後、炉内を5リットル/minにて酸素ガスを
流しながら焼結を行った。焼結は1500℃まで1℃/
minで昇温して10時間保持した。得られた焼結体の
大きさはφ127mm×厚さ6mmの円盤状の焼結体で
ある。得られた焼結体を実施例1と同様に試験した結果
を表1に示す。
Comparative Example 3 ... In 2 O 3 powder having an average particle size of 0.2 μm and S having an average particle size of 1.0 μm
The nO 2 powder was blended so that the tin composition was 7.8% by weight, 1% by weight of PVA was added as a binder, and the mixture was mixed for 18 hours in a wet ball mill, followed by drying and granulation. Then, the granulated powder was filled in a vinyl mold and 3 ton / cm 2
Was molded by a hydrostatic press. After the molded body was placed in a container in the furnace, sintering was performed while flowing oxygen gas at 5 l / min in the furnace. Sintering up to 1500 ℃ 1 ℃ /
The temperature was raised at min and held for 10 hours. The size of the obtained sintered body is a disk-shaped sintered body having a diameter of 127 mm and a thickness of 6 mm. The results of testing the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1より、本発明の酸化物焼結体は、従来
のものより焼結密度が高く、また、本発明の酸化物焼結
体を用いた場合は、従来のものを用いた場合に比べて、
成膜時の異常放電の回数が減少し、ターゲット表面のノ
ジュールの発生も減少していることがわかる。
From Table 1, the oxide sintered body of the present invention has a higher sintered density than the conventional one, and when the oxide sintered body of the present invention is used, the conventional one is used. Compared to
It can be seen that the number of abnormal discharges during film formation is reduced and the generation of nodules on the target surface is also reduced.

【0025】[0025]

【発明の効果】本発明によれば、スパッタリング中の異
常放電回数がきわめて少なく、また長時間使用後におい
てもノジュールが発生しないITOターゲットを提供す
ることができる。
According to the present invention, it is possible to provide an ITO target in which the number of abnormal discharges during sputtering is extremely small and nodules do not occur even after long-term use.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 インジウム、錫および酸素を主成分とす
る酸化物焼結体において、In23相、SnO2相、金
属錫相から構成されることを特徴とする酸化物焼結体。
1. An oxide sintered body containing indium, tin and oxygen as main components, which is composed of an In 2 O 3 phase, a SnO 2 phase and a metal tin phase.
【請求項2】 SnO2相の(110)面のX線回折ピ
ークの積分強度が、In23相の(222)面のX線回
折ピークの積分強度の2%以下であり、且つ金属錫相の
(101)面のX線回折ピークの積分強度が、In23
相の(222)面のX線回折ピークの積分強度の4%以
下であることを特徴とする請求項1に記載の酸化物焼結
体。
2. The integrated intensity of the X-ray diffraction peak of the (110) plane of the SnO 2 phase is 2% or less of the integrated intensity of the X-ray diffraction peak of the (222) plane of the In 2 O 3 phase, and The integrated intensity of the X-ray diffraction peak of the (101) plane of the tin phase is In 2 O 3
The oxide sintered body according to claim 1, which has an integrated intensity of 4% or less of the X-ray diffraction peak of the (222) plane of the phase.
【請求項3】 In23相に2重量%以上の錫元素が固
溶されていることを特徴とする請求項1又は請求項2に
記載の酸化物焼結体。
3. The oxide sintered body according to claim 1, wherein 2% by weight or more of tin element is solid-dissolved in the In 2 O 3 phase.
JP7043711A 1995-03-03 1995-03-03 Oxide sintered compact Pending JPH08246142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043711A JPH08246142A (en) 1995-03-03 1995-03-03 Oxide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7043711A JPH08246142A (en) 1995-03-03 1995-03-03 Oxide sintered compact

Publications (1)

Publication Number Publication Date
JPH08246142A true JPH08246142A (en) 1996-09-24

Family

ID=12671396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043711A Pending JPH08246142A (en) 1995-03-03 1995-03-03 Oxide sintered compact

Country Status (1)

Country Link
JP (1) JPH08246142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063628A1 (en) * 2003-12-25 2005-07-14 Mitsui Mining & Smelting Co., Ltd. Indium oxide-tin oxide powder and sputtering target using the same
JP2011527384A (en) * 2008-07-08 2011-10-27 ベーカート・アドヴァンスト・コーティングス Method for manufacturing oxide sputter target including first phase and second phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063628A1 (en) * 2003-12-25 2005-07-14 Mitsui Mining & Smelting Co., Ltd. Indium oxide-tin oxide powder and sputtering target using the same
JPWO2005063628A1 (en) * 2003-12-25 2007-07-19 三井金属鉱業株式会社 Indium tin monoxide powder and sputtering target using the same
US7601661B2 (en) 2003-12-25 2009-10-13 Mitsui Mining & Smelting Co., Ltd. Indium oxide-tin oxide powder and sputtering target using the same
JP4721901B2 (en) * 2003-12-25 2011-07-13 三井金属鉱業株式会社 Indium oxide-tin oxide powder and sputtering target using the same
JP2011527384A (en) * 2008-07-08 2011-10-27 ベーカート・アドヴァンスト・コーティングス Method for manufacturing oxide sputter target including first phase and second phase

Similar Documents

Publication Publication Date Title
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JPH11322332A (en) Zno-based sintered product and its production
TW202010724A (en) Oxide sputtering target and production method therefor, and oxide thin film formed using oxide sputtering target
JPH11236219A (en) Zinc oxide-base sintered compact and its production
JPH11256320A (en) Zno base sintered compact
JPH0570943A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
JPH07243036A (en) Ito sputtering target
JPH0570942A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JPH08246142A (en) Oxide sintered compact
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP3528980B2 (en) Tungsten silicide target material and method of manufacturing the same
JPH10147862A (en) Indium oxide-tin oxide sintered body
JPH0754133A (en) Ito target for sputtering
JP3030913B2 (en) Manufacturing method of ITO sintered body
WO2019202909A1 (en) Sn-zn-o oxide sintered body and method for production thereof
JPH10147861A (en) Production of indium oxide-tin oxide sintered body
JP3676961B2 (en) Tin oxide-indium oxide powder for forming ITO film and sputtering target for forming ITO film
JP2904358B2 (en) Manufacturing method of ITO sintered body
JPH08246141A (en) Oxide sintered compact
JP6459830B2 (en) Oxide sintered body, method for producing the same, and method for producing oxide film
JPH08246139A (en) Oxide sintered compact
JP4918737B2 (en) Oxide sintered body and sputtering target
JPH0247261A (en) Silicide target and production thereof