JPH0823537B2 - Method of detecting load applied to structure in the past and load detection sensor used therefor - Google Patents

Method of detecting load applied to structure in the past and load detection sensor used therefor

Info

Publication number
JPH0823537B2
JPH0823537B2 JP13897793A JP13897793A JPH0823537B2 JP H0823537 B2 JPH0823537 B2 JP H0823537B2 JP 13897793 A JP13897793 A JP 13897793A JP 13897793 A JP13897793 A JP 13897793A JP H0823537 B2 JPH0823537 B2 JP H0823537B2
Authority
JP
Japan
Prior art keywords
load
sensing element
target material
detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13897793A
Other languages
Japanese (ja)
Other versions
JPH06331581A (en
Inventor
博明 柳田
郁也 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTO KEMIFUABU KK
Taiyo Kogyo Co Ltd
Original Assignee
NITSUTO KEMIFUABU KK
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTO KEMIFUABU KK, Taiyo Kogyo Co Ltd filed Critical NITSUTO KEMIFUABU KK
Priority to JP13897793A priority Critical patent/JPH0823537B2/en
Publication of JPH06331581A publication Critical patent/JPH06331581A/en
Publication of JPH0823537B2 publication Critical patent/JPH0823537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば建物、橋梁、膜
構造物のような地上構造物や航空機や船舶のような非地
上構造物、さらに各種の器具や機器等の各種構造物にお
ける構造材や膜材等に掛かった負荷、特に過去に掛かっ
た負荷の程度を非破壊的に検出する方法及びそれに用い
る負荷検出センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to structures in ground structures such as buildings, bridges and membrane structures, non-ground structures such as aircraft and ships, and various structures such as various instruments and devices. TECHNICAL FIELD The present invention relates to a method for nondestructively detecting a load applied to a material, a film material, and the like, particularly a degree of a load applied in the past, and a load detection sensor used for the method.

【0002】[0002]

【従来の技術】非破壊検査については従来より各種の方
法が知られている。例えば、特願平3−205303号
や日本セラミックス協会学術論文誌(Journal of Ceram
ic Society of Japan )第100巻12月号の第142
9〜1434頁に開示される方法もその一つである。こ
の非破壊検査法は、炭素繊維の限界伸び率特性と導電特
性を巧みに利用した方法で、ガラス繊維束をコンクリー
ト筋とするコンクリート材のガラス繊維束に炭素繊維を
加え、この炭素繊維の破壊状態から当該CFGFRPコ
ンクリート材に掛かった過去の荷重の程度のデータを
得、このデータからCFGFRPコンクリート材の破壊
可能性を予知するようにしたものである。
2. Description of the Related Art Various nondestructive inspection methods have been conventionally known. For example, Japanese Patent Application No. 3-205303 and the Ceramics Society of Japan (Journal of Ceram
ic Society of Japan) Volume 100 December issue 142th
The method disclosed on pages 9 to 1434 is one of them. This non-destructive inspection method is a method that makes good use of the limiting elongation property and conductive property of carbon fiber.By adding carbon fiber to the glass fiber bundle of concrete material that uses glass fiber bundle as concrete streak, the destruction of this carbon fiber From the state, data on the degree of past load applied to the CFGFRP concrete material is obtained, and from this data, the possibility of breaking the CFGFRP concrete material is predicted.

【0003】即ち、CFGFRPコンクリート材に一定
以上の荷重が掛かってガラス繊維束と炭素繊維に伸びが
生じるとガラス繊維より小さな限界伸び率特性を持つ炭
素繊維が先ず破断する。そしてこの破断により炭素繊維
の電気抵抗が不可逆的に急増する。従って、CFGFR
Pコンクリート材の炭素繊維における電気抵抗をモニタ
ーすることにより、少なくとも炭素繊維の破断を招くだ
けの荷重が過去に掛かったことを知ることができる、と
いう原理に基づくもので、言わばコンクリートの破壊を
自己診断する方法である。
That is, when a load of a certain amount or more is applied to the CFGFRP concrete material and elongation occurs in the glass fiber bundle and the carbon fiber, the carbon fiber having a critical elongation characteristic smaller than that of the glass fiber is first broken. Then, due to this breakage, the electrical resistance of the carbon fiber increases irreversibly. Therefore, CFGFR
It is based on the principle that by monitoring the electrical resistance in carbon fiber of P concrete material, it can be known that at least a load that causes the breakage of carbon fiber was applied in the past. It is a method of diagnosis.

【0004】この非破壊検査法は、極めて簡便でありし
かも安価であるという大きな利点を持っている。しか
し、この方法ではセンサー用の炭素繊維を構造物に直接
的に組み込む必要があるので、そのような構造を可能と
する構造物にしか適用できないという短所がある。ま
た、過去に掛かった荷重の程度をある程度定量的に検出
することも可能であるが、そのためには一定の条件が必
要とされる。つまり、コンクリート材のように曲げ荷重
による材料の伸び量の3次元方向での比例的分布を十分
に差別的に炭素繊維に作用させることができるような構
造物であれば、この伸び量の3次元方向での比例的分布
に応じて過去に掛かった荷重の定量的検出を行えるが、
このような構造を許容できない構造物の場合には荷重の
定量的検出を行えない。即ち、この方法は、汎用性に乏
しく、各種の構造物について汎用的に定量的な既負荷荷
重の検出を行うには未だ不十分である。
This nondestructive inspection method has the great advantage that it is extremely simple and inexpensive. However, this method has a disadvantage in that the carbon fiber for the sensor needs to be directly incorporated in the structure, and thus it can be applied only to the structure that enables such a structure. It is also possible to detect the degree of load applied in the past quantitatively to some extent, but for that purpose, certain conditions are required. In other words, if the structure is such that the proportional distribution of the elongation amount of the material due to bending load in the three-dimensional direction can be sufficiently and differentially acted on the carbon fiber, such as a concrete material, this elongation amount of 3 The load applied in the past can be quantitatively detected according to the proportional distribution in the dimensional direction.
In the case of a structure that cannot accept such a structure, the load cannot be quantitatively detected. That is, this method has poor versatility and is still insufficient for universally quantitatively detecting the applied load for various structures.

【0005】[0005]

【発明が解決しようとする課題】このような事情を背景
になされたのが本発明で、上記破壊自己診断用非破壊検
査法の原理をさらに発展的に応用することにより、構造
材等に加わった過去の負荷の定量的検出を各種の構造物
について汎用的に行える検出方法及びそれに用いる負荷
検出センサの提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made against such a circumstance by applying the principle of the non-destructive inspection method for destructive self-diagnosis to the structural material, etc. It is also an object of the present invention to provide a detection method that can quantitatively detect past loads for various structures and a load detection sensor used for the same.

【0006】[0006]

【課題を解決するための手段】本発明による検出方法
は、検出対象材と同一条件の負荷が掛かった状態で検出
対象材よりも先に破壊を生じるような破壊特性を有し且
つ導電性を有するセンシング素子を検出対象材に生じる
歪みと比例的な歪みが生じるように検出対象材に組み合
わせ、このセンシング素子に生じた破壊による電気抵抗
の変化により検出対象材の劣化度を検出するようにして
なるもので、破壊特性がそれぞれ異なる複数のセンシン
グ素子を並列的に用いるようにしている。
The detection method according to the present invention has a destructive characteristic that the material to be detected is destroyed under a load under the same condition as the material to be detected and has conductivity. Combine the sensing element with the detection target material so that the strain that is proportional to the strain that occurs in the detection target material occurs, and detect the degree of deterioration of the detection target material by the change in electrical resistance due to the destruction that occurred in this sensing element. Therefore, a plurality of sensing elements having different destruction characteristics are used in parallel.

【0007】このように破壊特性がそれぞれ異なる複数
のセンシング素子を並列的に用いることにより、検出対
象材に生じた過去の歪みの定量的な検出が可能になる。
即ち、例えばそれぞれの限界伸び率がM1 、M2 、M3
……Mn (Mn <Mn+1 )であるセンシング素子S1
2 、S3 ……を用いるとすると、各センシング素子S
1 、S2 、S3 ……はそれぞれの限界伸び率を超える伸
びを生じたときに破断し、不可逆的な電気抵抗の変化を
生じることになる。
By using a plurality of sensing elements having different destruction characteristics in parallel, it is possible to quantitatively detect the past strain generated in the detection object material.
That is, for example, the respective critical elongations are M 1 , M 2 , M 3
The sensing element S 1 , which is M n (M n <M n + 1 ),
If S 2 , S 3, ... Are used, each sensing element S
.. 1 , S 2 , S 3, ... Are fractured when elongations exceeding their respective limit elongations occur, resulting in irreversible changes in electrical resistance.

【0008】従って、センシング素子について電気抵抗
をモニタした際に、例えばセンシング素子S1 について
のみその電気抵抗が所定値を上回っていたとするとセン
シング素子S1 の限界伸び率M1 とセンシング素子S2
の限界伸び率M2 の間に納まる範囲の伸びが過去におい
て検出対象材に生じたことを知ることができ、また一般
的にはセンシング素子S1 〜Sn についてそれぞれの電
気抵抗が所定値を上回っていたとするとセンシング素子
n の限界伸び率Mn とセンシング素子Sn+1の限界伸
び率Mn+1 の間に納まる範囲の伸びが過去において検出
対象材に生じたことを知ることができる。従って各セン
シング素子の限界伸び率の差分の程度に応じた精度で過
去の歪みの程度、特に最大歪みの程度について定量的な
データを得ることができる。そして、このようにして得
られるデータは、例えば当該データと当該検出対象材の
劣化程度との相関関係について予め集積してあるデータ
から構造物の劣化程度を定量的に知るのに用いることが
できる。
Accordingly, when the monitored electrical resistance for sensing elements, for example sensing elements S limit elongation M 1 the electric resistance of the miso is sensing element S 1 assuming that not exceed the predetermined value for 1 and a sensing element S 2
It is possible to know that the elongation within the range of the limit elongation rate M 2 of 1 has occurred in the material to be detected in the past, and generally, the electric resistance of each of the sensing elements S 1 to S n has a predetermined value. exceeds growth in a range that fits between the marginal elongation M n + 1 of the limit elongation M n and the sensing element S n + 1 of the sensing element S n When had it knows that generated in the detection target material in the past it can. Therefore, it is possible to obtain quantitative data regarding the degree of strain in the past, particularly the degree of maximum strain, with accuracy according to the degree of difference in the critical elongation rate of each sensing element. The data thus obtained can be used, for example, to quantitatively know the degree of deterioration of the structure from the data accumulated in advance regarding the correlation between the data and the degree of deterioration of the detection target material. .

【0009】この説明例のように検出対象材に生じる伸
び歪みの程度を検出するためのセンシング素子は繊維状
に形成するのが好ましい。その素材としては、約1%と
いう小さな限界伸び率を持ちしかも高い電気伝導性を有
する炭素繊維が特に好ましいものの一例として挙げられ
るが、この他にも例えば必要な破壊特性を持つ非導電性
の繊維材に導電材をコーティングした素材を用いること
などもできる。
It is preferable that the sensing element for detecting the degree of elongation strain generated in the material to be detected as in this example is formed in a fibrous shape. As a material thereof, a carbon fiber having a small critical elongation of about 1% and high electric conductivity can be mentioned as an example of a particularly preferable material, but other than this, for example, a non-conductive fiber having a necessary breaking property. It is also possible to use a material obtained by coating a material with a conductive material.

【0010】また、本方法は上記のように各センシング
素子の限界伸び率(破壊特性)の差分を小さくできれば
できるほど定量精度を向上させることができるが、この
ように限界伸び率の差分を小さく設定するには、同一の
スパンに異なる長さの繊維状センシング素子を配列する
構成とするのが簡便であり自由度も高くすることができ
る。即ち、同一のスパン中に異なる長さのセンシング素
子をそれぞれの長さに応じた弛みを持たせて配列し、こ
の各センシング素子の弛みの程度に応じて限界伸び率に
差分を与えるもので、任意の差分を自由自在に設定可能
となる。
Further, according to the present method, the accuracy of quantification can be improved as much as the difference between the critical elongation rates (breakdown characteristics) of the sensing elements can be reduced as described above. For setting, it is convenient to have a configuration in which fibrous sensing elements having different lengths are arranged in the same span, and the degree of freedom can be increased. That is, sensing elements of different lengths are arranged in the same span with slack according to their respective lengths, and a difference is given to the critical elongation rate according to the degree of slack of each sensing element. Any difference can be set freely.

【0011】本発明による検出方法は、上記の説明例の
ように検出対象材に生じる伸び歪みの他に、例えば検出
対象材に生じた過去の繰返し的曲折負荷の程度なども検
出可能であり、この場合には繰返し的曲折負荷による破
壊特性に基づいてセンシング素子を形成することにな
る。
The detection method according to the present invention can detect not only the elongation strain generated in the material to be detected as in the above-described example, but also the degree of the past repeated bending load generated in the material to be detected. In this case, the sensing element is formed on the basis of the destruction characteristic due to the repeated bending load.

【0012】上記のような検出方法に用いる負荷検出セ
ンサは、例えば合成樹脂のような電気絶縁性の材料を用
いて平板状に形成した基材にそれぞれ破壊特性が異なる
所定数のセンシング素子を並列的に接着したり埋め込む
ことにより固着させた構造とすることができる。この負
荷検出センサは基材を介して検出対象材に固着させて用
いられるもので、これを固着させる余裕のある構造物で
あれば如何なる構造物にも適用可能で極めて高い汎用性
を実現できる。また、この負荷検出センサは、構造物の
試作設計段階において試作構造物に固着させて用い、試
作段階で実際に掛かる荷重を定量的に把握することによ
り、より合理的な設計を進めるためにも用いることがで
きる。
The load detection sensor used in the above-mentioned detection method is such that a predetermined number of sensing elements having different breaking characteristics are arranged in parallel on a base material formed in a flat plate shape using an electrically insulating material such as synthetic resin. The structure can be fixed by physically adhering or embedding. This load detection sensor is used by being fixed to a detection target material via a base material, and can be applied to any structure as long as it has a margin to fix the material, and can realize extremely high versatility. In addition, this load detection sensor is used by fixing it to the prototype structure at the prototype design stage of the structure and quantitatively grasping the load actually applied at the prototype stage to promote more rational design. Can be used.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。この実施
例は図1及び図2に示すような負荷検出センサ1を用い
て膜構造物における膜材に過去に掛かった負荷を検出す
ることによりその劣化度を把握するようにした例であ
る。
Embodiments of the present invention will be described below. This embodiment is an example in which the degree of deterioration is grasped by detecting the load applied to the film material in the film structure in the past by using the load detection sensor 1 as shown in FIGS.

【0014】負荷検出センサ1は、テープ状に形成した
透明樹脂製の基材2に炭素繊維を用いたセンシング素子
1 、S2 、S3 、S4 を並列に埋め込むと共に、各セ
ンシング素子S1 、S2 、S3 、S4 の両端を共通の導
電端子3a、3bで接続して形成されている。各センシ
ング素子S1 、S2 、S3 、S4 は、端から順番に一定
の差分で順次長くなる長さにされ両導電端子3a、3b
により規制されるスパンLと同じ長さのセンシング素子
1 の他はそれぞれの長さに応じた弛みが与えられてい
る。
In the load detecting sensor 1, the sensing elements S 1 , S 2 , S 3 and S 4 using carbon fibers are embedded in parallel in the tape-shaped transparent resin base material 2 and each sensing element S is formed. Both ends of 1 , S 2 , S 3 , and S 4 are connected by common conductive terminals 3a and 3b. Each of the sensing elements S 1 , S 2 , S 3 , and S 4 has a length that sequentially increases from the end with a constant difference, and both conductive terminals 3 a and 3 b.
With the exception of the sensing element S 1 having the same length as the span L regulated by, the slack corresponding to each length is given.

【0015】この負荷検出センサ1は、図3に示すよう
にして膜構造物の膜材Mに接着させて使用される。この
膜材Mへの接着は膜材Mの矢示Xの如き伸び縮みに連動
して基材2と共に各センシング素子S1 、S2 、S3
4 が伸び縮みするように強力な接着材でなされる。
The load detecting sensor 1 is used by being adhered to the film material M of the film structure as shown in FIG. The adhesion to the film material M is interlocked with the expansion / contraction of the film material M as indicated by the arrow X, together with the base material 2 and the sensing elements S 1 , S 2 , S 3 ,
It is made with a strong adhesive so that S 4 expands and contracts.

【0016】この結果、一定以上の伸びが膜材Mに生じ
るとそれに応じて各センシング素子S1 、S2 、S3
4 は順次破断を生じる。従って、必要な点検時期に両
導電端子3a、3b間の電気抵抗を測定すれば、センシ
ング素子S1 、S2 、S3 、S4 の破壊の程度、つまり
端から何本目までが破断したかに応じた電気抵抗値が得
られ、この電気抵抗値から膜材Mの劣化程度を定量的に
知ることができる。
As a result, when the film material M is stretched beyond a certain level, the sensing elements S 1 , S 2 , S 3 ,
S 4 causes fracture sequentially. Therefore, if the electric resistance between the conductive terminals 3a and 3b is measured at the necessary inspection time, the extent of the damage of the sensing elements S 1 , S 2 , S 3 , and S 4 , that is, how many from the end is broken. The electric resistance value according to the above is obtained, and the degree of deterioration of the film material M can be quantitatively known from this electric resistance value.

【0017】図4に示すのは他の例による負荷検出セン
サで、この負荷検出センサ10は、基本的には上記実施
例の負荷検出センサ1と同じであるが、全体の長さを長
くして中間部位にも導電端子3c、3d、を設けた点で
異なっている。この負荷検出センサ10によると、導電
端子3a〜3d中の何れを電気抵抗の測定対象とするか
により検出対象材における異なる範囲や部位について劣
化度を検出することができる。
FIG. 4 shows a load detecting sensor according to another example. The load detecting sensor 10 is basically the same as the load detecting sensor 1 of the above embodiment, but the entire length is made longer. The difference is that conductive terminals 3c and 3d are also provided in the intermediate portion. According to the load detection sensor 10, it is possible to detect the degree of deterioration in different ranges or portions of the detection target material depending on which of the conductive terminals 3a to 3d is the measurement target of the electric resistance.

【0018】以上の実施例は膜構造物における膜材の劣
化度を検出する例であったが、一般の建築物や橋梁のよ
うな地上構造物、あるいは航空機や船舶のような非地上
構造物、さらには各種の器具や機器等の各種構造物にも
同様にして本発明を適用できることは当業者にとって容
易に理解可能である。また、本実施例のような負荷検出
センサの形態に限らず、可能な場合には必要に応じて各
センシング素子を検出対象材に直接的に組み込むような
形態で本発明を実施可能であることも当業者にとって容
易に理解可能である。
The above embodiments are examples of detecting the degree of deterioration of the membrane material in the membrane structure. However, above-ground structures such as general buildings and bridges, or non-ground structures such as aircraft and ships. Further, those skilled in the art can easily understand that the present invention can be similarly applied to various structures such as various instruments and devices. Further, the present invention is not limited to the form of the load detection sensor as in the present embodiment, and the present invention can be embodied in a form in which each sensing element is directly incorporated into the detection target material when necessary. Can be easily understood by those skilled in the art.

【0019】[0019]

【発明の効果】本発明による検出方法及び負荷検出セン
サは、以上説明したように、過去に生じた負荷の程度を
汎用的に各種の構造物について定量的に検出可能とする
ので、このデータに基づいて構造物の突然の破壊による
不測の事故を未然に防止したり、構造物の改修や建て替
えについての必要な時期を正確に決めたりする保守管理
の質的向上に大きく寄与できるし、また構造物の試作設
計段階において実際に掛かる荷重を定量的に把握するこ
とにより、構造物のより合理的な設計を進めるについて
も大きく寄与できる。
As described above, the detection method and the load detection sensor according to the present invention make it possible to quantitatively detect the degree of the load that has occurred in the past for various structures in general, so that the data Based on this, it is possible to prevent unexpected accidents due to sudden destruction of the structure, and to make a great contribution to the quality improvement of maintenance management that accurately determines the necessary time for the repair and rebuilding of the structure. By quantitatively grasping the load actually applied at the prototype design stage of a product, it can greatly contribute to the more rational design of a structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による負荷検出センサの平面
図。
FIG. 1 is a plan view of a load detection sensor according to an embodiment of the present invention.

【図2】図1の矢示SA2 −SA2 線に沿う断面図。FIG. 2 is a sectional view taken along the line SA 2 -SA 2 shown in FIG.

【図3】図1の負荷検出センサを膜構造物の膜材に用い
た状態を示す側面図。
FIG. 3 is a side view showing a state in which the load detection sensor of FIG. 1 is used as a film material of a film structure.

【図4】本発明の他の実施例による負荷検出センサの平
面図。
FIG. 4 is a plan view of a load detection sensor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 負荷検出センサ 2 基材 S1〜S4 センシング素子1 Load detection sensor 2 Base material S 1 to S 4 Sensing element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−501470(JP,A) 特開 平7−72023(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-501470 (JP, A) JP-A-7-72023 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 構造物における検出対象材と同一条件の
負荷が掛かった状態で検出対象材よりも先に破壊を生じ
るような破壊特性を有し且つ導電性を有するセンシング
素子を検出対象材に生じる歪みと比例的な歪みが生じる
ように検出対象材に組み合わせ、このセンシング素子に
生じた破壊による電気抵抗の変化に基づいて検出対象材
に過去に掛かった負荷を検出する検出方法であって、破
壊特性が互いに異なる複数のセンシング素子を並列的に
用いるようにしたことを特徴とする検出方法。
1. A sensing element, which has a destructive characteristic and has conductivity so as to be broken before the detection target material in a structure under a load under the same condition as the detection target material, is used as the detection target material. Combined with the detection target material so as to generate a strain proportional to the generated strain, a detection method for detecting the load applied to the detection target material in the past based on the change in the electrical resistance due to the destruction that occurred in the sensing element, A detection method characterized in that a plurality of sensing elements having different destruction characteristics are used in parallel.
【請求項2】 繊維状に形成したセンシング素子を用い
るようにした請求項1に記載の検出方法。
2. The detection method according to claim 1, wherein a fibrous sensing element is used.
【請求項3】 同一のスパンに異なる長さの繊維状セン
シング素子をそれぞれの長さに応じた弛みを与えて配列
することにより各繊維状センシング素子に異なる限界伸
び率を与えるようにした請求項2に記載の検出方法。
3. A fibrous sensing element having different lengths is arranged on the same span so as to give a slack corresponding to each length, so that each fibrous sensing element is given a different critical elongation. The detection method according to 2.
【請求項4】 炭素繊維で形成した繊維状センシング素
子を用いる請求項2又は請求項3の何れかに記載の検出
方法。
4. The detection method according to claim 2, wherein a fibrous sensing element formed of carbon fiber is used.
【請求項5】 請求項1〜請求項4の何れかに記載の検
出方法に用いる負荷検出センサであって、電気絶縁性の
基材にそれぞれ破壊特性が異なる所定数のセンシング素
子を並列的に固着してなることを特徴とする負荷検出セ
ンサ。
5. A load detection sensor used in the detection method according to claim 1, wherein a predetermined number of sensing elements having different breaking characteristics are arranged in parallel on an electrically insulating base material. A load detection sensor characterized by being fixed.
JP13897793A 1993-05-18 1993-05-18 Method of detecting load applied to structure in the past and load detection sensor used therefor Expired - Lifetime JPH0823537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13897793A JPH0823537B2 (en) 1993-05-18 1993-05-18 Method of detecting load applied to structure in the past and load detection sensor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13897793A JPH0823537B2 (en) 1993-05-18 1993-05-18 Method of detecting load applied to structure in the past and load detection sensor used therefor

Publications (2)

Publication Number Publication Date
JPH06331581A JPH06331581A (en) 1994-12-02
JPH0823537B2 true JPH0823537B2 (en) 1996-03-06

Family

ID=15234599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13897793A Expired - Lifetime JPH0823537B2 (en) 1993-05-18 1993-05-18 Method of detecting load applied to structure in the past and load detection sensor used therefor

Country Status (1)

Country Link
JP (1) JPH0823537B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633466A (en) * 1995-09-29 1997-05-27 Hiroaki Yanagida Maximum value storage sensor
JP4957089B2 (en) 2006-06-13 2012-06-20 富士ゼロックス株式会社 Sensor
KR102053827B1 (en) * 2017-12-08 2019-12-09 울산과학기술원 Damage Diagnosis System of Structures Using Composite Materials and Diagnosis Method

Also Published As

Publication number Publication date
JPH06331581A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
US5379644A (en) Strain or stress gauge and method for detecting strain or stress of structure using the same, and plastic composite material for foreknowing progress of breakdown of structure and method using the same
Tung et al. Sensing sheet: the sensitivity of thin-film full-bridge strain sensors for crack detection and characterization
US7726199B2 (en) Dielectrostrictive sensor for measuring deformation
US5911158A (en) Piezoelectric strain sensor array
US8525979B2 (en) Monitoring device for detecting stress strain and method for using same
EP0640824A1 (en) Fibre optic damage detection system
US20100154556A1 (en) Strain Guage and Fracture Indicator Based on Composite Film Including Chain-Structured Magnetically Active Particles
KR101206566B1 (en) Nanocomposite strain measuring system and strain measuring method using the same
EP3924687A1 (en) Sensing fibers for structural strain monitoring
US10620062B2 (en) Cement-based material systems and method for self-sensing and weighing
Tung et al. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks
JPH0823537B2 (en) Method of detecting load applied to structure in the past and load detection sensor used therefor
Saifeldeen et al. Health monitoring of bridges based on distributed long gauge carbon fiber sensors
US20170363487A1 (en) Structure for strain detection
US2592223A (en) Strain responsive gauge
JPH0772023A (en) Distortion/stress detector and distortion/stress detection method of construction using the same
JP3388020B2 (en) Diagnosis method for earthquake resistance of buildings
Ramani et al. An evaluation of the performance of a lens-based plastic optical fiber strain sensor
JPH109905A (en) Strain, stress and water leakage detector
EP2549556A1 (en) Unidirectional piezoelectric transducer
CN219265222U (en) Sheet type steel bar strain gauge
Ghimbaseanu Experimental research study on the use of a resistive tensometric sensor
RU2082082C1 (en) Device measuring deformations of flexible envelopes of flying vehicles
Zymelka et al. Screen-Printed One-Meter-Long Sensors for Damage Detection in Welded Engineering Structures
Radoi et al. Static and Dynamic Structural Health Monitoring System for Bridges

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090306

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090306

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100306

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20130306

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 18

Free format text: PAYMENT UNTIL: 20140306

EXPY Cancellation because of completion of term