JPH08233408A - Shell and tube type condenser - Google Patents

Shell and tube type condenser

Info

Publication number
JPH08233408A
JPH08233408A JP3838895A JP3838895A JPH08233408A JP H08233408 A JPH08233408 A JP H08233408A JP 3838895 A JP3838895 A JP 3838895A JP 3838895 A JP3838895 A JP 3838895A JP H08233408 A JPH08233408 A JP H08233408A
Authority
JP
Japan
Prior art keywords
shell
condensate
liquid
tube
inlet path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3838895A
Other languages
Japanese (ja)
Inventor
Haruo Nakada
春男 中田
Kiyoshi Masuda
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3838895A priority Critical patent/JPH08233408A/en
Publication of JPH08233408A publication Critical patent/JPH08233408A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE: To sufficiently accelerate the supercooling of condensed liquid specially even when a mixture of non-azeotropic refrigerant is used in a shell, without increasing the number of tanks. CONSTITUTION: Gas supplied from a gas intake port 11 is heat exchanged with cooling medium supplied in cooling tubes 2 in a shell 1, cooled, condensed and liquefied. The condensed liquid is separated from a gas area and flows below a division body 31 so that the direct condensation of gas due to the contact of the condensed liquid with gas can be reduced and the degree of supercooling is prevented from being lowered. The condensed liquid heat exchanges, while forming, what is called a counterflow, with the cooling medium of cooling media supplied to the cooling tubes 2 which flows an inlet path 21 at the lowest temperature. Thus, the liquid with the sufficient degree of supercooling is taken out of a liquid take-out port 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、被凝縮流体
に非共沸混合冷媒を用い、その凝縮液の過冷却を促進で
きるシェルアンドチューブ式凝縮器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a shell-and-tube type condenser which uses a non-azeotropic mixed refrigerant as a fluid to be condensed and can promote supercooling of the condensed liquid.

【0002】[0002]

【従来の技術】従来、冷凍機の作動流体に非共沸混合冷
媒を用い、主凝縮器とは別に液過冷却専用の熱交換器を
設けて、凝縮液の過冷却をとるようにしたものは、特公
平6−63669号公報等で知られている。又、特開昭
61−285352号公報等では、2段圧縮機やエコノ
マイザーポート付単段圧縮機等、中間吸入ポートを有す
る圧縮機を搭載したシステムにおいて、凝縮器の出口冷
媒と、その一部を減圧した中間圧力冷媒とを熱交換させ
るエコノマイザー液過冷却器を設け、中間圧力冷媒の蒸
発作用により凝縮液を過冷却するものが知られている。
2. Description of the Related Art Conventionally, a non-azeotropic mixed refrigerant is used as a working fluid of a refrigerator, and a heat exchanger dedicated to liquid subcooling is provided separately from a main condenser to supercool the condensate. Is known from Japanese Patent Publication No. 6-63669. Further, in JP-A-61-285352 and the like, in a system equipped with a compressor having an intermediate suction port, such as a two-stage compressor or a single-stage compressor with an economizer port, the outlet refrigerant of the condenser and its It is known that an economizer liquid subcooler for exchanging heat with the intermediate pressure refrigerant whose pressure is reduced is provided and the condensed liquid is supercooled by the evaporation action of the intermediate pressure refrigerant.

【0003】更に、単独の凝縮器のシェル内で凝縮液に
過冷却をつける例として、特公昭60−51024号公
報等があり、このものは、シェルの側方に液取出口を設
けて、シェル内に溜める液面高さを上げ、液没する冷却
チューブの本数を増やして、液過冷却をつけることがで
きるようにしている。
Further, as an example of subcooling the condensate in the shell of a single condenser, there is JP-B-60-51024, which has a liquid outlet on the side of the shell. The height of the liquid level stored in the shell is increased, and the number of cooling tubes submerged in the liquid is increased to enable supercooling of the liquid.

【0004】[0004]

【発明が解決しようとする課題】しかし、液過冷却専用
の熱交換器や、エコノマイザー液過冷却器を設けるもの
では、凝縮器の他に別の容器が必要になり、回路中の容
器総数が増加すると共に配管接続構造も複雑になり、シ
ステムの構築が煩雑となるし、気密性の保持も困難とな
る問題がある。
However, in the case where the heat exchanger dedicated to the liquid subcooling and the economizer liquid subcooler are provided, another container is required in addition to the condenser, and the total number of containers in the circuit is required. However, there is a problem in that the pipe connection structure becomes complicated, the system construction becomes complicated, and the airtightness is difficult to maintain.

【0005】又、シェル内の液面高さを上げて冷却チュ
ーブを液没させて過冷却をとるものでは、過冷却した低
温の凝縮液の液面に常時高温のガスが直接接触して凝縮
するため、過冷却液温を高めてしまい、液過冷却度が減
少する問題がある。特に、非共沸混合冷媒の場合、横軸
にエンタルピー・縦軸に圧力をとったモリエル線図中の
等温線が横軸に対して傾斜し、飽和液温度が飽和ガス温
度に対して低くなるため、過冷却液温と過冷却液に触れ
るガス温度との温度差が大きく、ガスの直接凝縮量が多
く、過冷却度が一層確保し難い問題がある。従って、所
定の液過冷却度を確保するためには、冷却チューブの本
数を増したり、その長さを長くする必要があり、凝縮器
の大型化を招く問題もある。
In the case of supercooling by raising the liquid level in the shell and submerging the cooling tube, the liquid surface of the supercooled low-temperature condensate is always in direct contact with the high-temperature gas and condensed. Therefore, there is a problem that the supercooled liquid temperature is raised and the liquid subcooling degree is reduced. Particularly, in the case of a non-azeotropic mixed refrigerant, the isotherm in the Mollier diagram with the enthalpy on the horizontal axis and the pressure on the vertical axis is inclined with respect to the horizontal axis, and the saturated liquid temperature becomes lower than the saturated gas temperature. Therefore, there is a problem that the temperature difference between the supercooled liquid temperature and the gas temperature in contact with the supercooled liquid is large, the direct condensation amount of the gas is large, and it is more difficult to secure the supercooling degree. Therefore, in order to secure a predetermined degree of liquid subcooling, it is necessary to increase the number of cooling tubes or increase the length thereof, which causes a problem of increasing the size of the condenser.

【0006】本発明の主目的は、容器数を増やしたりす
ることなく、シェルの内部において凝縮液の過冷却を十
分に促進できるシェルアンドチューブ式凝縮器を提供す
る点にある。
The main object of the present invention is to provide a shell-and-tube type condenser capable of sufficiently promoting the supercooling of the condensate inside the shell without increasing the number of containers.

【0007】[0007]

【課題を解決するための手段】そこで、上記主目的を達
成するため、請求項1記載の発明は、図1,図5,図
6,図9に示すように、ガス取入口11及び液取出口1
2をもつシェル1と、シェル1の内部に配管する多数本
の冷却チューブ2とを備えたシェルアンドチューブ式凝
縮器において、シェル1内の長手方向に沿って凝縮液を
満たす領域を区分して確保し、且つこの区分した領域に
おいて凝縮液をシェル1の長手方向に流す通路制御手段
3を設けると共に、この通路制御手段3で区分する凝縮
液を満たす領域に、凝縮液の流通方向と反対方向に冷却
媒体を流す冷却チューブ2の入口パス21を配管した。
In order to achieve the above-mentioned main object, the invention according to claim 1 is, as shown in FIG. 1, FIG. 5, FIG. 6 and FIG. Exit 1
In a shell-and-tube type condenser provided with a shell 1 having 2 and a plurality of cooling tubes 2 arranged inside the shell 1, a region filled with condensate is divided along the longitudinal direction in the shell 1. A passage control means (3) is provided which ensures the condensate to flow in the longitudinal direction of the shell (1) in the divided area, and in the area filled with the condensate divided by the passage control means (3), a direction opposite to the flowing direction of the condensed liquid The inlet path 21 of the cooling tube 2 through which the cooling medium is flowed is arranged.

【0008】請求項2記載の発明は、請求項1記載の発
明において、通路制御手段3の好適な例として、該通路
制御手段3が、図2〜図4に示すように、区分する領域
内に液を取込む液取込部をもち、区分する領域内に配管
した入口パス21の周りをシェル1内の長手方向にわた
って区画する区画体31から成るものとした。
The invention according to claim 2 is, in the invention according to claim 1, as a preferred example of the passage control means 3, wherein the passage control means 3 is within a divided area as shown in FIGS. It has a liquid intake part for taking in the liquid, and is composed of a partitioning body 31 which partitions the circumference of the inlet path 21 piped in the partitioning region in the shell 1 in the longitudinal direction.

【0009】請求項3記載の発明は、請求項2記載の発
明において、特に構成の簡易化を図るため、図2に明示
するように、区画体31が、対抗する二つの長辺をシェ
ル1の長手方向に沿わせて該シェル1の内面に接触させ
た板体310から成るものとした。
The invention according to claim 3 is the same as the invention according to claim 2, in order to particularly simplify the structure, as clearly shown in FIG. 2, the partition body 31 has two long sides opposed to each other in the shell 1 The plate body 310 is in contact with the inner surface of the shell 1 along the longitudinal direction thereof.

【0010】請求項4記載の発明は、請求項3記載の発
明において、更に凝縮液を満たす区分領域を必要以上に
大きくせずに、入口パス21との間で熱伝達能力を向上
できるようにするため、図3に示すように、板体310
の長辺の近くに、区分する領域の内方に向けて曲がる屈
曲部313,313を設けている構成にした。
According to a fourth aspect of the present invention, in the third aspect of the invention, the heat transfer capacity with the inlet path 21 can be improved without further increasing the size of the divided area that fills the condensate. Therefore, as shown in FIG.
The bent portions 313 and 313 that bend inward of the divided area are provided near the long side of the.

【0011】請求項5記載の発明は、請求項2記載の発
明において、凝縮液を満たす区分領域を必要以上に大き
くせずに、入口パス21との間で熱伝達能力を向上でき
るようにするため、図4に示すように、区画体31が、
区分する領域内に配管した入口パス21の外周部を取囲
む筒体314から成るものとした。
According to a fifth aspect of the present invention, in the second aspect of the invention, it is possible to improve the heat transfer capability with the inlet path 21 without enlarging the section area for filling the condensate more than necessary. Therefore, as shown in FIG.
A cylindrical body 314 surrounding the outer peripheral portion of the inlet path 21 piped in the sectioned area is used.

【0012】請求項6記載の発明は、請求項1記載の発
明において、通路制御手段3の好適な別例として、該通
路制御手段3が、図6〜図8に示すように、シェル1内
におけるガスの開放領域と凝縮液を満たす区分領域とを
除く横断面に拡がり、凝縮液を満たす区分領域内に配管
した入口パス21以外の冷却チューブ2とクロスする多
数枚の平行状のクロスフィン32から成るものとした。
According to a sixth aspect of the present invention, in the first aspect of the present invention, as another preferable example of the passage control means 3, the passage control means 3 is provided in the shell 1 as shown in FIGS. Of a plurality of parallel cross fins 32 that extend to a cross section excluding the gas release region and the condensate-filling region in FIG. 2 and cross the cooling tubes 2 other than the inlet path 21 piped in the condensate-filling region. Shall consist of

【0013】請求項7記載の発明は、請求項6記載の発
明において、凝縮液を溜める区分領域とガス領域との短
絡経路を長くして、ガスの直接凝縮量を一層低減するた
め、図8に示すように、クロスフィン32に、シェル1
の内面に沿ってガスの開放領域に張出し、ガスの開放領
域と凝縮液を満たす区分領域とをシェル1の内面に沿っ
て結ぶスパン長を長くする張出片32a,32aを設け
ている構成にした。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the short-circuit path between the section region for storing the condensed liquid and the gas region is lengthened to further reduce the direct condensation amount of the gas. As shown in FIG.
In the structure in which the overhanging pieces 32a, 32a are provided to extend along the inner surface of the shell to the gas open area, and to extend the span length connecting the gas open area and the divided area filled with the condensate along the inner surface of the shell 1. did.

【0014】請求項8記載の発明は、請求項1から請求
項7何れか一記載の発明において、更にエコノマイザー
液過冷却器をも構成して、エコノマイザー液過冷却をも
とることができるようにするため、図9〜図13に示す
ように、シェル1の内部で、凝縮液を満たす区分領域内
に配管した入口パス21の下流側に、エコノマイザー液
過冷却用の冷媒チューブ4を配管している構成にした。
According to an eighth aspect of the invention, in the invention according to any one of the first to seventh aspects, an economizer liquid subcooler may be further configured to obtain the economizer liquid supercooling. In order to do so, as shown in FIGS. 9 to 13, inside the shell 1, the refrigerant tube 4 for supercooling the economizer liquid is provided on the downstream side of the inlet path 21 that is piped in the section area where the condensate is filled. It is configured to be piped.

【0015】請求項9記載の発明は、請求項8記載の発
明において、その構成の好適な例として、図9〜図11
に示すように、冷却チューブ2の入口パス21をシェル
1の下部に配管していると共に、この入口パス21の下
部に、仕切体5を介してエコノマイザー液過冷却用の冷
媒チューブ4を配管している構成にした。
The invention described in claim 9 is the same as the invention described in claim 8, as a preferable example of the configuration thereof.
As shown in FIG. 2, the inlet path 21 of the cooling tube 2 is piped to the lower portion of the shell 1, and the refrigerant tube 4 for supercooling the economizer liquid is piped to the lower portion of the inlet path 21 via the partition body 5. It has been configured.

【0016】請求項10記載の発明は、請求項8記載の
発明において、その構成の好適な別例として、図12及
び図13に示すように、冷却チューブ2の入口パス21
をシェル1の下部で、左右方向一側に配管していると共
に、この入口パス21の左右方向一側に、仕切体6を介
してエコノマイザー液過冷却用の冷媒チューブ4を隣接
状に配管している構成にした。
According to a tenth aspect of the invention, in the eighth aspect of the invention, as another preferable example of the configuration, as shown in FIGS. 12 and 13, an inlet path 21 of the cooling tube 2 is provided.
Is connected to one side in the left-right direction at the lower part of the shell 1, and a refrigerant tube 4 for supercooling the economizer liquid is adjacently connected to one side in the left-right direction of the inlet path 21 through the partition body 6. It has been configured.

【0017】[0017]

【作用】請求項1記載の発明では、図1,図5,図6,
図9に示すように、ガス取入口11から取入れたガス
は、シェル1の内部において、冷却チューブ2に流す冷
却媒体と熱交換して冷され、凝縮して液化する。この凝
縮液は、通路制御手段3により、シェル1内の長手方向
に沿う区分領域内に集められてシェル1の長手方向に流
れ、これと反対方向に流す入口パス21の冷却媒体によ
り過冷却される。この凝縮液の過冷却が行われるとき、
凝縮液は、通路制御手段3により、ガス領域と区分され
ており、この凝縮液とガスの接触によるガスの直接凝縮
を低減でき、過冷却度が落ちるのを防止できる。これと
共に、凝縮液は、冷却チューブ2に流す冷却媒体のうち
最も低温の入口パス21に流れるものと所謂対向流を形
成しながら熱交換することになる。従って、凝縮液の区
分領域内において、凝縮液の過冷却を促進することがで
き、液取出口12から、十分に過冷却された液を取出す
ことができる。
According to the first aspect of the invention, FIG. 1, FIG. 5, FIG.
As shown in FIG. 9, the gas taken in through the gas inlet 11 is cooled by exchanging heat with the cooling medium flowing through the cooling tube 2 inside the shell 1, condensed, and liquefied. This condensate is collected by the passage control means 3 in the sectioned region along the longitudinal direction in the shell 1, flows in the longitudinal direction of the shell 1, and is supercooled by the cooling medium in the inlet path 21 flowing in the opposite direction. It When this condensate is supercooled,
The condensate is separated from the gas region by the passage control means 3, and the direct condensation of the gas due to the contact between the condensate and the gas can be reduced and the degree of supercooling can be prevented from decreasing. At the same time, the condensate exchanges heat with the cooling medium flowing in the cooling tube 2 that flows in the coldest inlet path 21 while forming a so-called counterflow. Therefore, the supercooling of the condensate can be promoted in the condensate division area, and the sufficiently supercooled liquid can be taken out from the liquid outlet 12.

【0018】請求項2記載の発明では、図2〜図4に示
すように、通路制御手段3が区画体31から成り、過冷
却をとる区分領域とガス領域との間を区画体31の壁面
によって仕切るため、凝縮液とガスとの直接接触を確実
に回避することができ、凝縮液の過冷却を十分にとるこ
とができる。
According to the second aspect of the present invention, as shown in FIGS. 2 to 4, the passage control means 3 is composed of a partition 31, and the wall surface of the partition 31 is provided between the partition region for supercooling and the gas region. Since it is partitioned by, it is possible to reliably avoid direct contact between the condensate and the gas, and it is possible to sufficiently supercool the condensate.

【0019】請求項3記載の発明では、図2に明示する
ように、区画体31を構成する板体310の裏面側と、
この板体310の二つの長辺を接触させるシェル1の内
面側とにより、凝縮液の区分領域を形成することができ
る。区画体31は板体310から成り、その長辺をシェ
ル1に接触させるだけの構造であるため、凝縮液の区分
領域を簡易に形成することができる。
According to the third aspect of the invention, as clearly shown in FIG. 2, the back side of the plate body 310 constituting the partition body 31, and
With the inner surface side of the shell 1 in which the two long sides of the plate body 310 are brought into contact with each other, a condensate partition region can be formed. The partition body 31 is composed of the plate body 310 and has a structure in which the long side thereof is only brought into contact with the shell 1. Therefore, the partition region of the condensate can be easily formed.

【0020】請求項4記載の発明では、図3に示すよう
に、板体310の長辺の近くに設ける屈曲部313,3
13により、凝縮液を満たす区分領域が狭められ、この
区分領域が必要以上に大きくなるのを回避でき、入口パ
ス21との間で熱伝達能力を向上させることができる。
According to the fourth aspect of the invention, as shown in FIG. 3, the bent portions 313, 3 provided near the long side of the plate body 310.
13 narrows the partition area that fills the condensate, prevents this partition area from becoming unnecessarily large, and improves the heat transfer capacity with the inlet path 21.

【0021】請求項5記載の発明では、図4に示すよう
に、区画体31は、凝縮液の区分領域内に配管した入口
パス21の外周部を取囲む筒体314であるため、凝縮
液の区分領域が必要以上に大きくなるのを回避でき、入
口パス21との間で熱伝達能力を向上させることができ
る。
According to the fifth aspect of the present invention, as shown in FIG. 4, the partition 31 is a cylindrical body 314 that surrounds the outer peripheral portion of the inlet path 21 piped in the condensate partition area. It is possible to prevent the sectional area of (1) from becoming unnecessarily large, and it is possible to improve the heat transfer capability with the inlet path 21.

【0022】請求項6記載の発明では、図6〜図8に示
すように、通路制御手段3を構成する多数枚の平行状の
クロスフィン32は、シェル1内におけるガスの開放領
域の他に、凝縮液を満たす区分領域には拡がらず、凝縮
液を満たす区分領域内に配管した入口パス21とはクロ
スしないから、この入口パス21の配管周りに凝縮液が
自由に流れる領域が確保できる。この凝縮液が流れる領
域は、多数枚のクロスフィン32のフィン面が張り出す
通路抵抗の大きなフィンの横断領域を挟んでガス領域と
連通することになるため、ガスと凝縮液との積極的な接
触を回避でき、ガスの直接凝縮量を低減できて、凝縮液
の過冷却を十分にとることができる。
According to the sixth aspect of the invention, as shown in FIGS. 6 to 8, the multiple parallel cross fins 32 constituting the passage control means 3 are provided in addition to the gas release area in the shell 1. Since it does not spread to the section area that fills the condensate and does not cross the inlet path 21 that is piped in the section area that fills the condensate, an area where the condensate flows freely can be secured around the piping of this inlet path 21. . This condensate flowing region communicates with the gas region across the crossing region of the fin having a large passage resistance overhanging the fin surfaces of the multiple cross fins 32, so that the gas and the condensate are positively connected. Contact can be avoided, the amount of direct condensation of gas can be reduced, and the condensate can be sufficiently cooled.

【0023】請求項7記載の発明では、図8に示すよう
に、クロスフィン32に設ける張出片32a,32aに
より、ガス領域と凝縮液の区分領域との間をシェル1の
内面に沿って結ぶ冷却チューブ2が介在しない本来抵抗
の小さな連通路の抵抗を大きくすることができ、ガスの
直接凝縮量を一層低減することができる。
According to the seventh aspect of the present invention, as shown in FIG. 8, the cross fins 32 are provided with overhanging pieces 32a, 32a so as to extend along the inner surface of the shell 1 between the gas region and the condensate partition region. It is possible to increase the resistance of the communication passage, which originally has a small resistance, without the interposition of the cooling tube 2 to be connected, and to further reduce the direct condensation amount of the gas.

【0024】請求項8記載の発明では、図9〜図13に
示すように、シェル1の内部に、エコノマイザー液過冷
却用の冷媒チューブ4を配管したから、容器数を増やす
ことなくエコノマイザー液過冷却器を構成することがで
き、入口パス21による過冷却に加えて、エコノマイザ
ー液過冷却をもとることができる。
According to the eighth aspect of the invention, as shown in FIGS. 9 to 13, since the refrigerant tube 4 for supercooling the economizer liquid is provided inside the shell 1, the economizer can be used without increasing the number of containers. A liquid subcooler can be configured, and in addition to the supercooling by the inlet path 21, the economizer liquid subcooling can be obtained.

【0025】請求項9記載の発明では、図9〜図11に
示すように、シェル1内の下部において、冷却チューブ
2の入口パス21と接触した後の過冷却液は、仕切体5
を介して下部に受け渡され、エコノマイザー液過冷却用
の冷媒チューブ4と接触して更に過冷却されて取り出さ
れる。こうして、凝縮器を構成する一つのシェル1の内
部に、エコノマイザー液過冷却器をも良好に構成するこ
とができる。
According to the ninth aspect of the invention, as shown in FIGS. 9 to 11, the supercooled liquid after coming into contact with the inlet path 21 of the cooling tube 2 in the lower portion of the shell 1 is the partition body 5.
Is passed to the lower part through the contact hole, comes into contact with the refrigerant tube 4 for supercooling the economizer liquid, and is further supercooled and taken out. In this way, an economizer liquid subcooler can be favorably constructed inside one shell 1 constituting the condenser.

【0026】請求項10記載の発明は、図12及び図1
3に示すように、シェル1内の下部において、その左右
方向一側に配管した冷却チューブ2の入口パス21と接
触した後の過冷却液は、仕切体6を介して左右方向もう
一方側に配管したエコノマイザー液過冷却用の冷媒チュ
ーブ4側に受け渡され、この冷媒チューブ4と接触して
更に過冷却された後、取り出される。こうして、凝縮器
を構成する一つのシェル1の内部に、エコノマイザー液
過冷却器をも良好に構成することができる。
The invention according to claim 10 is shown in FIGS. 12 and 1.
As shown in FIG. 3, in the lower part of the shell 1, the supercooled liquid after coming into contact with the inlet path 21 of the cooling tube 2 piped to one side in the left-right direction is passed to the other side in the left-right direction via the partition body 6. It is delivered to the side of the refrigerant tube 4 for supercooling the economizer liquid that has been piped, comes into contact with the refrigerant tube 4 and is further supercooled, and then taken out. In this way, an economizer liquid subcooler can be favorably constructed inside one shell 1 constituting the condenser.

【0027】[0027]

【実施例】図1において、1は、円筒を呈する横形のシ
ェルであり、このシェル1の長手方向一側の上部にはガ
ス取入口11を、その下部には液取出口12をそれぞれ
設けている。ガス取入口11には、圧縮機から吐出した
高圧ガス冷媒を導くこととしており、シェル1の内部で
凝縮させた高圧液冷媒を、液取出口12から取り出して
膨脹機構側に送り込むようにしている。膨脹機構の下流
側には、蒸発器が接続され、圧縮、凝縮、膨脹、蒸発を
繰り返す冷凍サイクルを構成するようにしている。循環
させる冷媒には、高沸点側冷媒と低沸点側冷媒とを混合
した互いに非共沸な混合冷媒を用いている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 is a horizontal shell having a cylindrical shape. A gas inlet 11 is provided at an upper part on one side in the longitudinal direction of the shell 1 and a liquid outlet 12 is provided at a lower part thereof. There is. The high-pressure gas refrigerant discharged from the compressor is introduced into the gas inlet 11, and the high-pressure liquid refrigerant condensed inside the shell 1 is taken out from the liquid outlet 12 and sent to the expansion mechanism side. . An evaporator is connected to the downstream side of the expansion mechanism to form a refrigeration cycle in which compression, condensation, expansion and evaporation are repeated. As the refrigerant to be circulated, a non-azeotropic mixed refrigerant in which a high boiling point refrigerant and a low boiling point refrigerant are mixed is used.

【0028】シェル1の内部には、左右の管板13,1
4を介して多数本の冷却チューブ2を配管しており、管
板13,14の外方にそれぞれ配設する仕切板15a付
の給排用ヘッダー15及び仕切無しのリターン用ヘッダ
ー16を介して、冷却水を1往復すなわち2パスにわた
り流すようにしている。冷却チューブ2における入口パ
ス21は、図2に示すように、シェル1の下部側におい
て、上下に2段、横方向に4列、合計8本備え、又、出
口パス22は、シェル1の上部側において、同じく上下
に2段、横方向に4列、合計8本備えている。尚、冷却
チューブ2の総数並びに縦横の配設本数は適宜変更可能
である。
Inside the shell 1, there are left and right tube plates 13, 1.
A large number of cooling tubes 2 are laid through 4 and through a supply / discharge header 15 with a partition plate 15a and a return header 16 without a partition, which are arranged outside the tube plates 13 and 14, respectively. The cooling water is caused to flow over one round trip, that is, two passes. As shown in FIG. 2, the inlet path 21 in the cooling tube 2 is provided on the lower side of the shell 1 with two rows vertically and four rows in the lateral direction, for a total of eight, and the outlet path 22 is provided on the upper side of the shell 1. On the side, there are 8 rows in total, 2 rows vertically and 4 rows horizontally. The total number of cooling tubes 2 and the number of cooling tubes 2 arranged vertically and horizontally can be appropriately changed.

【0029】以上の構成において、シェル1内の長手方
向下方に沿って凝縮液を満たす領域を区分して確保し、
且つこの区分した領域において凝縮液をシェル1の長手
方向に流す通路制御手段3を設ける。これと共に、通路
制御手段3で区分する凝縮液を満たす下部領域に、凝縮
液の流通方向と反対方向に冷却水を流す冷却チューブ2
における入口パス21の下段側4列を、運転状態による
液面変動に対応可能なように、上段側のものに対して上
下間隔をやや大きく隔てて配管する。
In the above structure, a region for filling the condensate is divided and secured along the lower part in the longitudinal direction in the shell 1.
In addition, the passage control means 3 is provided in the divided area to flow the condensate in the longitudinal direction of the shell 1. Along with this, the cooling tube 2 in which cooling water is caused to flow in the direction opposite to the flow direction of the condensate in the lower region filled with the condensate which is divided by the passage control means 3.
The lower four rows of the inlet paths 21 in the above are piped at a slightly larger vertical distance from the upper one so as to be able to cope with the liquid level fluctuation due to the operating state.

【0030】図1及び図2に示す第1実施例では、通路
制御手段3を矩形状の板体310から成る区画体31で
構成しており、板体310の相対抗する二つの長辺31
1,312をシェル1の長手方向に沿わせて該シェル1
の内面に接触させていると共に、液取込側の板端310
eを管板14に対し変位させて臨ませ、区分する領域内
に液が取込めるようにしている。
In the first embodiment shown in FIGS. 1 and 2, the passage control means 3 is composed of a partition 31 composed of a rectangular plate 310, and two long sides 31 of the plate 310 which oppose each other.
1, 312 along the longitudinal direction of the shell 1
Is in contact with the inner surface of the plate and the plate end 310 on the liquid intake side.
e is displaced with respect to the tube sheet 14 so as to face it so that the liquid can be taken into the divided area.

【0031】図3に示す第2実施例では、板体310を
単なる平板とはせずに、板体310の長辺311,31
2の近くに、区分する領域の内方に向けて曲がる一対の
屈曲部313,313を設け、凝縮液を過冷却する区分
領域を小さくし、凝縮液流速を増すことにより、熱伝達
能力を向上できるようにしている。
In the second embodiment shown in FIG. 3, the plate body 310 is not a flat plate but the long sides 311 and 31 of the plate body 310.
By providing a pair of bent portions 313, 313 that bend inward of the area to be divided near 2, to reduce the area for subcooling the condensate, and to increase the condensate flow velocity, improve the heat transfer capacity. I am able to do it.

【0032】図4に示す第3実施例では、区画体31
を、区分する領域内に配管した入口パス21の外周部を
取囲む円筒形の筒体314で形成しており、同様に、凝
縮液の過冷却領域を小さくして、熱伝達能力を向上でき
るようにしている。尚、図4において、315は、筒体
314の出口側と液取出口12とを連結する液冷媒出口
通路である。
In the third embodiment shown in FIG. 4, the partition 31
Is formed by a cylindrical tube body 314 surrounding the outer peripheral portion of the inlet path 21 piped in the divided area, and similarly, the supercooling area of the condensate can be reduced to improve the heat transfer capacity. I am trying. In FIG. 4, 315 is a liquid refrigerant outlet passage that connects the outlet side of the cylindrical body 314 and the liquid outlet 12.

【0033】図5に示す第4実施例は、上下4段の冷却
チューブ2の各段を独立したパスとした4パス構造のも
のであり、下部の冷却水取入室17a、中央の冷却水リ
ターン室17b、上部の冷却水取出室17cを仕切る給
排用のヘッダー17と、上下に冷却水リターン室16
a,16bを画成するリターン専用のヘッダー16とに
より、2往復にわたり冷却水を流通させている。凝縮液
の過冷却領域を確保する通路制御手段3は、図1及び図
2に示したものと同様のものであるが、これに代えて、
図3又は図4に示した構造としてもよいのは云うまでも
ない。
The fourth embodiment shown in FIG. 5 has a four-pass structure in which each stage of the upper and lower four cooling tubes 2 is an independent pass, and the lower cooling water intake chamber 17a and the central cooling water return unit are provided. The chamber 17b, the header 17 for supplying and discharging that partitions the cooling water take-out chamber 17c at the upper part, and the cooling water return chamber 16 at the top and bottom
With the header 16 dedicated to the return that defines a and 16b, the cooling water is distributed over two round trips. The passage control means 3 for ensuring the supercooled region of the condensate is the same as that shown in FIGS. 1 and 2, but instead of this,
Needless to say, the structure shown in FIG. 3 or 4 may be used.

【0034】図6及び図7に示す第5実施例は、区画体
31によらずに通路制御手段3を構成したものであり、
通路制御手段3を、シェル1内におけるガスの上部開放
領域と凝縮液を満たす下部区分領域とを除く横断面に拡
がり、凝縮液を満たす区分領域内に配管した入口パス2
1以外の冷却チューブ2とクロスする多数枚の平行状の
クロスフィン32で構成することとし、最下段の入口パ
ス21の配管周りに凝縮液が自由に流れる領域を確保す
ると共に、上部ガス領域との積極的な接触を回避し、ガ
スの直接凝縮量を低減できるようにしたものである。
In the fifth embodiment shown in FIGS. 6 and 7, the passage control means 3 is constructed without using the partition 31.
The inlet path 2 is formed by expanding the passage control means 3 in a cross-section excluding an upper opening region of gas in the shell 1 and a lower division region that fills the condensate, and pipes in the division region that fills the condensate.
It is configured by a number of parallel cross fins 32 that cross the cooling tubes 2 other than 1 to secure a region in which the condensate can freely flow around the pipe of the inlet path 21 in the lowermost stage, and to form an upper gas region. It is possible to reduce the direct condensation amount of gas by avoiding the positive contact of.

【0035】図8に示す第6実施例は、クロスフィン3
2の1枚1枚に、シェル1の内面に沿ってガスの開放領
域に張出し、ガスの開放領域と凝縮液を満たす区分領域
とをシェル1の内面に沿って結ぶスパン長を長くする張
出片32a,32aを設け、凝縮液を溜める区分領域と
ガス領域との短絡経路を長くして、ガスの直接凝縮量を
一層低減できるようにしたものである。
A sixth embodiment shown in FIG. 8 is a cross fin 3
Each piece of No. 2 overhangs along the inner surface of the shell 1 to the gas open area, and extends over the span length connecting the gas open area and the divided area that fills the condensate along the inner surface of the shell 1. The pieces 32a, 32a are provided, and the short-circuit path between the section area for storing the condensate and the gas area is lengthened so that the direct condensation amount of the gas can be further reduced.

【0036】図9〜図11に示す第7実施例は、シェル
1の内部で、凝縮液を満たす下部区分領域内に配管した
入口パス21の下流側下段に、仕切体5を介してエコノ
マイザー液過冷却用の冷媒チューブ4を配管し、この冷
媒チューブ4に凝縮液の一部を中間圧力に減圧した後の
中間圧力冷媒を流して蒸発させることにより、エコノマ
イザー液過冷却をもとることができるようにしたもので
ある。尚、仕切体5は、平板から成り、入口パス21に
対する通路制御手段3を構成する板体310から成る区
画体31に対し、平行に配設している。
The seventh embodiment shown in FIGS. 9 to 11 is an economizer via a partition 5 at the lower stage on the downstream side of an inlet path 21 which is piped inside the shell 1 in a lower section region where the condensate is filled. Obtaining economizer liquid supercooling by piping a refrigerant tube 4 for liquid subcooling and flowing a medium pressure refrigerant after depressurizing a part of the condensed liquid to an intermediate pressure in the refrigerant tube 4 to evaporate the refrigerant. It was made possible. The partition body 5 is made of a flat plate and is arranged in parallel with a partition body 31 made of a plate body 310 that constitutes the passage control means 3 for the inlet path 21.

【0037】図12及び図13に示す第8実施例は、エ
コノマイザー液過冷却用の冷媒チューブ4の配置関係及
び仕切構造の別例を示し、冷却チューブ2の入口パス2
1をシェル1の下部で、左右方向一側に配管していると
共に、この入口パス21の左右方向一側に、通路制御手
段3を構成する板体310と、その中央下方に立設する
立壁60とで囲む仕切体6を介してエコノマイザー液過
冷却用の冷媒チューブ4を隣接状に配管したものであ
る。
The eighth embodiment shown in FIGS. 12 and 13 shows another example of the layout relationship and partition structure of the refrigerant tube 4 for supercooling the economizer liquid, and the inlet path 2 of the cooling tube 2 is shown.
1 is provided in the lower part of the shell 1 on one side in the left-right direction, and on one side in the left-right direction of the inlet path 21, a plate body 310 constituting the passage control means 3 and a standing wall standing upright below the center thereof. Refrigerant tubes 4 for supercooling the economizer liquid are arranged adjacent to each other through a partition body 6 surrounded by 60.

【0038】尚、以上の各構成において、冷却チューブ
2のパス数は2パス、4パスに限定されるものでなく、
ヘッダーとの組合せにより、3パス、5パス、あるいは
6パス以上であってもいっこうに差し支え無い。
In each of the above constructions, the number of passes of the cooling tube 2 is not limited to 2 passes and 4 passes.
Depending on the combination with the header, it may be 3 passes, 5 passes, or 6 passes or more.

【0039】[0039]

【発明の効果】請求項1記載の発明によれば、通路制御
手段3により、凝縮液はガス領域と区分して流れ、ガス
の積極的な接触による直接凝縮量を低減でき、対向流と
なる入口パス21の冷却媒体により凝縮液の過冷却を促
進できるから、十分に過冷却された液を取出すことがで
きる。
According to the first aspect of the present invention, the passage control means 3 allows the condensate to flow separately from the gas region, so that the amount of direct condensation due to the positive contact of the gas can be reduced and the counter flow can be obtained. Since the supercooling of the condensate can be promoted by the cooling medium in the inlet path 21, the sufficiently supercooled liquid can be taken out.

【0040】請求項2記載の発明によれば、過冷却をと
る区分領域とガス領域との間を区画体31の壁面によっ
て仕切るため、凝縮液とガスとの直接接触を確実に回避
することができ、凝縮液の過冷却を十分にとることがで
きる。
According to the second aspect of the present invention, since the partition wall and the gas region are partitioned by the wall surface of the partition 31, the direct contact between the condensate and the gas can be reliably avoided. It is possible to sufficiently cool the condensate.

【0041】請求項3記載の発明によれば、板体310
により、凝縮液の区分領域を簡易に形成することができ
る。
According to the third aspect of the invention, the plate body 310
With this, it is possible to easily form the divided region of the condensate.

【0042】請求項4記載の発明によれば、板体310
の長辺の近くに設ける屈曲部313,313により、凝
縮液を満たす区分領域を小さくでき、入口パス21との
間で熱伝達能力を向上させることができる。
According to the fourth aspect of the invention, the plate body 310
By the bent portions 313 and 313 provided near the long side of the condensate, it is possible to reduce the section area that fills the condensate, and to improve the heat transfer capability with the inlet path 21.

【0043】請求項5記載の発明によれば、筒体314
により、凝縮液を満たす区分領域を小さくでき、入口パ
ス21との間で熱伝達能力を向上させることができる。
According to the fifth aspect of the invention, the cylindrical body 314 is
As a result, it is possible to reduce the size of the segmented region that fills the condensate, and to improve the heat transfer capacity with the inlet path 21.

【0044】請求項6記載の発明によれば、クロスフィ
ン32により、凝縮液とガスとの積極的な接触を回避で
き、凝縮液の過冷却を十分にとることができる。
According to the sixth aspect of the present invention, the cross fins 32 can prevent positive contact between the condensate and the gas, and can sufficiently cool the condensate.

【0045】請求項7記載の発明によれば、クロスフィ
ン32に設ける張出片32a,32aにより、ガスの直
接凝縮量を一層低減することができる。
According to the seventh aspect of the present invention, the amount of direct condensation of gas can be further reduced by the overhanging pieces 32a, 32a provided on the cross fin 32.

【0046】請求項8記載の発明によれば、容器数を増
やすことなくエコノマイザー液過冷却器を構成すること
ができ、入口パス21による過冷却に加えて、エコノマ
イザー液過冷却をもとることができる。
According to the eighth aspect of the invention, the economizer liquid subcooler can be constructed without increasing the number of containers, and in addition to the supercooling by the inlet path 21, the economizer liquid subcooling is taken. be able to.

【0047】請求項9記載の発明によれば、冷却チュー
ブ2の入口パス21の下部に配置するエコノマイザー液
過冷却用の冷媒チューブ4、その間を仕切る仕切体5に
より、一つのシェル1の内部に、エコノマイザー液過冷
却器をも良好に構成することができる。
According to the ninth aspect of the invention, the inside of one shell 1 is composed of the refrigerant tube 4 for supercooling the economizer liquid placed below the inlet path 21 of the cooling tube 2 and the partition 5 for partitioning the space therebetween. In addition, the economizer liquid subcooler can be well constructed.

【0048】請求項10記載の発明によれば、冷却チュ
ーブ2の入口パス21と左右に分けて配置するエコノマ
イザー液過冷却用の冷媒チューブ4、その間を仕切る仕
切体6により、一つのシェル1の内部に、エコノマイザ
ー液過冷却器をも良好に構成することができる。
According to the tenth aspect of the invention, one shell 1 is constituted by the inlet path 21 of the cooling tube 2, the refrigerant tube 4 for supercooling the economizer liquid which is separately arranged on the right and left sides, and the partition body 6 for partitioning the space therebetween. An economizer liquid subcooler can also be well constructed inside.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る凝縮器の第1実施例を示す断面
図。
FIG. 1 is a sectional view showing a first embodiment of a condenser according to the present invention.

【図2】同図1におけるA,A線での断面図。FIG. 2 is a sectional view taken along the line A, A in FIG.

【図3】同第2実施例の断面図。FIG. 3 is a sectional view of the second embodiment.

【図4】同第3実施例の断面図。FIG. 4 is a sectional view of the third embodiment.

【図5】同第4実施例の断面図。FIG. 5 is a sectional view of the fourth embodiment.

【図6】同第5実施例の断面図。FIG. 6 is a sectional view of the fifth embodiment.

【図7】同図6におけるB,B線での断面図。FIG. 7 is a sectional view taken along line B, B in FIG.

【図8】同第6実施例の断面図。FIG. 8 is a sectional view of the sixth embodiment.

【図9】同第7実施例の断面図。FIG. 9 is a sectional view of the seventh embodiment.

【図10】同図9におけるC,C線での断面図。FIG. 10 is a sectional view taken along the line C and C in FIG.

【図11】同第7実施例の要部斜視図。FIG. 11 is a perspective view of a main part of the seventh embodiment.

【図12】同第8実施例の要部斜視図。FIG. 12 is a perspective view of an essential part of the eighth embodiment.

【図13】同第8実施例の断面図。FIG. 13 is a sectional view of the eighth embodiment.

【符号の説明】[Explanation of symbols]

1;シェル、11;ガス取入口、12;液取出口、2;
冷却チューブ、21;入口パス、3;通路制御手段、3
1;区画体、310;板体、313;屈曲部、314;
筒体、32;クロスフィン、32a;張出片、4;エコ
ノマイザー液過冷却用の冷媒チューブ、5,6;仕切体
1; Shell, 11; Gas inlet, 12; Liquid outlet, 2;
Cooling tube, 21; inlet path, 3; passage control means, 3
1; partition body, 310; plate body, 313; bent portion, 314;
Cylindrical body, 32; Cross fin, 32a; Overhanging piece, 4; Refrigerant tube for supercooling of economizer liquid, 5, 6; Partition body

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ガス取入口(11)及び液取出口(1
2)をもつシェル(1)と、シェル(1)の内部に配管
する多数本の冷却チューブ(2)とを備えたシェルアン
ドチューブ式凝縮器において、シェル(1)内の長手方
向に沿って凝縮液を満たす領域を区分して確保し、且つ
この区分した領域において凝縮液をシェル(1)の長手
方向に流す通路制御手段(3)を設けると共に、この通
路制御手段(3)で区分する凝縮液を満たす領域に、凝
縮液の流通方向と反対方向に冷却媒体を流す冷却チュー
ブ(2)の入口パス(21)を配管したことを特徴とす
るシェルアンドチューブ式凝縮器。
1. A gas inlet (11) and a liquid outlet (1)
In a shell-and-tube type condenser provided with a shell (1) having 2) and a large number of cooling tubes (2) piped inside the shell (1), along a longitudinal direction in the shell (1) A region for filling the condensate is secured separately, and a passage control means (3) for flowing the condensate in the longitudinal direction of the shell (1) is provided in the divided region, and the passage control means (3) is used for division. A shell-and-tube type condenser characterized in that an inlet path (21) of a cooling tube (2) for flowing a cooling medium in a direction opposite to a flow direction of the condensate is provided in a region where the condensate is filled.
【請求項2】 通路制御手段(3)が、区分する領域内
に液を取込む液取込部をもち、区分する領域内に配管し
た入口パス(21)の周りをシェル(1)内の長手方向
にわたって区画する区画体(31)から成る請求項1記
載のシェルアンドチューブ式凝縮器。
2. The passage control means (3) has a liquid intake part for taking in the liquid in the area to be divided, and the inside of the shell (1) is surrounded by an inlet path (21) piped in the area to be divided. The shell-and-tube type condenser according to claim 1, comprising a partition body (31) partitioned in the longitudinal direction.
【請求項3】 区画体(31)が、対抗する二つの長辺
をシェル(1)の長手方向に沿わせて該シェル(1)の
内面に接触させた板体(310)から成る請求項2記載
のシェルアンドチューブ式凝縮器。
3. The partition body (31) comprises a plate body (310) having two opposing long sides along the longitudinal direction of the shell (1) and in contact with the inner surface of the shell (1). The shell-and-tube condenser described in 2.
【請求項4】 板体(310)の長辺の近くに、区分す
る領域の内方に向けて曲がる屈曲部(313,313)
を設けている請求項3記載のシェルアンドチューブ式凝
縮器。
4. A bent portion (313, 313) bent near the long side of the plate body (310) toward the inside of the divided area.
The shell-and-tube type condenser according to claim 3, further comprising:
【請求項5】 区画体(31)が、区分する領域内に配
管した入口パス(21)の外周部を取囲む筒体(31
4)から成る請求項2記載のシェルアンドチューブ式凝
縮器。
5. A cylindrical body (31) in which a partition body (31) surrounds an outer peripheral portion of an inlet path (21) piped in a partitioning region.
The shell-and-tube condenser according to claim 2, which comprises 4).
【請求項6】 通路制御手段(3)が、シェル(1)内
におけるガスの開放領域と凝縮液を満たす区分領域とを
除く横断面に拡がり、凝縮液を満たす区分領域内に配管
した入口パス(21)以外の冷却チューブ(2)とクロ
スする多数枚の平行状のクロスフィン(32)から成る
請求項1記載のシェルアンドチューブ式凝縮器。
6. An inlet path in which the passage control means (3) extends in a cross section excluding a gas release region and a condensate-filling partition region in the shell (1) and is piped into the condensate-filling partition region. The shell-and-tube type condenser according to claim 1, comprising a plurality of parallel cross fins (32) crossing the cooling tubes (2) other than (21).
【請求項7】 クロスフィン(32)に、シェル(1)
の内面に沿ってガスの開放領域に張出し、ガスの開放領
域と凝縮液を満たす区分領域とをシェル(1)の内面に
沿って結ぶスパン長を長くする張出片(32a,32
a)を設けている請求項6記載の横形シェルアンドチュ
ーブ式凝縮器。
7. A cross fin (32) and a shell (1).
Overhanging to the gas open region along the inner surface of the shell and extending the span length connecting the gas open region and the condensate filled zone along the inner surface of the shell (1) (32a, 32).
The horizontal shell-and-tube condenser according to claim 6, wherein a) is provided.
【請求項8】 シェル(1)の内部で、凝縮液を満たす
区分領域内に配管した入口パス(21)の下流側に、エ
コノマイザー液過冷却用の冷媒チューブ(4)を配管し
ている請求項1から請求項7何れか一記載のシェルアン
ドチューブ式凝縮器。
8. A refrigerant tube (4) for supercooling an economizer liquid is provided on the downstream side of an inlet path (21), which is provided inside the shell (1) in a divided area for filling the condensate. The shell-and-tube type condenser according to any one of claims 1 to 7.
【請求項9】 冷却チューブ(2)の入口パス(21)
をシェル(1)の下部に配管していると共に、この入口
パス(21)の下部に、仕切体(5)を介してエコノマ
イザー液過冷却用の冷媒チューブ(4)を配管している
請求項8記載のシェルアンドチューブ式凝縮器。
9. An inlet path (21) for a cooling tube (2)
Is connected to the lower part of the shell (1), and a refrigerant tube (4) for supercooling the economizer liquid is connected to the lower part of the inlet path (21) through the partition (5). Item 8. A shell and tube condenser according to item 8.
【請求項10】 冷却チューブ(2)の入口パス(2
1)をシェル(1)の下部で、左右方向一側に配管して
いると共に、この入口パス(21)の左右方向一側に、
仕切体(6)を介してエコノマイザー液過冷却用の冷媒
チューブ(4)を隣接状に配管している請求項8記載の
シェルアンドチューブ式凝縮器。
10. The inlet path (2) of the cooling tube (2)
1) is piped at the lower part of the shell (1) to one side in the left-right direction, and at the one side in the left-right direction of this inlet path (21),
The shell-and-tube type condenser according to claim 8, wherein the refrigerant tubes (4) for supercooling the economizer liquid are adjacently arranged through the partition body (6).
JP3838895A 1995-02-27 1995-02-27 Shell and tube type condenser Pending JPH08233408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3838895A JPH08233408A (en) 1995-02-27 1995-02-27 Shell and tube type condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3838895A JPH08233408A (en) 1995-02-27 1995-02-27 Shell and tube type condenser

Publications (1)

Publication Number Publication Date
JPH08233408A true JPH08233408A (en) 1996-09-13

Family

ID=12523905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3838895A Pending JPH08233408A (en) 1995-02-27 1995-02-27 Shell and tube type condenser

Country Status (1)

Country Link
JP (1) JPH08233408A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190829A (en) * 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd Refrigerant cooling device and cooling device
WO2009089100A1 (en) * 2008-01-02 2009-07-16 Johnson Controls Technology Company Heat exchanger
WO2009121549A1 (en) * 2008-04-01 2009-10-08 Efficient Energy Gmbh Liquefier for a heat pump and heat pump
CN102261772A (en) * 2010-05-26 2011-11-30 约克(无锡)空调冷冻设备有限公司 Condenser
WO2012135933A2 (en) * 2011-04-07 2012-10-11 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
CN103090599A (en) * 2011-11-03 2013-05-08 上海瀚艺冷冻机械有限公司 High energy efficiency dry shell and tube condensing heat exchanger with tube for subcooling
CN103486883A (en) * 2013-09-13 2014-01-01 无锡明燕集团有限公司 Tubular heat exchanger
US9016074B2 (en) 2013-03-15 2015-04-28 Energy Recovery Systems Inc. Energy exchange system and method
CN104676963A (en) * 2013-11-26 2015-06-03 北京中矿博能节能科技有限公司 Mine original ecological bursting water heat pump unit
CN104697247A (en) * 2015-03-24 2015-06-10 中国扬子集团滁州扬子空调器有限公司 Shell-and-tube multifunctional heat exchanger
US9234686B2 (en) 2013-03-15 2016-01-12 Energy Recovery Systems Inc. User control interface for heat transfer system
CN105546885A (en) * 2016-01-31 2016-05-04 佛山光腾新能源股份有限公司 Two-stage heat exchanger
WO2017112805A1 (en) * 2015-12-21 2017-06-29 Johnson Controls Technology Company Heat exchanger for a vapor compression system
US10260775B2 (en) 2013-03-15 2019-04-16 Green Matters Technologies Inc. Retrofit hot water system and method
CN110068174A (en) * 2019-05-28 2019-07-30 苏州必信空调有限公司 A kind of shell and tube condenser and its refrigeration system
CN114992917A (en) * 2022-05-19 2022-09-02 广东工业大学 With CO 2 Plate-shell type heat exchanger with controllable dryness and supercooling degrees of working medium
US11441826B2 (en) 2015-12-21 2022-09-13 Johnson Controls Tyco IP Holdings LLP Condenser with external subcooler
CN117346392A (en) * 2023-12-05 2024-01-05 江苏世林博尔制冷设备有限公司 Condenser of refrigeration equipment

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190829A (en) * 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd Refrigerant cooling device and cooling device
US9212836B2 (en) 2008-01-02 2015-12-15 Johnson Controls Technology Company Heat exchanger
WO2009089100A1 (en) * 2008-01-02 2009-07-16 Johnson Controls Technology Company Heat exchanger
WO2009121549A1 (en) * 2008-04-01 2009-10-08 Efficient Energy Gmbh Liquefier for a heat pump and heat pump
JP2011517486A (en) * 2008-04-01 2011-06-09 エフィシェント・エナージー・ゲーエムベーハー Condenser for heat pump, heat pump, and manufacturing method thereof
US8978408B2 (en) 2008-04-01 2015-03-17 Efficient Energy Gmbh Liquefier for a heat pump and heat pump
US9709305B2 (en) 2008-04-01 2017-07-18 Efficient Energy Gmbh Liquefier for a heat pump and heat pump
CN102261772A (en) * 2010-05-26 2011-11-30 约克(无锡)空调冷冻设备有限公司 Condenser
WO2012135933A2 (en) * 2011-04-07 2012-10-11 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
WO2012135933A3 (en) * 2011-04-07 2012-11-29 Energy Recovery Systems Inc. Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
CN103090599A (en) * 2011-11-03 2013-05-08 上海瀚艺冷冻机械有限公司 High energy efficiency dry shell and tube condensing heat exchanger with tube for subcooling
US10260775B2 (en) 2013-03-15 2019-04-16 Green Matters Technologies Inc. Retrofit hot water system and method
US9016074B2 (en) 2013-03-15 2015-04-28 Energy Recovery Systems Inc. Energy exchange system and method
US9234686B2 (en) 2013-03-15 2016-01-12 Energy Recovery Systems Inc. User control interface for heat transfer system
CN103486883A (en) * 2013-09-13 2014-01-01 无锡明燕集团有限公司 Tubular heat exchanger
CN104676963A (en) * 2013-11-26 2015-06-03 北京中矿博能节能科技有限公司 Mine original ecological bursting water heat pump unit
CN104697247A (en) * 2015-03-24 2015-06-10 中国扬子集团滁州扬子空调器有限公司 Shell-and-tube multifunctional heat exchanger
US10830510B2 (en) 2015-12-21 2020-11-10 Johnson Controls Technology Company Heat exchanger for a vapor compression system
WO2017112805A1 (en) * 2015-12-21 2017-06-29 Johnson Controls Technology Company Heat exchanger for a vapor compression system
US10508843B2 (en) 2015-12-21 2019-12-17 Johnson Controls Technology Company Heat exchanger with water box
US11441826B2 (en) 2015-12-21 2022-09-13 Johnson Controls Tyco IP Holdings LLP Condenser with external subcooler
CN105546885A (en) * 2016-01-31 2016-05-04 佛山光腾新能源股份有限公司 Two-stage heat exchanger
CN110068174A (en) * 2019-05-28 2019-07-30 苏州必信空调有限公司 A kind of shell and tube condenser and its refrigeration system
CN114992917A (en) * 2022-05-19 2022-09-02 广东工业大学 With CO 2 Plate-shell type heat exchanger with controllable dryness and supercooling degrees of working medium
CN114992917B (en) * 2022-05-19 2023-08-15 广东工业大学 In the form of CO 2 Plate shell type heat exchanger with controllable dryness and supercooling degree of working medium
CN117346392A (en) * 2023-12-05 2024-01-05 江苏世林博尔制冷设备有限公司 Condenser of refrigeration equipment
CN117346392B (en) * 2023-12-05 2024-03-19 江苏世林博尔制冷设备有限公司 Condenser of refrigeration equipment

Similar Documents

Publication Publication Date Title
JPH08233408A (en) Shell and tube type condenser
US8662148B2 (en) Heat exchanger
TWI439966B (en) Vending machine
US5448899A (en) Refrigerant evaporator
US10041710B2 (en) Heat exchanger and air conditioner
JPH11304293A (en) Refrigerant condenser
CN106196755B (en) Shell and tube condenser and air-conditioning system
JP2018162900A (en) Heat exchanger and air conditioner including the same
CN107074071A (en) The kind of refrigeration cycle of Vehicular air-conditioning
US20110061845A1 (en) Heat exchanger
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JPH0387572A (en) Heat exchanger
US20030062152A1 (en) Radiator for supercritical vapor compression type refrigerating cycle
CN106052249A (en) Refrigerator and heat exchanger used therein
KR20130093229A (en) Heat exchanging device
JPH0355490A (en) Heat exchanger
JP2005127597A (en) Heat exchanger
JP2010065880A (en) Condenser
JP6656950B2 (en) Heat exchangers and air conditioners
KR19990020128U (en) Integral condenser
JP2017219212A (en) Internal heat exchanger integral type accumulator and freezing cycle using the accumulator
JP2009119950A (en) Heat exchanger
KR100825708B1 (en) Heat exchanger for CO2
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
KR100875904B1 (en) Subcooling condenser with auxiliary heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105