JPH08232073A - Electroless composite plating film and its production - Google Patents

Electroless composite plating film and its production

Info

Publication number
JPH08232073A
JPH08232073A JP6478795A JP6478795A JPH08232073A JP H08232073 A JPH08232073 A JP H08232073A JP 6478795 A JP6478795 A JP 6478795A JP 6478795 A JP6478795 A JP 6478795A JP H08232073 A JPH08232073 A JP H08232073A
Authority
JP
Japan
Prior art keywords
acid
particle size
plating film
group
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6478795A
Other languages
Japanese (ja)
Inventor
Akira Kuwana
朗 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUWANA SHOJI KK
Original Assignee
KUWANA SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUWANA SHOJI KK filed Critical KUWANA SHOJI KK
Priority to JP6478795A priority Critical patent/JPH08232073A/en
Publication of JPH08232073A publication Critical patent/JPH08232073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a plating film appropriate for an object needing wear resistance at high temp. CONSTITUTION: This multilayer composite plating film is formed as follws. Citric acid and/or tartaric acid and succinic acid and/or malonic acid and at least one among maleic acid, lactic acid, gluconic acid and glutaric acid are incorporated into 1-30wt.% iron-family metal, at least one among sodium acetate, ammonium sulfate and boric acid is mixed along with nickel and/or cobalt to pH5-8, and a boron compd. is introduced as a reducing agent. The powder of at least one among the inert SiC, BN, WC, TiC, CRC, diamond, graphite and mica having 0.01-2μm grain size is used in the presence of an aromatic sulfonic acid-formalin condensate, and the upper layer consisting of the powder having 0.01-0.5μm grain size, the intermediate layer consisting of the powder having 0.5-1μm grain size and the lower layer consisting of the powder having 1-2μm grain size are formed in multiple layers to form the composite plating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイカスト用金型等の
主に高温で使用される製品に好適な耐摩耗性に優れた複
合無電解メッキの被膜及びその製造方法に関するもの
で、更に詳細にはNi−B系の浴剤に複合めっきを施し
た無電解めっきに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film of composite electroless plating having excellent wear resistance, which is suitable for products used mainly at high temperatures such as molds for die casting, and a method for producing the same. Relates to electroless plating in which composite plating is applied to a Ni-B type bath agent.

【0002】[0002]

【従来の技術】今日、無電解めっきは、コンピュ−タ、
自動車、工作機械、精密光学機械、成型用金型等広範な
領域で応用が試みられているが、当初浴の安定性と速度
の制御に優れたニッケルイオンと次亜リン酸塩を主成分
としたいわゆるNi−Pめっきが主流となって発展し
た。しかし、技術の進行と共に更なる性能の向上が要求
されると、Ni−P系めっきは、融点が低いため性能に
高温に使用されるダイカスト用金型等への応用は困難で
あった。
2. Description of the Related Art Today, electroless plating is a
Applications have been tried in a wide range of fields such as automobiles, machine tools, precision optical machines, molding dies, etc., but initially nickel ion and hypophosphite, which are excellent in bath stability and speed control, are the main components. The so-called Ni-P plating has become the mainstream and has developed. However, with the progress of technology, further improvement in performance is required, and it has been difficult to apply the Ni-P-based plating to a die casting mold or the like which is used at high temperature for performance because of its low melting point.

【0003】一方、めっき被膜の物性を向上させる手段
として従来、硬度、潤滑性などに優れた機能粒子を被膜
中に共析、分散させることで、耐摩耗性、自己潤滑性お
よび摩耗係数の低下などを向上させる複合めっき法が公
知である。又、融点の低いNi−Pに代えて、還元剤に
NaBH4等を用いて、硬度が高く、耐熱性及び耐摩耗
性を向上させるめっき技術も公知である。
On the other hand, as a means for improving the physical properties of a plating film, conventionally, by eutectoid and dispersing functional particles having excellent hardness and lubricity in the film, the wear resistance, self-lubricity and wear coefficient are lowered. A composite plating method for improving the above is known. A plating technique is also known in which NaBH 4 or the like is used as a reducing agent in place of Ni-P having a low melting point to improve hardness and heat resistance and wear resistance.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記技術は、
比較的浴の安定したNi−P系に対して応用されたもの
であり、自己分解を起こし易いNi−B系めっきに応用
された例は知られていない。即ち、硼素系還元剤は、無
電解ニッケル、リン合金めっき法と異なり、一般に還元
剤として用いられるジメチルアミノボラン、水素化硼素
ナトリウムが、PH、温度その他の原因により自己分解
を生じ易い不安定な性格を有し、不動態の物でも被鍍物
を選ばずめっきされる故に、ただ単に微粉末をめっき浴
に添加すると一寸した原因により製品と同時に粉末の方
にもめっきが行なわれ、反応副生成物が異常な速さで生
成され、ひいては浴の分解を惹き起こすのである。
However, the above technique is
It is applied to a Ni-P system having a relatively stable bath, and no example is known to be applied to a Ni-B system plating which easily causes self-decomposition. That is, unlike the electroless nickel and phosphorus alloy plating methods, the boron-based reducing agent is unstable and dimethylaminoborane and sodium borohydride, which are generally used as the reducing agent, are susceptible to self-decomposition due to pH, temperature and other factors. Since it has a character and is passive and can be plated regardless of the material to be plated, simply adding fine powder to the plating bath will cause plating on both the product and the powder due to a simple cause, and The product is produced at an abnormal rate, which in turn causes the decomposition of the bath.

【0005】そこで本発明者は、先ず、ダイカスト用金
型等にも適用可能な耐熱性、耐摩耗性等に優れためっき
被膜を開発することを目的とし、その際、不安定と云わ
れるNi−B系に対し複合めっき法を組合わせることに
着目し、鋭意研究の結果、Ni−B系に機能微粒子を混
入させても分解等の起こらない安定な浴の調整法を見い
出したものである。
Therefore, the present inventor first aims to develop a plating film having excellent heat resistance and wear resistance which can be applied to a die casting mold and the like, and at that time, it is said that Ni is unstable. Focusing on the combination of the composite plating method with the -B system, as a result of earnest research, the inventors have found a stable bath adjustment method that does not cause decomposition even when functional fine particles are mixed into the Ni-B system. .

【0006】又、更に、機能微粒子そのものにも研究を
進めたところ、従来耐摩耗性を向上をさせるには、硬度
の高い材質の微粒子のうち3〜5μm程度の粒径のもの
が適しているとされていたものを、本発明者の実験によ
れば、耐摩耗性の向上には、単に硬度を上げれば良いの
でなく、滑り性も重要であることが判明し、より微細な
粒子の0.01〜0.5μmが好ましいことを見出し、
上記製法と合せて対摩耗性に富んだめっき被膜の形成に
成功したものである。
[0006] Further, further research was conducted on the functional fine particles themselves. Conventionally, in order to improve wear resistance, fine particles having a hardness of about 3 to 5 µm are suitable for improving the wear resistance. According to the experiments of the present inventor, it was found that not only the hardness needs to be increased but also the slipperiness is important for the improvement of the wear resistance. Found that 0.01 to 0.5 μm is preferable,
Together with the above-mentioned manufacturing method, it succeeded in forming a plating film rich in abrasion resistance.

【0007】[0007]

【課題を解決するための手段】本発明めっきの対象は、
アルミダイカスト用金型、亜鉛ダイカスト用金型、ガラ
ス用金型等の金型や樹脂押出用スクリュ−棒等の成形用
周辺部品等の高温で対摩耗性の要求される分野に好適で
あるが、その他耐摩耗性に優れることから樹脂成形用金
型等にも適用が可能である。
The object of the plating of the present invention is:
It is suitable for fields requiring abrasion resistance at high temperatures, such as molds for aluminum die casting, zinc die casting, molds for glass, molding peripheral parts such as screw rods for resin extrusion, etc. Also, since it has excellent abrasion resistance, it can be applied to a resin molding die or the like.

【0008】まず、めっき浴の作成にあたり、コバル
ト、タングステン、モリブデン等の耐熱性に優れた鉄属
金属を、硫酸コバルト又は塩化コバルト、タングステン
酸ソ−ダ、モリブデン酸ソ−ダ等の金属塩類の形態で、
後述の酸類と共に投入する。
First, in the preparation of a plating bath, an iron group metal having excellent heat resistance, such as cobalt, tungsten, molybdenum, etc. In form,
It is added together with the below-mentioned acids.

【0009】次いで、上記鉄族金属と共に、クエン酸及
び/又は酒石酸に、必要に応じて、リンゴ酸,グリコン
酸,乳酸から成る群の少なくとも一つを加えた溶液を
0.1〜0.5モル程度混入する。又、コハク酸及び/
又はマロン酸に、必要に応じてグルタル酸を加えた溶液
を0.1〜0.5モル程度混入する。上記クエン酸及び
/又は酒石酸等は、鉄族金属塩との間にエステルを形成
して鉄族金属塩の溶解性を高めると共に、コハク酸又は
マロン酸等が反応の促進作用を発揮して更に安定性を高
め沈殿の発生を防止する為のものである。
Then, a solution obtained by adding at least one of the group consisting of malic acid, glycolic acid, and lactic acid to citric acid and / or tartaric acid together with the above iron group metal, if necessary, is added to 0.1 to 0.5. Mix in a molar amount. Also, succinic acid and /
Alternatively, a solution in which glutaric acid is added to malonic acid as needed is mixed in an amount of about 0.1 to 0.5 mol. The citric acid and / or tartaric acid and the like form an ester with the iron group metal salt to enhance the solubility of the iron group metal salt, and succinic acid or malonic acid etc. further exert a reaction promoting action. It is intended to enhance stability and prevent precipitation.

【0010】又、酢酸ソ−ダ,硫酸アンモン,硼酸から
成る群のうち少なくともいずれか一つを加え、PHの急
激な移動を抑制する緩衝作用を促す。
Further, at least one selected from the group consisting of soda acetate, ammonium sulfate and boric acid is added to promote a buffering effect for suppressing abrupt movement of PH.

【0011】更に、グリシン、EDTA等のアミノ酸、
ジメチルアミン、エチレンジアミン等のアミンや、塩化
鉛、硝酸鉛、チオ尿素、その他イオウ化合物を加える。
これは反応のスピ−ドを抑えて分解を防止し、且つ、応
力の抑制を図るものである。
Further, amino acids such as glycine and EDTA,
Add amines such as dimethylamine and ethylenediamine, lead chloride, lead nitrate, thiourea, and other sulfur compounds.
This is intended to suppress the reaction speed, prevent decomposition, and suppress stress.

【0012】次に、上記酸類の配合のみではPHが不適
正なので、ここにアンモニア又はカセイソ−ダ及び硫
酸、塩酸等でPHを5〜10の範囲に調整する。このP
Hの調整で反応速度が抑制され、例えばクエン酸の場合
はPH5〜6が最適で、酒石酸の場合はPH6〜10が
最適である。かかる範囲で緩衝係数が、金属1モルに対
し有機酸2〜6モルとなり、浴組成が安定となる。又、
浴の温度も安定性に影響を与え、クエン酸の場合は50
〜60℃で、酒石酸の場合は60〜80℃が好ましく、
全体的には50〜80℃の範囲に調温する。
[0012] Next, since PH is unsuitable only by blending the above-mentioned acids, the pH is adjusted to the range of 5 to 10 with ammonia or caseisode and sulfuric acid, hydrochloric acid or the like. This P
The reaction rate is suppressed by adjusting H. For example, PH5 to 6 is optimal in the case of citric acid, and PH6 to 10 is optimal in the case of tartaric acid. In this range, the buffer coefficient becomes 2 to 6 mol of organic acid with respect to 1 mol of metal, and the bath composition becomes stable. or,
The temperature of the bath also affects the stability, in the case of citric acid 50
~ 60 ° C, in the case of tartaric acid, 60 ~ 80 ° C is preferred,
The temperature is generally controlled within the range of 50 to 80 ° C.

【0013】そして、めっき主成分としての金属ニッケ
ル及び/又はコバルトを0.05〜0.1モル程度投入
し、そのニッケルイオン源は、硫酸ニッケル,塩化ニッ
ケル又は酢酸ニッケルで、コバルトイオン源は、硫酸コ
バルト,塩化コバルト等である。
Then, about 0.05 to 0.1 mol of metallic nickel and / or cobalt as a plating main component is charged, the nickel ion source is nickel sulfate, nickel chloride or nickel acetate, and the cobalt ion source is Examples include cobalt sulfate and cobalt chloride.

【0014】同時に還元剤として、硼素化合物、例えば
ジメチルアミノボラン、硼砂、水素化ホウ素ナトリウム
のうちのいずれか一つを0.05〜0.1モル程度投入
する。
At the same time, a boron compound such as dimethylaminoborane, borax, or sodium borohydride is added as a reducing agent in an amount of about 0.05 to 0.1 mol.

【0015】上記組成浴中に不活性のSiC,BN,W
C,TiC,CrC,ダイヤモンド,グラハイト,マイ
カの粉末のうち少なくともいずれか一つを、粒径0.0
1〜2μmの範囲に調整して投入する。これは、本発明
者が実験を重ねたところ、耐摩耗の向上には単にSi
C,BN,WC等の比較的硬度が高いものを混入させる
だけでなく、その粒径が大きな影響を及ぼし、その粒径
を粒径0.01〜2μm程度の微細なものにすると、大
幅な耐摩耗性の向上が得られることを確認したからであ
る。
SiC, BN, W inert in the above composition bath
At least one of C, TiC, CrC, diamond, graheite, and mica powder is used, and the particle size is 0.0
It is adjusted in the range of 1 to 2 μm and charged. This is because the inventors of the present invention have conducted experiments to improve the wear resistance by simply adding Si.
Not only is it possible to mix C, BN, WC, etc., which have a relatively high hardness, but the particle size has a large effect, and if the particle size is made to be a fine particle size of about 0.01 to 2 μm, it will be significantly increased. This is because it has been confirmed that the wear resistance can be improved.

【0016】[0016]

【表1】 これは、SiC,BN,WC等の投入で硬度を上昇させ
ても、それが大粒であると繰り返される動的摩擦で粒体
が脱離し、更にそれが挟まって周囲の被膜を削り取るの
に対し、0.01〜2μm程度の微細なものになると、
削り作用が弱まるからと推考される。尚、滑り性を増強
させる意味では、テフロン等を加えるのも良い。
[Table 1] This is because even if the hardness is increased by adding SiC, BN, WC, etc., if it is a large grain, the particles are detached by repeated dynamic friction, and it is sandwiched and the surrounding film is scraped off. , When it becomes as fine as 0.01 to 2 μm,
It is presumed that the shaving effect weakens. Incidentally, Teflon or the like may be added in the sense of enhancing the slipperiness.

【0017】上記微粒子の分散にあたっては、分散剤を
添加し、微粒子を速やかに分散、懸濁させて局部的異常
めっきの発生を抑制して行なうが、その分散剤として
は、陰イオン活性剤の中で芳香族スルホン酸ホルマリン
縮合物が最も好適である。又、極く微細な粒子の場合に
は、超音波を浴に照射しつつ微粒子を分散させると速や
かな分散が促される。
In dispersing the fine particles, a dispersant is added to rapidly disperse and suspend the fine particles to suppress the occurrence of local abnormal plating. The dispersant is an anionic activator. Among them, the aromatic sulfonic acid formalin condensate is most preferable. Further, in the case of extremely fine particles, rapid dispersion is promoted by dispersing the particles while irradiating the bath with ultrasonic waves.

【0018】微粒子の分散した層は、粒子径の違いによ
り複層とし、上層を0.01〜0.5μm、中間層を
0.5〜1μm、下層を1〜2μmの層に形成する。こ
の3層にしたのは、上述の通り最上層は最も微細な粒子
径が望ましいが、すべてを微細粒子とすると、被膜形成
後に生じる応力が母材との密着性を弱めるからで、中間
層及び下層に従って粒度を変化させることで、応力を段
階的に緩和させると共にアンカ−効果で層自体の互いの
密着性を高める為である。
The layer in which the fine particles are dispersed is a multi-layer having a difference in particle size, the upper layer is 0.01 to 0.5 μm, the intermediate layer is 0.5 to 1 μm, and the lower layer is 1 to 2 μm. The reason why the three layers are used is that the uppermost layer preferably has the finest particle diameter as described above, but if all the fine particles are used, the stress generated after the film formation weakens the adhesion with the base material. This is because by changing the grain size according to the lower layer, the stress is gradually relaxed and the adhesion of the layers themselves is enhanced by the anchor effect.

【0019】この複層は、夫々異なる粒径の微粒子を分
散させて浴を3個用意し、先ず、1〜2μmの粒を分散
させた浴に浸して下層を形成し、次いで、0.5〜1μ
mの粒子を分散させた中間層を、更に0.01〜0.5
μmの上層を形成して行き、最終的に3層の無電解複合
めっき被膜を得る。
In this multi-layer, three baths are prepared in which fine particles having different particle sizes are dispersed, and firstly immersed in a bath in which particles of 1 to 2 μm are dispersed to form a lower layer, and then 0.5. ~ 1μ
The intermediate layer in which m particles are dispersed is further added in an amount of 0.01 to 0.5.
An upper layer of μm is formed, and finally a three-layer electroless composite plating film is obtained.

【0020】[0020]

【発明の効果】以上の如く、本発明により、分解しやす
いNi−B系の浴剤に微粒子を混入させても安定な浴の
調整法が見出され、Ni−B系の浴に複合めっきが可能
となり、従来にない耐摩耗性の被膜を得ることができ、
アルミダイカスト用金型、亜鉛ダイカスト用金型、ガラ
ス用金型等の金型や樹脂押出用スクリュ−棒等の成形用
周辺部品等の高温で、耐摩耗性の要求される用途にも応
用が可能となった。又、そのめっき被膜を微粒子の粒度
の異なる3層とすると上記耐摩耗性の更なる向上に貢献
する等の優れた効果を奏する。
As described above, according to the present invention, a stable bath preparation method has been found even when fine particles are mixed in a Ni-B type bath agent which is easily decomposed, and composite plating is performed on the Ni-B type bath. It is possible to obtain a wear resistant coating that has never been seen before,
It can also be applied to applications requiring wear resistance at high temperatures such as molds for aluminum die casting, zinc die casting, glass molds and molding parts such as resin extrusion screw rods. It has become possible. Further, when the plating film is composed of three layers having different particle sizes of fine particles, excellent effects such as contributing to the further improvement of the wear resistance are exhibited.

【0021】[0021]

【試験例1】めっき浴を次の手順で作成した。先ず、鉄
属金属としてタングステンを選び、タングステンソ−ダ
の形態で10wt%をクエン酸ソ−ダ25wt%の酸類と共
に投入した。これに沈殿防止のためマロン酸ソ−ダ15
wt%及びコハク酸ソ−ダ10wt%を加えた。次いで、緩
衝作用と反応速度調整のために酢酸ソ−ダ10wt%と塩
化鉛2ppmを投入した。そして、めっき液の水素イオ
ン濃度をPH6に調整し、浴温度を60℃とし、めっき
主成分としての塩化ニッケルを20wt%を投入し、還元
剤としてジアミノボラン4wt%を加えた。上記組成のめ
っき浴を3個用意し、これに下層分として1μmの粒径
のSiC粉末1wt%、中間層として0.5μm粒径のS
iC粉末1wt%、上層として0.01μm粒径のSiC
粉末1wt%を混入し、被めっき物を順次浸漬してめっき
被膜を形成した。分散剤としては芳香族スルホン酸ホル
マリン縮合物を用いた。その結果は、下表の通りであっ
た。
[Test Example 1] A plating bath was prepared by the following procedure. First, tungsten was selected as the iron group metal, and 10 wt% in the form of tungsten soda was added together with acids of 25 wt% soda citrate. Sodium malonate 15 to prevent precipitation
wt% and 10 wt% soda succinate were added. Then, 10 wt% of sodium acetate and 2 ppm of lead chloride were added for buffering and adjusting the reaction rate. Then, the hydrogen ion concentration of the plating solution was adjusted to PH6, the bath temperature was set to 60 ° C., 20 wt% of nickel chloride as a plating main component was added, and 4 wt% of diaminoborane was added as a reducing agent. Three plating baths having the above composition were prepared, and 1 wt% of SiC powder having a particle size of 1 μm was used as a lower layer and S having a particle size of 0.5 μm was used as an intermediate layer.
1 wt% iC powder, 0.01 μm grain size SiC as the upper layer
1 wt% of powder was mixed and the objects to be plated were successively dipped to form a plating film. An aromatic sulfonic acid formalin condensate was used as the dispersant. The results are shown in the table below.

【0022】[0022]

【表2】 [Table 2]

【0023】この結果、本発明品が従来のNi−P製品
に対し、摩耗減量が極めて少なく、硬度及び耐熱性にも
優れることが確認できた。
As a result, it has been confirmed that the product of the present invention has an extremely small amount of wear loss as compared with the conventional Ni-P product and is excellent in hardness and heat resistance.

【0024】[0024]

【試験例2】めっき浴を次の手順で作成した。先ず、鉄
属金属としてタングステンを選び、タングステンソ−ダ
の形態で10wt%を、酒石酸ソ−ダ20wt%の酸類と共
に投入した。これに沈殿防止のためマロン酸ソ−ダ10
wt%を加えた。次いで、緩衝作用と反応速度調整のため
に酢酸ソ−ダ10wt%と塩化鉛2ppmを投入した。そ
して、めっき液の水素イオン濃度をPH6に調整し、浴
温度を60℃とし、めっき主成分としての塩化ニッケル
20wt%及び塩化コバルト10wt%を投入し、還元剤と
してジアミノボラン4wt%を加えた。上記組成のめっき
浴を3個用意し、これに下層分として1μmの粒径のS
iC粉末1wt%、中間層として0.5μm粒径のSiC
粉末1wt%、上層として0.5μm粒径のBN、グラハ
イト、マイカ粉末の等量混合物1wt%を混入し、被めっ
き物を順次浸漬してめっき被膜を形成した。分散剤とし
ては芳香族スルホン酸ホルマリン縮合物を用いた。その
結果は、下表の通りであった。
[Test Example 2] A plating bath was prepared by the following procedure. First, tungsten was selected as the iron group metal, and 10 wt% in the form of tungsten soda was added together with acids of 20 wt% soda tartrate. Sodium malonate 10 to prevent precipitation
wt% was added. Then, 10 wt% of sodium acetate and 2 ppm of lead chloride were added for buffering and adjusting the reaction rate. Then, the hydrogen ion concentration of the plating solution was adjusted to PH6, the bath temperature was adjusted to 60 ° C., 20 wt% of nickel chloride and 10 wt% of cobalt chloride as main plating components were added, and 4 wt% of diaminoborane was added as a reducing agent. Three plating baths having the above composition were prepared, and S having a particle size of 1 μm was used as the lower layer.
1 wt% of iC powder, 0.5 μm SiC as an intermediate layer
1 wt% of the powder and 1 wt% of an equal amount mixture of BN, graheite and mica powder having a particle size of 0.5 μm were mixed as the upper layer, and the plated object was sequentially dipped to form a plating film. An aromatic sulfonic acid formalin condensate was used as the dispersant. The results are shown in the table below.

【0025】[0025]

【表3】 [Table 3]

【0026】この結果、この試験の場合の本発明品の硬
度は低くても、滑り性により摩耗減量が少ないことが確
認された。
As a result, it was confirmed that even though the hardness of the product of the present invention in this test was low, the loss on wear was small due to the slipperiness.

【0027】[0027]

【試験例3】めっき浴を次の手順で作成した。先ず、鉄
属金属としてモリブデンを選び、モリブデンソ−ダの形
態で5wt%を、グルコン酸ソ−ダ20wt%の酸類と共に
投入した。これに沈殿防止のためグルタル酸ソ−ダ10
を加えた。次いで、緩衝作用と反応速度調整のために酢
酸ソ−ダ10wt%と塩化鉛2ppmを投入した。そし
て、めっき液の水素イオン濃度をPH6に調整し、浴温
度を60℃とし、めっき主成分としての硫酸ニッケルを
25wt%投入し、還元剤としてジアミノボラン4wt%を
加えた。上記組成のめっき浴を3個用意し、これに下層
分として1μmの粒径のWC粉末1wt%、中間層として
0.5μm粒径のWC粉末1wt%、上層として0.01
μm粒径のWCとCrC粉末の等量混合物1wt%を混入
し、被めっき物を順次浸漬してめっき被膜を形成した。
分散剤としては芳香族スルホン酸ホルマリン縮合物を用
いた。その結果は、下表の通りであった。
[Test Example 3] A plating bath was prepared by the following procedure. First, molybdenum was selected as the iron group metal, and 5 wt% in the form of molybdenum soda was added together with acids of 20 wt% soda gluconate. Sodium glutarate 10 to prevent precipitation
Was added. Then, 10 wt% of sodium acetate and 2 ppm of lead chloride were added for buffering and adjusting the reaction rate. Then, the hydrogen ion concentration of the plating solution was adjusted to PH6, the bath temperature was adjusted to 60 ° C., 25 wt% of nickel sulfate as a plating main component was added, and 4 wt% of diaminoborane was added as a reducing agent. Three plating baths having the above composition were prepared, and 1 wt% of WC powder having a particle size of 1 μm was used as a lower layer, 1 wt% of WC powder having a particle size of 0.5 μm was used as an intermediate layer, and 0.01 was used as an upper layer.
1 wt% of an equal mixture of WC and CrC powder having a particle size of μm was mixed and the plated object was sequentially dipped to form a plating film.
An aromatic sulfonic acid formalin condensate was used as the dispersant. The results are shown in the table below.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【試験例4】めっき浴を次の手順で作成した。先ず、鉄
属金属としてタングステンを選び、タングステンソ−ダ
の形態で10wt%を、クエン酸ソ−ダ25wt%及びリン
ゴ酸10wt%の酸類と共に投入した。これに沈殿防止の
ためコハク酸ソ−ダ10wt%を加えた。次いで、緩衝作
用と反応速度調整のために硫酸アンモン15wt%及び硼
酸5wt%と塩化鉛2ppmを投入した。そして、めっき
液の水素イオン濃度をPH6に調整し、浴温度を60℃
とし、めっき主成分としての硫酸コバルトを20wt%を
投入し、還元剤としてジアミノボラン4wt%を加えた。
上記組成のめっき浴を3個用意し、これに下層分として
1μmの粒径のTiC粉末1wt%、中間層として0.5
μm粒径のTiC粉末1wt%、上層として0.01μm
粒径のTiCとダイヤモンド粉末等量混合物1wt%を混
入し、被めっき物を順次浸漬してめっき被膜を形成し
た。分散剤としては芳香族スルホン酸ホルマリン縮合物
を用いた。その結果は、下表の通りであった。
[Test Example 4] A plating bath was prepared by the following procedure. First, tungsten was selected as the iron group metal, and 10 wt% in the form of a tungsten soda was added together with 25 wt% of sodium citrate and 10 wt% of malic acid. To this was added 10 wt% of soda succinate to prevent precipitation. Then, 15 wt% of ammonium sulfate, 5 wt% of boric acid and 2 ppm of lead chloride were added for buffering action and adjustment of reaction rate. Then, the hydrogen ion concentration of the plating solution is adjusted to PH6, and the bath temperature is 60 ° C.
Then, 20 wt% of cobalt sulfate as a plating main component was added, and 4 wt% of diaminoborane was added as a reducing agent.
Three plating baths having the above composition were prepared, and 1 wt% of TiC powder having a particle size of 1 μm was used as the lower layer and 0.5 was used as the intermediate layer.
1 wt% of TiC powder with a particle size of μm, 0.01 μm as the upper layer
A 1% by weight mixture of TiC having a particle size and an equal amount of diamond powder was mixed and the plated object was sequentially dipped to form a plating film. An aromatic sulfonic acid formalin condensate was used as the dispersant. The results are shown in the table below.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【試験例5】めっき浴を次の手順で作成した。先ず、鉄
属金属としてタングステンを選び、タングステンソ−ダ
の形態で10wt%をクエン酸ソ−ダ25wt%の酸類と共
に投入した。これに沈殿防止のためマロン酸ソ−ダ15
wt%及びコハク酸ソ−ダ10wt%を加えた。次いで、緩
衝作用と反応速度調整のために酢酸ソ−ダ10wt%と塩
化鉛2ppmを投入した。そして、めっき液の水素イオ
ン濃度をPH6に調整し、浴温度を60℃とし、めっき
主成分としての塩化ニッケルを20wt%を投入し、還元
剤としてジアミノボラン4wt%を加えた。上記組成のめ
っき浴に、0.01μm粒径のSiC粉末1wt%を混入
し、被めっき物を浸漬してめっき被膜を形成した。分散
剤としては芳香族スルホン酸ホルマリン縮合物を用い
た。その結果は、下表の通りであった。
[Test Example 5] A plating bath was prepared by the following procedure. First, tungsten was selected as the iron group metal, and 10 wt% in the form of tungsten soda was added together with acids of 25 wt% soda citrate. Sodium malonate 15 to prevent precipitation
wt% and 10 wt% soda succinate were added. Then, 10 wt% of sodium acetate and 2 ppm of lead chloride were added for buffering and adjusting the reaction rate. Then, the hydrogen ion concentration of the plating solution was adjusted to PH6, the bath temperature was set to 60 ° C., 20 wt% of nickel chloride as a plating main component was added, and 4 wt% of diaminoborane was added as a reducing agent. 1 wt% of SiC powder having a particle diameter of 0.01 μm was mixed in the plating bath having the above composition, and the object to be plated was dipped to form a plating film. An aromatic sulfonic acid formalin condensate was used as the dispersant. The results are shown in the table below.

【0032】[0032]

【表6】 [Table 6]

【0033】この試験は、めっき被膜を上層の1層にし
た場合の試験であるが、3層の場合には及ばないもの
の、従来品に比べ高い耐摩耗性が裏付けられた。
This test is a test in the case where the plating film is one layer of the upper layer, but although it is not as high as in the case of three layers, it is confirmed that the wear resistance is higher than that of the conventional product.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル及び/又はコバルトを主成分と
し、これにホウ素化合物0.1〜8wt%、鉄族系金属1
〜30wt%を含むめっき成分に、粒径0.01〜2μm
の不活性のSiC,BN,WC,TiC,CrC,ダイ
ヤモンド,グラハイト,マイカの粉末から成る群のうち
少なくともいずれか一つを混入させた複合めっき被膜。
1. Nickel and / or cobalt as a main component, to which a boron compound 0.1 to 8 wt% and an iron group metal 1
Particle size of 0.01 to 2 μm for plating components containing ˜30 wt%
A composite plating film containing at least one of the group consisting of powders of inert SiC, BN, WC, TiC, CrC, diamond, graheite and mica.
【請求項2】 請求項1の粒径0.01〜2μmの不活
性のSiC,BN,WC,TiC,CrC,ダイヤモン
ド,グラハイト,マイカの粉末から成る群のうち少なく
ともいずれか一つを混入させためっき被膜を、上層を粒
径0.01〜0.5μmの粒子で、中間層を粒径0.5
〜1μmの粒子で、下層を粒径1〜2μmの粒子で形成
した複合めっき被膜。
2. A mixture of at least one selected from the group consisting of inert SiC, BN, WC, TiC, CrC, diamond, graheite, and mica powder having a particle size of 0.01 to 2 μm according to claim 1. The upper layer is a particle having a particle size of 0.01 to 0.5 μm, and the intermediate layer is a particle size of 0.5.
A composite plating film having particles of ˜1 μm and a lower layer of particles having a particle size of 1 to 2 μm.
【請求項3】 1〜30wt%の鉄族系金属に、クエン酸
及び/又は酒石酸とコハク酸及び/又はマロン酸に、リ
ンゴ酸,乳酸,グルコン酸、グルタル酸から成る群のう
ち少なくともいずれか一つを混入し、 ニッケル及び/又はコバルトと共に醋酸ソ−ダ,硫酸ア
ンモン,硼酸から成る群のうち少なくともいずれか一つ
をPH5〜8のとなる範囲で混入した後、還元剤として
ホウ素化合物0.1〜8wt%を投入し、 芳香族スルホン酸ホルマリン縮合物の存在下で、粒径
0.01〜2μmの不活性のSiC,BN,WC,Ti
C,CrC,ダイヤモンド,グラハイト,マイカの粉末
から成る群のうち少なくともいずれか一つを混入させる
ことを特徴とする複合めっき被膜の製造方法。
3. At least one selected from the group consisting of 1 to 30 wt% of an iron group metal, citric acid and / or tartaric acid, succinic acid and / or malonic acid, malic acid, lactic acid, gluconic acid, and glutaric acid. One of them is mixed with at least one of the group consisting of soda acetate, ammonium sulfate, and boric acid together with nickel and / or cobalt in a range of PH 5 to 8, and then a boron compound 0 is added as a reducing agent. 1-8 wt% was added, and in the presence of aromatic sulfonic acid formalin condensate, inert SiC, BN, WC, Ti having a particle size of 0.01-2 μm.
A method for producing a composite plating film, which comprises mixing at least one of the group consisting of C, CrC, diamond, graheite and mica powder.
【請求項4】 1〜30wt%の鉄族系金属に、クエン酸
及び/又は酒石酸とコハク酸及び/又はマロン酸に、リ
ンゴ酸,乳酸,グルコン酸、グルタル酸から成る群のう
ち少なくともいずれか一つを混入し、 ニッケル及び/又はコバルトと共に醋酸ソ−ダ,硫酸ア
ンモン,硼酸から成る群のうち少なくともいずれか一つ
をPH5〜8のとなる範囲で混入した後、還元剤として
ホウ素化合物0.1〜8wt%を投入し、 芳香族スルホン酸ホルマリン縮合物の存在下で、粒径
0.01〜2μmの不活性のSiC,BN,WC,Ti
C,CrC,ダイヤモンド,グラハイト,マイカの粉末
から成る群のうち少なくともいずれか一つを、上層を粒
径0.01〜0.5μmの粒子で、中間層を粒径0.5
〜1μmの粒子で、下層を粒径1〜2μmの粒子で多層
に形成することを特徴とする複合めっき被膜の製造方
法。
4. An iron group metal of 1 to 30 wt%, citric acid and / or tartaric acid, succinic acid and / or malonic acid, and at least one selected from the group consisting of malic acid, lactic acid, gluconic acid and glutaric acid. One of them is mixed with at least one of the group consisting of soda acetate, ammonium sulfate, and boric acid together with nickel and / or cobalt in a range of PH 5 to 8, and then a boron compound 0 is added as a reducing agent. 1-8 wt% was added, and in the presence of aromatic sulfonic acid formalin condensate, inert SiC, BN, WC, Ti having a particle size of 0.01-2 μm.
At least one of the group consisting of powders of C, CrC, diamond, graheite, and mica, the upper layer of which has a particle size of 0.01 to 0.5 μm, and the intermediate layer of which has a particle size of 0.5.
A method for producing a composite plating film, characterized in that a lower layer is formed of particles of ˜1 μm, and a lower layer is formed of particles of particle size 1 to 2 μm.
JP6478795A 1995-02-27 1995-02-27 Electroless composite plating film and its production Pending JPH08232073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6478795A JPH08232073A (en) 1995-02-27 1995-02-27 Electroless composite plating film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6478795A JPH08232073A (en) 1995-02-27 1995-02-27 Electroless composite plating film and its production

Publications (1)

Publication Number Publication Date
JPH08232073A true JPH08232073A (en) 1996-09-10

Family

ID=13268303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6478795A Pending JPH08232073A (en) 1995-02-27 1995-02-27 Electroless composite plating film and its production

Country Status (1)

Country Link
JP (1) JPH08232073A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080973A (en) * 2000-09-08 2002-03-22 Univ Waseda Method for producing fine pattern
JP2004537647A (en) * 2000-12-21 2004-12-16 エドワード・マッコマス Paint containing nickel, boron and particles
KR100795166B1 (en) * 2006-04-27 2008-01-16 백승룡 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating
JP2008508431A (en) * 2004-08-02 2008-03-21 エドワード・マッコマス Electroless plating using nanometer-sized particles
KR101490970B1 (en) * 2013-04-16 2015-02-06 고등기술연구원연구조합 Manufacturing method for ultra fine composite powder of tungsten carbide and cobalt
JP2020105573A (en) * 2018-12-27 2020-07-09 奥野製薬工業株式会社 Electroless plating solution, plating film, plated article and forming method of plating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080973A (en) * 2000-09-08 2002-03-22 Univ Waseda Method for producing fine pattern
JP2004537647A (en) * 2000-12-21 2004-12-16 エドワード・マッコマス Paint containing nickel, boron and particles
JP2008508431A (en) * 2004-08-02 2008-03-21 エドワード・マッコマス Electroless plating using nanometer-sized particles
KR100795166B1 (en) * 2006-04-27 2008-01-16 백승룡 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating
KR101490970B1 (en) * 2013-04-16 2015-02-06 고등기술연구원연구조합 Manufacturing method for ultra fine composite powder of tungsten carbide and cobalt
JP2020105573A (en) * 2018-12-27 2020-07-09 奥野製薬工業株式会社 Electroless plating solution, plating film, plated article and forming method of plating film

Similar Documents

Publication Publication Date Title
KR0180769B1 (en) Diamond sintered body having strength and high wear-resistance and manufacturing method thereof
Agarwala et al. Electroless Ni‐P Based Nanocoating Technology—A Review
JPS6210230A (en) Amorphous metal alloy composition and its synthesis by solidphase unit/reduction reaction
JP2006225730A (en) Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method
JP2004537647A (en) Paint containing nickel, boron and particles
JPH0387301A (en) Material processing and manufacture
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
Venkatakrishnan et al. Structural, morphological and mechanical properties of electroless Ni-B based alloy coatings
JPH08232073A (en) Electroless composite plating film and its production
Xi et al. Effect of phosphorus content on the properties of Ni-P coated diamond
JPH0243371A (en) Antiwear nickel-boron coating material for non-electrolytic plating with an ethylene thiourea
JP4095629B2 (en) Method for producing amorphous metal powder coated with metal (Methodfor Manufacturing Metal-Coated Amorphous Metal Powder)
CN1301881A (en) Chemical nickel-plating solution and its preparation and using method
CN112680622A (en) Light high-strength boron carbide particle reinforced aluminum matrix composite material and preparation method thereof
WO2004076709A1 (en) Iron-based parts and method for manufacture thereof
JP3765071B2 (en) Composite sintered sliding material
CN1176246C (en) Method of lowering crystallization temperature of chemical plated nickel alloy
JP2006169605A (en) Method for forming electroless-plated nickel film having phosphate coating, and formed film thereby
CN108866517B (en) Preparation method of matt chemical nickel plating
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JP3327080B2 (en) High strength and high wear resistance diamond sintered body and method for producing the same
Rattanawaleedirojn et al. Effects of Complexing Agent Concentration and Bath pH on Electroless Nickel Deposition for Tungsten Carbide Powders
CN109295441B (en) Electroless plating pretreatment composition and application thereof
KR0180104B1 (en) Method of manufacturing aluminum alloy composite materials
JPH05293671A (en) Surface hardening method for titanium or titanium alloy