JPH0822952B2 - Polyimide resin composition - Google Patents

Polyimide resin composition

Info

Publication number
JPH0822952B2
JPH0822952B2 JP8016286A JP8016286A JPH0822952B2 JP H0822952 B2 JPH0822952 B2 JP H0822952B2 JP 8016286 A JP8016286 A JP 8016286A JP 8016286 A JP8016286 A JP 8016286A JP H0822952 B2 JPH0822952 B2 JP H0822952B2
Authority
JP
Japan
Prior art keywords
dianhydride
bis
parts
polyimide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8016286A
Other languages
Japanese (ja)
Other versions
JPS62236858A (en
Inventor
典正 山谷
信史 古賀
健一 馬場
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP8016286A priority Critical patent/JPH0822952B2/en
Priority to US07/143,164 priority patent/US4847311A/en
Priority to DE8787902709T priority patent/DE3784842T2/en
Priority to EP87902709A priority patent/EP0267289B1/en
Priority to AU72356/87A priority patent/AU579511B2/en
Priority to PCT/JP1987/000218 priority patent/WO1987006251A1/en
Priority to KR1019870701156A priority patent/KR910002086B1/en
Publication of JPS62236858A publication Critical patent/JPS62236858A/en
Publication of JPH0822952B2 publication Critical patent/JPH0822952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、寸法安定性、機械強度等に優れた新
規なポリイミド樹脂組成物に関する。
The present invention relates to a novel polyimide resin composition having excellent heat resistance, dimensional stability, mechanical strength and the like.

〔従来の技術〕 テトラカルボン酸二無水物とジアミンの反応により得
られるポリイミドは、種々の優れた物性や良好な耐熱性
のために、今後耐熱性が要求される分野に広くもちいら
れることが期待されている。
[Prior Art] The polyimide obtained by the reaction of tetracarboxylic dianhydride and diamine is expected to be widely used in the field where heat resistance is required in the future because of various excellent physical properties and good heat resistance. Has been done.

従来開発されたポリイミドには優れた特性を示すもの
が多いが、優れた耐熱性を有するけれども加工性にはと
ぼしいとか、また加工性向上を目的として開発された樹
脂は耐熱性、耐溶剤性に劣るなど性能に一長一短があっ
た。例えば式(II) で表される様な基本骨格からなるポリイミド(ジュポン
社製:商品名Kapton,Vespel)は明瞭なガラス転移温度
を有せず、耐熱製に優れたポリイミドであるが、成形材
料として用いる場合に加工が難しく、焼結成形などの手
法を用いて加工しなければならない。また電気電子部品
の材料として用いる際に寸法安定性、絶縁性、はんだ耐
熱性に悪影響をおよぼす給水率が高いという性質があ
る。
Many of the conventionally developed polyimides show excellent properties, but they have excellent heat resistance but are not easy to process, and resins developed for the purpose of improving processability have heat resistance and solvent resistance. There were pros and cons in performance such as inferior For example, formula (II) Polyimide consisting of a basic skeleton represented by (Jupon Co .: trade name Kapton, Vespel) is a polyimide that does not have a clear glass transition temperature and is excellent in heat resistance, but it is processed when used as a molding material. However, it must be processed by using a technique such as sinter molding. In addition, when used as a material for electric / electronic parts, it has a property of having a high water supply rate which adversely affects dimensional stability, insulation and solder heat resistance.

また式(III) で表される様な基本骨格を有するポリエーテルイミド
(ゼネラル・エレクトリック社製:商品名ULTEM)は加
工性の優れた樹脂であるが、ガラス転移温度が217℃と
低く、またメチレンクロリドなどのハロゲン化炭化水素
に可溶で、耐熱性、耐溶剤性の面からは満足のゆく樹脂
ではない。
Also, formula (III) Polyetherimide having a basic skeleton represented by (General Electric Co., Ltd .: trade name ULTEM) is a resin with excellent processability, but has a low glass transition temperature of 217 ° C and halogen such as methylene chloride. It is soluble in chemical hydrocarbons and is not a satisfactory resin in terms of heat resistance and solvent resistance.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は耐熱性、寸法安定性、機械強度等に優
れた新規なポリイミド樹脂組成物を得ることにある。
An object of the present invention is to obtain a novel polyimide resin composition excellent in heat resistance, dimensional stability, mechanical strength and the like.

〔課題を解決するための手段〕 本発明者らは、前記目的を達成するために鋭意研究を
行った結果、新規なポリイミドと特定量のガラス繊維よ
りなるポリイミド樹脂組成物が特に有効であることを見
出し、本発明を完成させた。
[Means for Solving the Problem] As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a polyimide resin composition comprising a novel polyimide and a specific amount of glass fiber is particularly effective. Then, the present invention has been completed.

すなわち、本発明のポリイミド樹脂組成物は、式
(I) (式中、Rは から選ばれた少なくとも1種である。)で表される繰り
返し単位を有するポリイミド樹脂100重量部とガラス繊
維5〜100重量部よりなるポリイミド樹脂組成である。
That is, the polyimide resin composition of the present invention has the formula (I) (In the formula, R is It is at least 1 sort (s) selected from. ) A polyimide resin composition comprising 100 parts by weight of a polyimide resin having a repeating unit represented by the formula) and 5 to 100 parts by weight of glass fiber.

本発明で使用できるポリイミド樹脂は式(IV) に示す4,4′−ビス(3−アミノフェノキシ)ビフェニ
ルに一種以上のテトラカルボン酸二無水物とを反応させ
て得られるポリアミド酸を脱水環化して得られるポリイ
ミドである。
The polyimide resin usable in the present invention has the formula (IV) 4,4'-bis (3-aminophenoxy) biphenyl shown in the above and a polyamic acid obtained by reacting one or more tetracarboxylic acid dianhydrides with cyclodehydration.

テトラカルボン酸二無水物は、式(V) (式中、Rは を表す。) で表されるテトラカルボン酸二無水物である。The tetracarboxylic dianhydride has the formula (V) (In the formula, R is Represents ) Is a tetracarboxylic acid dianhydride.

即ち、使用されるテトラカルボン酸二無水物として
は、エチレンテトラカルボン酸二無水物、シクロペンタ
ンテトラカルボン酸二無水物、ピロメリット酸二無水
物、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二
無水物、2,2′,3,3′−ベンゾフェノンテトラカルボン
酸二無水物、3,3′,4,4′−ビフェニルテトラカルボン
酸二無水物、2,2′,3,3′−ビフェニルテトラカルボン
酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)
プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェ
ニル)プロパン二無水物、ビス(3,4−ジカルボキシフ
ェニル)エーテル二無水物、ビス(3,4−ジカルボキシ
フェニル)スルホン二無水物、1,1−ビス(2,3−ジカル
ボキシフェニル)エタン二無水物、ビス(2,3−ジカル
ボキシフェニル)メタン二無水物、ビス(3,4−ジカル
ボキシフェニル)メタン二無水物、2,3,6,7−ナフタレ
ンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテ
トラカルボン酸二無水物、1,2,5,6−ナフタレンテトラ
カルボン酸二無水物、1,2,3,4−ベンゼンテトラカルボ
ン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二
無水物、2,3,6,7−アントラセンテトラカルボン酸二無
水物、1,2,7,8−フェナントレンテトラカルボン酸二無
水物が挙げられる。
That is, as the tetracarboxylic dianhydride used, ethylene tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ', 4,4'-benzophenone tetra Carboxylic dianhydride, 2,2 ', 3,3'-benzophenone tetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2 ', 3,3 ′ -Biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl)
Propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride Anhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride , 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1 2,2,7,8-phenanthrene tetracarboxylic acid dianhydride may be mentioned.

これら、テトラカルボン酸二無水物は単独あるいは2
種以上混合して用いられる。
These tetracarboxylic dianhydrides may be used alone or
Used as a mixture of two or more species.

4,4′−ビス(3−アミノフェノキシ)ビフェニルと
テトラカルボン酸二無水物とは通常、公知の方法によっ
て、式(VI)で表されるポリアミド酸とし、次いで、ポ
リイミドとする。
4,4'-Bis (3-aminophenoxy) biphenyl and tetracarboxylic dianhydride are usually converted into a polyamic acid represented by the formula (VI) by a known method, and then into a polyimide.

(式中、Rは から選ばれた少なくとも1種である。) ガラス繊維は、溶融ガラスを種々の方法にて延伸しな
がら急冷し、所定直径の細い繊維状としたものであり、
単繊維同志を集束剤で、集束させたストランド、ストラ
ンドを均一に引きそろえて束にしたロービング等を意味
しており、本発明においてはいずれも使用できる。該ガ
ラス繊維は、本発明の基材樹脂と親和性をもたせるため
に、アミノシラン、エポキシシラン等のシランカップリ
ング剤、クロミッククロライド、その他目的に応じた表
面処理剤を使用することができる。
(In the formula, R is It is at least 1 sort (s) selected from. ) The glass fiber is one in which molten glass is rapidly cooled while being drawn by various methods to form a fine fiber having a predetermined diameter,
It means a strand in which single fibers are bundled with a sizing agent, a roving in which strands are uniformly aligned and bundled, and any of them can be used in the present invention. The glass fiber may use a silane coupling agent such as aminosilane or epoxysilane, a chromic chloride, or a surface treatment agent depending on the purpose in order to have an affinity with the base resin of the present invention.

本発明におけるガラス繊維の長さは得られる成形品の
物性及び成形品製造時の作業性に大きく影響する。一般
にはガラス繊維長が大となるほど、成形品の物性は向上
するが、逆に成形品製造時の作業性が悪くなる。この
為、本発明においては、ガラス繊維の長さが0.1〜6mm、
好ましくは0.3〜4mmの範囲にあるものが、成形品の物性
及び作業性、共にバランスのとれているので好ましい。
The length of the glass fiber in the present invention greatly affects the physical properties of the obtained molded article and the workability during the production of the molded article. In general, as the glass fiber length increases, the physical properties of the molded article improve, but conversely, the workability during the production of the molded article deteriorates. Therefore, in the present invention, the length of the glass fiber is 0.1 to 6 mm,
It is preferably in the range of 0.3 to 4 mm because the physical properties and workability of the molded product are well balanced.

本発明におけるガラス繊維はポリイミド樹脂100重量
部に対して、5〜100重量部、好ましくは10〜50重量部
を使用できる。5重量部以下では本発明の特徴とするガ
ラス繊維特有の補強効果は得られない。また逆に100重
量部以上使用すると組成物の成形時の流動性が悪くなり
満足な成形品を得ることが困難となる。
The glass fiber in the present invention can be used in an amount of 5 to 100 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the polyimide resin. If it is 5 parts by weight or less, the reinforcing effect peculiar to the glass fiber characteristic of the present invention cannot be obtained. On the other hand, if it is used in an amount of 100 parts by weight or more, the fluidity of the composition at the time of molding becomes poor and it becomes difficult to obtain a satisfactory molded product.

本発明によるポリイミド樹脂組成物は通常公知の方法
により製造できるが特に次に示す方法が好ましい。
The polyimide resin composition according to the present invention can be produced by a generally known method, but the following method is particularly preferable.

(1) ポリイミド粉末、ガラス繊維を乳鉢、ヘンシェ
ルミキサー、ドラムブレンダー、タンブラーブレンダ
ー、ボールミル、リボンブレンダーなどを利用して予備
混合した後、通常公知の溶融混合機、熱ロール等で混練
したのち、ペレット又は粉状にする。
(1) Polyimide powder and glass fibers are premixed by using a mortar, a Henschel mixer, a drum blender, a tumbler blender, a ball mill, a ribbon blender, etc., and then kneaded with a commonly known melt mixer, a hot roll, etc., and then pelletized. Or pulverize.

(2) ポリイミド粉末をあらかじめ有機溶媒に溶解あ
るいは懸濁させ、この溶液あるいは懸濁液をガラス繊維
に含浸させ、然る後、溶媒を熱風オーブン中で除去した
のち、ペレット又は粉状にする。
(2) Polyimide powder is dissolved or suspended in an organic solvent in advance, glass fiber is impregnated with this solution or suspension, and then the solvent is removed in a hot air oven, and then pelletized or powdered.

この場合溶媒として例えばN,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、N,N−ジエチルアセト
アミド、N,N−ジメチルメトキシアセトアミド、N−メ
チル−2−ピロリドン、1,3−ジメチル−2−イミダゾ
リジノン、N−メチルカプロラクタム、1,2−ジメトキ
シエタン、ビス(2−メトキシエチル)エーテル、1,2
−ビス(2−メトキシエトキシ)エタン、ビス〔2−
(2−メトキシエトキシ)エチル〕エーテル、テトラヒ
ドロフラン、1,3−ジオキサン、1,4−ジオキサン、ピリ
ジン、ピコリン、ジメチルスルホキシド、ジメチルスル
ホン、テトラメチル尿素、ヘキサメチルホスホルアミド
などが挙げられる。またこれらの有機溶剤は単独でも或
いは2種以上混合して用いても差支えない。
In this case, as the solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2- Imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2
-Bis (2-methoxyethoxy) ethane, bis [2-
(2-Methoxyethoxy) ethyl] ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethylurea, hexamethylphosphoramide and the like. These organic solvents may be used alone or in combination of two or more.

(3) 本発明のポリイミドの前駆体である式(VI)で
表される繰り返し単位を有するポリアミド酸を前記有機
溶剤に溶解した溶液を、ガラス繊維に含浸させた後100
〜400℃に加熱処理するか、または通常用いられるイミ
ド化剤を用いて化学イミド化した後、溶剤を除去した後
ペレット又は粉状とする。
(3) After impregnating the glass fiber with a solution prepared by dissolving the polyamic acid having the repeating unit represented by the formula (VI), which is the precursor of the polyimide of the present invention, in the organic solvent, 100
After heat treatment to 400 ° C. or chemical imidization using a commonly used imidizing agent, the solvent is removed, and then pelletized or powdered.

なお、本発明組成物に対して、本発明の目的をそこな
わない範囲で、酸化防止剤および熱安定剤、紫外線吸収
剤、難燃助剤、帯電防止剤、滑剤、着色剤などの通常の
添加剤を1種以上添加することができる。
Incidentally, for the composition of the present invention, as long as the object of the present invention is not impaired, an antioxidant and a heat stabilizer, an ultraviolet absorber, a flame retardant auxiliary, an antistatic agent, a lubricant, a usual coloring agent, etc. One or more additives can be added.

また他の熱可塑性樹脂(例えば、ポリエチレン、ポリ
プロピレン、ポリアミド、ポリカーボネート、ポリサル
ホン、ポリエーテルサルホン、ポリエーテルエーテルケ
トン変性ポリフェニレンオキシド、ポリフェニレンサル
ファイドなど)、熱硬化性樹脂(例えば、フェノール樹
脂、エポキシ樹脂など)またはクレー、マイカ、シリ
カ、グラファイト、ガラスビーズ、アルミナ、炭酸カル
シウムなどの充填材もその目的に応じて適当量を配合す
ることも可能である。
Other thermoplastic resins (eg, polyethylene, polypropylene, polyamide, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone-modified polyphenylene oxide, polyphenylene sulfide, etc.), thermosetting resins (eg, phenol resin, epoxy resin, etc.) ) Or a filler such as clay, mica, silica, graphite, glass beads, alumina, calcium carbonate, etc. can be blended in an appropriate amount according to the purpose.

本発明のポリイミド樹脂組成物は、射出成形法、押出
成形法、圧縮成形法、回転成形法等公知の成形法により
成形され実用に供される。
The polyimide resin composition of the present invention is molded by a known molding method such as an injection molding method, an extrusion molding method, a compression molding method, a rotational molding method, and put into practical use.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.

合成例−1 3リットルガラス製反応容器に4,4′−ジヒドロキシ
ビフェニル186g(1.0モル)、m−ジニトロベンゼン438
g(2.6モル)、炭酸カリウム363gおよびN,N−ジメチル
ホルムアミド2000mlを装入し、145〜150℃で16時間反応
する。反応終了後、冷却、濾過してKNO2を除去し、次に
瀘液の溶剤を減圧蒸溜により留去したのち65℃に冷却し
メタノール2000mlを挿入し1時間撹拌する。決勝を濾
別、水洗、メタノール洗浄、乾燥して4,4′−ビス(3
−ニトロフェノキシ)ビフェニルの茶褐色結晶を得た。
収量426g(収率99.5%)。
Synthesis Example-1 4,4'-dihydroxybiphenyl 186 g (1.0 mol) and m-dinitrobenzene 438 in a 3 liter glass reaction vessel.
g (2.6 mol), 363 g of potassium carbonate and 2000 ml of N, N-dimethylformamide are charged and reacted at 145 to 150 ° C for 16 hours. After completion of the reaction, KNO 2 is removed by cooling and filtering, and then the solvent of the filtrate is distilled off under reduced pressure, followed by cooling to 65 ° C. and inserting 2000 ml of methanol and stirring for 1 hour. The final is filtered off, washed with water, washed with methanol and dried to give 4,4'-bis (3
Brown-red crystals of -nitrophenoxy) biphenyl were obtained.
Yield 426g (99.5% yield).

ついで、1リットルガラス製反応容器に粗4,4′−ビ
ス(3−ニトロフェノキシ)ビフェニル100g(0.23モ
ル)、活性炭10g、塩化第2鉄・6水和物1gおよびメチ
ルセロソルブ500mlを装入し、還流下30分間撹拌する。
次に70〜80℃でヒドロラジン水和物46g(0.92モル)を
3時間かけて滴下する。滴下終了後、70〜80℃で5時間
撹拌すると反応は終了した。冷却後、濾過して触媒を除
去し、これを水500mlに排出し、結晶を濾過する。これ
に35%塩酸48gと50%イソプロピルアルコール(IPA)/
水540mlを加えて加熱溶解し、放冷すると4,4′−ビス
(3−アミノフェノキシ)ビフェニルの塩酸塩が析出し
た。これを濾過後、50%IPA/水540mlを加えて加熱溶解
し、活性炭5gを加えて濾過後、アンモニア水により中和
し、結晶を濾過、水洗、乾燥して、4,4′−ビス(3−
アミノフェノキシ)ビフェニルを得た。収量72.0g(収
率85%) 無色結晶mp.144〜146℃ 純度99.6%(高速液体クロマトグラフィーによる) 元素分析 C H N 計算値(%)* 78.26 5.43 7.61 分析値(%) 78.56 5.21 7.66 *)C24H20N2O2として MS:368(M+)、340、184 IR(KBr,cm-1)3400と3310(NH2基) 1200(エーテル結合) 実施例1〜6 かきまぜ機、還流冷却器および窒素導入管を備えた容
器に、4,4′−ビス(3−アミノフェノキシ)ビフェニ
ル36.8kg(100モル)と、N,N−ジメチルアセドアミド17
5.8kgを装入し、室温で窒素雰囲気下に、ピロメリット
酸二無水物21.8kg(100モル)を溶液温度の上昇に注意
しながら分割して加え室温で約20時間かきまぜた。かく
して得られたポリアミド酸の対数粘度は2.47dl/gであっ
た。さらに、上記ポリアミド酸溶液150kgにN,N−ジメチ
ルアセドアミド337.5kgを加え、かきまぜながら窒素雰
囲気下に、70℃まで加熱した後26.1kg(26モル)の無水
酢酸および9.05kg(9モル)のトリエチルアミンを滴下
したところ、滴下終了後約10分間で黄色のポリイミド粉
が析出しはじめたが、さらに加熱下で2時間かきまぜた
後熱ろ過してポリイミド粉を得た。このポリイミド粉を
メタノールで洗浄した後150℃で5時間減圧乾燥して34.
5kg(収率98%)のポリイミド粉を得た。
Then, a 1 liter glass reaction vessel was charged with 100 g (0.23 mol) of crude 4,4'-bis (3-nitrophenoxy) biphenyl, 10 g of activated carbon, 1 g of ferric chloride hexahydrate and 500 ml of methyl cellosolve. , Stir for 30 minutes under reflux.
Then, 46 g (0.92 mol) of hydrorazine hydrate is added dropwise at 70 to 80 ° C. over 3 hours. After completion of dropping, the reaction was completed by stirring at 70 to 80 ° C. for 5 hours. After cooling, the catalyst is removed by filtration, it is discharged in 500 ml of water and the crystals are filtered. To this, 48g of 35% hydrochloric acid and 50% isopropyl alcohol (IPA) /
When 540 ml of water was added and the mixture was heated and dissolved, and then allowed to cool, 4,4'-bis (3-aminophenoxy) biphenyl hydrochloride was precipitated. After filtering this, 540 ml of 50% IPA / water was added and dissolved by heating, 5 g of activated carbon was added and filtered, and the mixture was neutralized with aqueous ammonia, and the crystals were filtered, washed with water and dried, and 4,4′-bis ( 3-
Aminophenoxy) biphenyl was obtained. Yield 72.0g (Yield 85%) Colorless crystals mp.144-146 ℃ Purity 99.6% (by high performance liquid chromatography) Elemental analysis CHN calculated value (%) * 78.26 5.43 7.61 Analysis value (%) 78.56 5.21 7.66 * ) C 24 H 20 N 2 O 2 MS: 368 (M + ), 340, 184 IR (KBr, cm −1 ) 3400 and 3310 (NH 2 group) 1200 (ether bond) Examples 1 to 6 In a container equipped with a reflux condenser and a nitrogen introducing tube, 4,4′-bis (3-aminophenoxy) biphenyl 36.8 kg (100 mol) and N, N-dimethylacedamide 17
5.8 kg was charged, and 21.8 kg (100 mol) of pyromellitic dianhydride was added in portions at room temperature under a nitrogen atmosphere while paying attention to the rise of the solution temperature, and the mixture was stirred at room temperature for about 20 hours. The polyamic acid thus obtained had an inherent viscosity of 2.47 dl / g. Furthermore, 337.5 kg of N, N-dimethylacetamide was added to 150 kg of the polyamic acid solution, and the mixture was heated to 70 ° C. under stirring in a nitrogen atmosphere, and then 26.1 kg (26 mol) of acetic anhydride and 9.05 kg (9 mol) were added. When the triethylamine of was added dropwise, yellow polyimide powder began to precipitate in about 10 minutes after the completion of the addition, but the mixture was further stirred under heating for 2 hours and then hot filtered to obtain a polyimide powder. This polyimide powder was washed with methanol and dried under reduced pressure at 150 ° C for 5 hours 34.
5 kg (98% yield) of polyimide powder was obtained.

得られたポリイミド粉100重量部に対して繊維長3mm、
繊維径13μmのシラン処理を施したガラス繊維(日東紡
績社製、CS−3PE−476S)を表−1に示した量添加し、
ドラムブレンダー混合機(川田製作所製)で混合した
後、口径30mmの単軸押出機により390℃の温度で溶融混
練した後、ストランドを空冷、切断してペレットを得
た。
Fiber length 3 mm with respect to 100 parts by weight of the obtained polyimide powder,
Silane-treated glass fiber having a fiber diameter of 13 μm (CS-3PE-476S, manufactured by Nitto Boseki Co., Ltd.) was added in the amount shown in Table-1,
After mixing with a drum blender mixer (Kawata Manufacturing Co., Ltd.), the mixture was melt-kneaded at a temperature of 390 ° C. with a single screw extruder having a diameter of 30 mm, and then the strand was air-cooled and cut to obtain pellets.

得られたペレットを射出成形〔アーブルグ射出成形機
(最大型締め力35トン)射出圧力500kg/cm2、シリンダ
ー温度400℃、金型温度180℃〕して、引張り試験片、曲
げ試験片、アイゾット衝撃試験片、成形収縮率測定用試
験片を得た。
The obtained pellets are injection-molded [Arburg injection molding machine (maximum clamping force 35 tons) injection pressure 500 kg / cm 2 , cylinder temperature 400 ° C, mold temperature 180 ° C], tensile test pieces, bending test pieces, Izod An impact test piece and a test piece for measuring mold shrinkage were obtained.

引張り試験はASTM D−638に、曲げ試験はASTM D
−790に、アイゾット衝撃試験はASTM D−256に、熱変
形温度の測定はASTM D−648に、成形収縮率の測定はA
STM D−955に準じて行い、メルトインデックスは、AS
TM D−1238に準じ温度420℃、荷重2.16kgにて測定し
た。また、ガラス転移点を測定した。
Tensile test is ASTM D-638, Bending test is ASTM D-638
-790, Izod impact test to ASTM D-256, heat distortion temperature to ASTM D-648, mold shrinkage to A.
Performed according to STM D-955, the melt index is AS
According to TM D-1238, it was measured at a temperature of 420 ° C. and a load of 2.16 kg. Further, the glass transition point was measured.

その結果を表−1に示す。 The results are shown in Table-1.

実施例7 実施例1と同様にして得られたポリイミド粉100重量
部に対してN,N−ジメチルアセトアミド(DMAC)150重量
部を加えて懸濁溶液として、これに、繊維長3mm、繊維
径13μmのシラン処理を施したガラス繊維(日東紡績社
製、CS−3PE−476S)30重量部を添加し、均一に分散さ
せた。さらに、これを200℃熱風オーブン中で20時間予
備乾燥後、減圧乾燥器で150℃5時間減圧乾燥して溶媒
のDMACを完全に除去して、ガラス繊維含有パウダーを得
た。以下実施例1〜6と同様の操作をしてペレット化
し、射出成形により、物性測定用試験片を得た。得られ
た試験片について実施例1〜6と同様の操作をして表−
1の結果を得た。
Example 7 150 parts by weight of N, N-dimethylacetamide (DMAC) was added to 100 parts by weight of the polyimide powder obtained in the same manner as in Example 1 to prepare a suspension solution, in which a fiber length of 3 mm and a fiber diameter were set. 30 parts by weight of 13 μm silane-treated glass fiber (CS-3PE-476S manufactured by Nitto Boseki Co., Ltd.) was added and uniformly dispersed. Further, this was pre-dried in a hot air oven at 200 ° C. for 20 hours, and then dried under reduced pressure in a vacuum dryer at 150 ° C. for 5 hours to completely remove DMAC as a solvent to obtain a glass fiber-containing powder. Thereafter, the same operation as in Examples 1 to 6 was performed to form pellets, and injection molding was performed to obtain test pieces for measuring physical properties. The same operation as in Examples 1 to 6 was performed on the obtained test pieces, and
A result of 1 was obtained.

実施例8 実施例1〜6と同様にして得たポリアミド酸溶液400
重量部に実施例1〜6で使用したガラス繊維(日東紡績
社製、CS−3PE−476S)を30重量部含浸させた後、実施
例7と同様の操作を行い、ガラス繊維含有パウダーを得
た。以下、実施例7と同様の操作をして、表−1の結果
を得た。
Example 8 Polyamic acid solution 400 obtained in the same manner as in Examples 1 to 6
After impregnating 30 parts by weight of the glass fiber (CS-3PE-476S, manufactured by Nitto Boseki Co., Ltd.) used in Examples 1 to 6 in parts by weight, the same operation as in Example 7 was performed to obtain a glass fiber-containing powder. It was Thereafter, the same operation as in Example 7 was performed, and the results shown in Table 1 were obtained.

比較例1〜4 表−2に示したジアミンとテトラカルボン酸二無水物
より得られたポリイミド粉100重量部に対して実施例1
〜6で使用したガラス繊維(日東紡績社製、CS−3PE−4
76S)を表−2に示した量添加した。以下実施例1〜6
と同様の操作をして表−2の結果を得た。
Comparative Examples 1 to 4 Example 1 was applied to 100 parts by weight of the polyimide powder obtained from the diamine and tetracarboxylic dianhydride shown in Table 2.
Glass fiber used in ~ 6 (Nitto Boseki Co., CS-3PE-4
76S) was added in the amount shown in Table-2. Examples 1 to 6 below
The same operation as above was performed and the results shown in Table 2 were obtained.

比較例5 式(III)で表されるポリエーテルイミド(ゼネラル
エレクトリック社:商品名ULTEM)を使用し、実施例1
と同様にして、ペレット化及び射出成形を行い、実施例
1と同様の測定をして表−2の結果を得た。
Comparative Example 5 A polyetherimide represented by the formula (III) (General Electric Co .: trade name ULTEM) was used, and Example 1 was used.
In the same manner as in Example 1, pelletization and injection molding were performed, and the same measurement as in Example 1 was performed to obtain the results shown in Table 2.

比較例6 実施例1の4,4′−ビス(3−アミノフェノキシ)ビ
フェニルの代わりに2,2−ビス〔4−(4−アミノフェ
ノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプ
ロパンを使用し、実施例1と同様にしてポリイミド粉を
得た。
Comparative Example 6 In place of 4,4′-bis (3-aminophenoxy) biphenyl of Example 1, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3, Using 3-hexafluoropropane, a polyimide powder was obtained in the same manner as in Example 1.

得られたポリイミド100重量部に対して実施例1と同
様のガラス繊維30重量部を添加してペレット化を試みた
が、溶融せずペレット化出来なかった。
An attempt was made to add 100 parts by weight of the obtained polyimide to 30 parts by weight of the same glass fiber as in Example 1, but pelletization could not be performed because it did not melt.

比較例7 実施例1の4,4′−ビス(3−アミノフェノキシ)ビ
フェニル及びピロメリット酸二無水物の代わりに、それ
ぞれ2,2′−ビス(4−アミノフェノキシ)ビフェニル
及び3,3′,4,4′−ベンゾフェノンテトラカルボン酸二
無水物を使用し、実施例1と同様にしてポリイミド粉を
得た。
Comparative Example 7 Instead of 4,4′-bis (3-aminophenoxy) biphenyl and pyromellitic dianhydride of Example 1, 2,2′-bis (4-aminophenoxy) biphenyl and 3,3 ′, respectively. Using 4,4'-benzophenonetetracarboxylic dianhydride, a polyimide powder was obtained in the same manner as in Example 1.

得られたポリイミド100重量部に対して、実施例1と
同様のガラス繊維30重量部添加してペレット化をした
が、良好なペレットを得ることはできなかった。得られ
たペレットを用いて実施例1と同条件で射出成形を試み
たが、500kg/cm2では、成形できなかった。
To 100 parts by weight of the obtained polyimide, 30 parts by weight of the same glass fiber as in Example 1 was added and pelletized, but good pellets could not be obtained. Using the obtained pellets, injection molding was attempted under the same conditions as in Example 1, but with 500 kg / cm 2 , molding was not possible.

〔発明の効果〕 本発明のポリイミド樹脂組成物は優れた耐熱性、寸法
安定性、機械強度等を有しており、電気、電子部品や自
動車部品など広くその用途が期待され、産業上の利用効
果は大きい。
[Effects of the Invention] The polyimide resin composition of the present invention has excellent heat resistance, dimensional stability, mechanical strength, etc., and is expected to be widely used in electric, electronic parts, automobile parts, etc. The effect is great.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】式(I) (式中、Rは から選ばれた少なくとも1種である。) で表される繰り返し単位を有するポリイミド樹脂100重
量部とガラス繊維5〜100重量部よりなるポリイミド樹
脂組成物。
1. A formula (I) (In the formula, R is It is at least 1 sort (s) selected from. ) A polyimide resin composition comprising 100 parts by weight of a polyimide resin having a repeating unit represented by and 5 to 100 parts by weight of glass fiber.
JP8016286A 1986-04-09 1986-04-09 Polyimide resin composition Expired - Lifetime JPH0822952B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8016286A JPH0822952B2 (en) 1986-04-09 1986-04-09 Polyimide resin composition
US07/143,164 US4847311A (en) 1986-04-09 1987-04-08 Polyimide resin composition
DE8787902709T DE3784842T2 (en) 1986-04-09 1987-04-08 POLYIMIDE RESIN PREPARATION.
EP87902709A EP0267289B1 (en) 1986-04-09 1987-04-08 Polyimide resin composition
AU72356/87A AU579511B2 (en) 1986-04-09 1987-04-08 Polyimide resin composition
PCT/JP1987/000218 WO1987006251A1 (en) 1986-04-09 1987-04-08 Polyimide resin composition
KR1019870701156A KR910002086B1 (en) 1986-04-09 1987-04-08 Polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016286A JPH0822952B2 (en) 1986-04-09 1986-04-09 Polyimide resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7061371A Division JP2672476B2 (en) 1995-03-20 1995-03-20 Polyimide resin composition

Publications (2)

Publication Number Publication Date
JPS62236858A JPS62236858A (en) 1987-10-16
JPH0822952B2 true JPH0822952B2 (en) 1996-03-06

Family

ID=13710616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016286A Expired - Lifetime JPH0822952B2 (en) 1986-04-09 1986-04-09 Polyimide resin composition

Country Status (1)

Country Link
JP (1) JPH0822952B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605060B2 (en) * 1987-10-27 1997-04-30 三井東圧化学株式会社 Polyimide composite material
JPH01138266A (en) * 1987-11-25 1989-05-31 Mitsui Toatsu Chem Inc Polyimide composite material
JPH01138265A (en) * 1987-11-25 1989-05-31 Mitsui Toatsu Chem Inc Polyimide composite material
JP2610905B2 (en) * 1987-11-05 1997-05-14 三井東圧化学株式会社 Polyimide composite material
US5237044A (en) * 1988-10-20 1993-08-17 Mitsui Toatsu Chemicals, Inc. Polyimide sheet and preparation process of the sheet
JPH02255861A (en) * 1988-12-27 1990-10-16 Mitsui Toatsu Chem Inc Ic socket
US8927678B2 (en) 2012-02-08 2015-01-06 Mitsubishi Gas Chemical Company, Inc. Crystalline thermoplastic polyimide resin
JP6402716B2 (en) 2013-08-06 2018-10-10 三菱瓦斯化学株式会社 Polyimide resin

Also Published As

Publication number Publication date
JPS62236858A (en) 1987-10-16

Similar Documents

Publication Publication Date Title
KR910002086B1 (en) Polyimide resin composition
JPH083041B2 (en) Polyimide resin composition
JPH0822952B2 (en) Polyimide resin composition
JPH0822953B2 (en) Composition for polyimide resin
JPH0822955B2 (en) Polyimide resin composition
JP2672476B2 (en) Polyimide resin composition
JPH0822954B2 (en) New polyimide resin composition
JP2593634B2 (en) New polyimide resin composition
JP2672477B2 (en) Composition for polyimide resin
JP2999835B2 (en) Polyimide resin composition
JP2593635B2 (en) Polyimide resin composition
JP2540546B2 (en) Polyimide resin composition
JP2748995B2 (en) Polyimide for melt molding, method for producing the same, and resin composition thereof
JPH0676550B2 (en) Polyimide resin composition
JP2593636B2 (en) Polyimide resin composition
CA1297615C (en) Polyimide resin composition
JPS63289066A (en) Polyimide resin composition
JPH01149830A (en) Thermoplastic aromatic polyimide polymer
JP3221710B2 (en) Bisimide compounds, polyimide resin compositions using these compounds, and carbon fiber reinforced polyimide resin compositions
JPH0678489B2 (en) Polyphenylene sulfide resin composition
JPS63289065A (en) Polyimide resin composition
JPH0678488B2 (en) Polyphenylene sulfide resin composition
JPH01165661A (en) Aromatic polyamide-imide resin composition
JPH01242664A (en) Polyimide resin composition
JP2001131147A (en) Bisimide compounds, polyimide resin composition using the compounds and carbon fiber-reinforced polyimide resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term