JPH08222484A - Electrolytic capacitor driving electrolyte - Google Patents

Electrolytic capacitor driving electrolyte

Info

Publication number
JPH08222484A
JPH08222484A JP7053363A JP5336395A JPH08222484A JP H08222484 A JPH08222484 A JP H08222484A JP 7053363 A JP7053363 A JP 7053363A JP 5336395 A JP5336395 A JP 5336395A JP H08222484 A JPH08222484 A JP H08222484A
Authority
JP
Japan
Prior art keywords
nitro
weight
electrolytic capacitor
tan
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7053363A
Other languages
Japanese (ja)
Other versions
JP3612671B2 (en
Inventor
Shuichi Tanno
修一 丹野
Kazuhiro Higuchi
和浩 樋口
Satoshi Yuzawa
聡 湯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP05336395A priority Critical patent/JP3612671B2/en
Publication of JPH08222484A publication Critical patent/JPH08222484A/en
Application granted granted Critical
Publication of JP3612671B2 publication Critical patent/JP3612671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide driving electrolyte for an electrolytic capacitor, which is capable of protecting the capacitor against corrosion caused by penetrating halogenated hydrocarbon, restraining the capacitor from deteriorating in sparking voltage, and high in reliability. CONSTITUTION: Organic carboxylic acid or its salt is dissolved into solvent whose main component is γ-butyrolactone for the formation of electrolyte, wherein at least one or more nitro-compounds which are possessed of no hydroxyl group and carboxyl group and selected out of nitro acetophenone, nitro acetoanilide, nitro benzamide, nitro benzaldehyde, nitro anisole, nitro aniline, nitrobenzene, nitrophenetole, nitrophenylene diamine, nitro phenylhydrazine, and nitro naphthalene are added to the electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサ駆動用
電解液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an electrolytic capacitor.

【0002】[0002]

【従来の技術】従来より、電解コンデンサ駆動用電解液
としてエチレングリコールを主体とする溶媒に有機カル
ボン酸及びホウ酸あるいはその塩を溶解してなる電解液
が用いられてきたが、さらに電解コンデンサの低インピ
ーダンス化の要求から、γ−ブチロラクトンを主体とす
る溶媒に有機カルボン酸あるいはその塩を溶解した低抵
抗の電解液も用いられている。
2. Description of the Related Art Conventionally, an electrolytic solution prepared by dissolving an organic carboxylic acid and boric acid or a salt thereof in a solvent mainly containing ethylene glycol has been used as an electrolytic capacitor driving electrolytic solution. In order to reduce the impedance, a low-resistance electrolytic solution in which an organic carboxylic acid or a salt thereof is dissolved in a solvent mainly containing γ-butyrolactone is also used.

【0003】ところで、電解コンデンサにおいては、印
刷基板にはんだ付けをして取り付ける際に、工程中のは
んだフラックスを除去する目的で、ハロゲン化炭化水素
による蒸気洗浄や超音波洗浄が行われる。この時、ハロ
ゲン化炭化水素が電解コンデンサの封口材を透過してコ
ンデンサ内部に侵入し、分解して塩素イオンを生成し、
コンデンサ素子を腐食させることがあったため、ハロゲ
ン化炭化水素による腐食の防止を目的として、電解液に
はパラニトロフェノールやパラニトロ安息香酸などのニ
トロ化合物を添加していた。
By the way, in electrolytic capacitors, when they are soldered and attached to a printed circuit board, vapor cleaning or ultrasonic cleaning with halogenated hydrocarbons is carried out for the purpose of removing the solder flux in the process. At this time, the halogenated hydrocarbon penetrates the sealing material of the electrolytic capacitor, penetrates into the inside of the capacitor and decomposes to generate chlorine ions,
Since the capacitor element was sometimes corroded, a nitro compound such as para-nitrophenol or para-nitrobenzoic acid was added to the electrolytic solution for the purpose of preventing the corrosion by the halogenated hydrocarbon.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
のニトロ化合物はヒドロキシル基やカルボキシル基を有
しているため、それ自身が陰イオンとなり電解質として
作用する。したがって電解液に添加した場合、電解液の
火花発生電圧の低下が著しく、耐電圧や安定性において
問題があった。すなわち、ヒドロキシル基やカルボキシ
ル基を有するニトロ化合物の電解コンデンサへの適用
は、耐電圧、信頼性の点で問題があった。
However, since these nitro compounds have a hydroxyl group or a carboxyl group, they themselves become anions and act as an electrolyte. Therefore, when it is added to the electrolytic solution, the spark generation voltage of the electrolytic solution is remarkably lowered, and there is a problem in withstand voltage and stability. That is, application of a nitro compound having a hydroxyl group or a carboxyl group to an electrolytic capacitor has problems in terms of withstand voltage and reliability.

【0005】本発明は、上記のような従来技術の課題を
解決するために提案されたものであり、その目的は、ハ
ロゲン化炭化水素の侵入による腐食を抑制し、かつ、火
花発生電圧を下げることない信頼性の高い電解コンデン
サ駆動用電解液を提供することである。
The present invention has been proposed in order to solve the problems of the prior art as described above, and an object thereof is to suppress the corrosion due to the invasion of halogenated hydrocarbons and reduce the spark generation voltage. It is to provide a highly reliable electrolytic solution for driving an electrolytic capacitor.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の電解コンデンサ駆動用電解液は、
γ−ブチロラクトンを主体とする溶媒に有機カルボン酸
あるいはその塩を溶解してなる電解液に、ヒドロキシル
基及びカルボキシル基を持たないニトロ化合物を添加し
たことを特徴とする。
In order to achieve the above object, an electrolytic solution for driving an electrolytic capacitor according to claim 1,
It is characterized in that a nitro compound having neither a hydroxyl group nor a carboxyl group is added to an electrolytic solution prepared by dissolving an organic carboxylic acid or a salt thereof in a solvent mainly containing γ-butyrolactone.

【0007】請求項2記載の電解コンデンサ駆動用電解
液は、請求項1記載の電解コンデンサ駆動用電解液にお
いて、前記ヒドロキシル基及びカルボキシル基を持たな
いニトロ化合物として、ニトロアセトフェノン、ニトロ
アセトアニリド、ニトロベンズアミド、ニトロベンズア
ルデヒド、ニトロアニソール、ニトロアニリン、ニトロ
ベンゼン、ニトロフェネトール、ニトロフェニレンジア
ミン、ニトロフェニルヒドラジン、ニトロナフタレンの
うち少なくとも1種類以上を添加したことを特徴とす
る。
The electrolytic solution for driving an electrolytic capacitor according to a second aspect is the electrolytic solution for driving an electrolytic capacitor according to the first aspect, wherein the nitro compound having no hydroxyl group or carboxyl group is nitroacetophenone, nitroacetanilide or nitrobenzamide. At least one of nitrobenzaldehyde, nitroanisole, nitroaniline, nitrobenzene, nitrophenetol, nitrophenylenediamine, nitrophenylhydrazine, and nitronaphthalene is added.

【0008】[0008]

【作用】以上のような構成を有する本発明の作用は次の
通りである。すなわち、本発明においては、γ−ブチロ
ラクトンを主体とする溶媒に有機カルボン酸あるいはそ
の塩を溶解してなる電解液に添加するニトロ化合物が、
ヒドロキシル基及びカルボキシル基を持たないため、そ
れ自身が陰イオンとなり電解質として作用することがな
い。したがってハロゲン化炭化水素の侵入によるコンデ
ンサ素子の腐食を抑制し、かつ、火花発生電圧を低下さ
せることがない信頼性の高い電解コンデンサ駆動用電解
液を提供することができる。
The operation of the present invention having the above construction is as follows. That is, in the present invention, a nitro compound added to an electrolytic solution obtained by dissolving an organic carboxylic acid or a salt thereof in a solvent mainly composed of γ-butyrolactone is
Since it does not have a hydroxyl group and a carboxyl group, it does not act as an anion itself and acts as an electrolyte. Therefore, it is possible to provide a highly reliable electrolytic capacitor driving electrolytic solution that suppresses corrosion of the capacitor element due to invasion of halogenated hydrocarbons and does not lower the spark generation voltage.

【0009】[0009]

【実施例】以下、本発明に係る電解コンデンサ駆動用電
解液の実施例について説明する。
EXAMPLES Examples of the electrolytic solution for driving an electrolytic capacitor according to the present invention will be described below.

【0010】なお、ここでは、本発明に係わる組成種類
の異なる電解コンデンサ駆動用電解液として実施例1乃
至11を作成し、また本発明による電解コンデンサ駆動
用電解液と比較するために、従来技術に係る電解コンデ
ンサ駆動用電解液として比較例1乃至4を作成した。
Here, Examples 1 to 11 were prepared as electrolytic solutions for driving electrolytic capacitors having different composition types according to the present invention, and in order to compare with the electrolytic solution for driving electrolytic capacitors according to the present invention, the prior art was used. Comparative Examples 1 to 4 were prepared as the electrolytic solution for driving the electrolytic capacitor according to.

【0011】(1)組成 本発明に係る電解コンデンサ駆動用電解液の実施例1乃
至11及び従来技術に係る電解コンデンサ駆動用電解液
の比較例1乃至4を構成する組成物質及びその割合は以
下の通りである。 [実施例1] γ−ブチロラクトン(79重量%) フタル酸テトラメチルアンモニウム(20重量%) ニトロアセトフェノン(1重量%) [実施例2] γ−ブチロラクトン(79重量%) マレイン酸テトラエチルアンモニウム(20重量%) ニトロベンズアミド(1重量%) [実施例3] γ−ブチロラクトン(74重量%) フタル酸ジメチルエチルアミン(25重量%) ニトロアニリン(1重量%) [実施例4] γ−ブチロラクトン(59重量%) マレイン酸トリエチルアミン(40重量%) ニトロベンゼン(1重量%) [実施例5] γ−ブチロラクトン(79.5重量%) フタル酸テトラメチルアンモニウム(20重量%) ニトロフェネトール(0.5重量%) [実施例6] γ−ブチロラクトン(79.5重量%) マレイン酸テトラエチルアンモニウム(20重量%) ニトロフェニレンジアミン(0.5重量%) [実施例7] γ−ブチロラクトン(74.5重量%) フタル酸ジメチルエチルアミン(25重量%) ニトロフェニルヒドラジン(0.5重量%) [実施例8] γ−ブチロラクトン(59.5重量%) マレイン酸トリエチルアミン(40重量%) ニトロアセトアニリド(0.5重量%) [実施例9] γ−ブチロラクトン(77重量%) フタル酸テトラメチルアンモニウム(20重量%) ニトロアニソール(3重量%) [実施例10] γ−ブチロラクトン(77重量%) マレイン酸テトラエチルアンモニウム(20重量%) ニトロベンズアルデヒド(3重量%) [実施例11] γ−ブチロラクトン(72重量%) フタル酸ジメチルエチルアミン(25重量%) ニトロナフタレン(3重量%) [比較例1] γ−ブチロラクトン(79重量%) フタル酸テトラメチルアンモニウム(20重量%) パラニトロフェノール(1重量%) [比較例2] γ−ブチロラクトン(79重量%) マレイン酸テトラエチルアンモニウム(20重量%) パラニトロ安息香酸(1重量%) [比較例3] γ−ブチロラクトン(74重量%) フタル酸ジメチルエチルアミン(25重量%) パラニトロ安息香酸(1重量%) [比較例4] γ−ブチロラクトン(59重量%) マレイン酸トリエチルアミン(40重量%) パラニトロフェノール(1重量%)。
(1) Composition The composition materials and their proportions constituting Examples 1 to 11 of the electrolytic capacitor driving electrolytic solution according to the present invention and Comparative Examples 1 to 4 of the electrolytic capacitor driving electrolytic solution according to the prior art are as follows. Is the street. [Example 1] γ-butyrolactone (79% by weight) Tetramethylammonium phthalate (20% by weight) Nitroacetophenone (1% by weight) [Example 2] γ-Butyrolactone (79% by weight) Tetraethylammonium maleate (20% by weight) %) Nitrobenzamide (1% by weight) [Example 3] γ-butyrolactone (74% by weight) Dimethylethylamine phthalate (25% by weight) Nitroaniline (1% by weight) [Example 4] γ-Butyrolactone (59% by weight) ) Triethylamine maleate (40 wt%) Nitrobenzene (1 wt%) [Example 5] γ-butyrolactone (79.5 wt%) Tetramethylammonium phthalate (20 wt%) Nitrophenetol (0.5 wt%) Example 6 γ-butyrolactone (79.5% by weight) Teto maleic acid Raethylammonium (20% by weight) Nitrophenylenediamine (0.5% by weight) [Example 7] γ-butyrolactone (74.5% by weight) Dimethylethylamine phthalate (25% by weight) Nitrophenylhydrazine (0.5% by weight) %) [Example 8] γ-butyrolactone (59.5% by weight) Triethylamine maleate (40% by weight) nitroacetanilide (0.5% by weight) [Example 9] γ-butyrolactone (77% by weight) tetraphthalic acid phthalate Methylammonium (20% by weight) Nitroanisole (3% by weight) [Example 10] γ-Butyrolactone (77% by weight) Tetraethylammonium maleate (20% by weight) Nitrobenzaldehyde (3% by weight) [Example 11] γ- Butyrolactone (72 wt%) Dimethylethylamine phthalate (25 wt) %) Nitronaphthalene (3% by weight) [Comparative Example 1] γ-butyrolactone (79% by weight) Tetramethylammonium phthalate (20% by weight) Paranitrophenol (1% by weight) [Comparative Example 2] γ-Butyrolactone (79) % By weight) Tetraethylammonium maleate (20% by weight) Paranitrobenzoic acid (1% by weight) [Comparative Example 3] γ-butyrolactone (74% by weight) Dimethylethylamine phthalate (25% by weight) Paranitrobenzoic acid (1% by weight) [Comparative Example 4] γ-butyrolactone (59% by weight) Triethylamine maleate (40% by weight) Paranitrophenol (1% by weight).

【0012】(2)比抵抗及び火花発生電圧 次に、(1)に示した組成を有する実施例1乃至11及
び比較例1乃至4の電解コンデンサ駆動用電解液の25
℃での比抵抗及び火花発生電圧を示す。 [実施例1] 比抵抗 104(Ωcm) 火花発生電圧 105(V) [実施例2] 比抵抗 86(Ωcm) 火花発生電圧 95(V) [実施例3] 比抵抗 123(Ωcm) 火花発生電圧 110(V) [実施例4] 比抵抗 115(Ωcm) 火花発生電圧 120(V) [実施例5] 比抵抗 102(Ωcm) 火花発生電圧 103(V) [実施例6] 比抵抗 84(Ωcm) 火花発生電圧 92(V) [実施例7] 比抵抗 125(Ωcm) 火花発生電圧 108(V) [実施例8] 比抵抗 118(Ωcm) 火花発生電圧 125(V) [実施例9] 比抵抗 100(Ωcm) 火花発生電圧 110(V) [実施例10] 比抵抗 83(Ωcm) 火花発生電圧 100(V) [実施例11] 比抵抗 127(Ωcm) 火花発生電圧 130(V) [比較例1] 比抵抗 105(Ωcm) 火花発生電圧 95(V) [比較例2] 比抵抗 85(Ωcm) 火花発生電圧 70(V) [比較例3] 比抵抗 130(Ωcm) 火花発生電圧 85(V) [比較例4] 比抵抗 120(Ωcm) 火花発生電圧 100(V)。
(2) Specific Resistance and Spark Generation Voltage Next, 25 of the electrolytic solution for driving the electrolytic capacitors of Examples 1 to 11 and Comparative Examples 1 to 4 having the composition shown in (1)
The specific resistance and the spark generation voltage at ℃ are shown. [Example 1] Specific resistance 104 (Ωcm) Spark generation voltage 105 (V) [Example 2] Specific resistance 86 (Ωcm) Spark generation voltage 95 (V) [Example 3] Specific resistance 123 (Ωcm) Spark generation voltage 110 (V) [Example 4] Specific resistance 115 (Ωcm) Spark generation voltage 120 (V) [Example 5] Specific resistance 102 (Ωcm) Spark generation voltage 103 (V) [Example 6] Specific resistance 84 (Ωcm) ) Spark generation voltage 92 (V) [Example 7] Specific resistance 125 (Ωcm) Spark generation voltage 108 (V) [Example 8] Specific resistance 118 (Ωcm) Spark generation voltage 125 (V) [Example 9] Ratio Resistance 100 (Ωcm) Spark generation voltage 110 (V) [Example 10] Specific resistance 83 (Ωcm) Spark generation voltage 100 (V) [Example 11] Specific resistance 127 (Ωcm) Spark generation voltage 130 (V) [Ratio Example 1] Specific resistance 105 (Ωcm) Spark generation voltage 95 (V) [Comparative example 2] Specific resistance 85 (Ωcm) Spark generation voltage 70 (V) [Comparative example 3] Specific resistance 130 (Ωcm) Spark generation voltage 85 ( V) [Comparative Example 4] Specific resistance 120 (Ωcm) Spark generation voltage 100 (V).

【0013】以上の実施例1乃至11と比較例1乃至4
の比抵抗及び火花発生電圧を比較したグラフを図1に示
す。図1からわかるように、ヒドロキシル基及びカルボ
キシル基を持たないニトロ化合物を添加することによ
り、比抵抗をほとんど変化させずに、火花発生電圧を2
0〜40V上昇させることができる。
The above Examples 1 to 11 and Comparative Examples 1 to 4
A graph comparing the specific resistance and the spark generation voltage of is shown in FIG. As can be seen from FIG. 1, by adding a nitro compound having neither a hydroxyl group nor a carboxyl group, the spark generation voltage was reduced to 2 without changing the specific resistance.
It can be increased by 0-40V.

【0014】(3)初期値 次に、実施例1乃至11及び比較例1乃至4の電解コン
デンサ駆動用電解液を使用し製作したアルミニウム電解
コンデンサ(50V−470μF)各20個の初期段階
における容量、tanδ、並びに漏れ電流を示す。 [実施例1] 容量 471(μF) tanδ 0.071 漏れ電流 11.5(μA) [実施例2] 容量 470(μF) tanδ 0.055 漏れ電流 10.1(μA) [実施例3] 容量 471(μF) tanδ 0.092 漏れ電流 9.2(μA) [実施例4] 容量 469(μF) tanδ 0.081 漏れ電流 10.5(μA) [実施例5] 容量 470(μF) tanδ 0.069 漏れ電流 9.4(μA) [実施例6] 容量 470(μF) tanδ 0.057 漏れ電流 8.7(μA) [実施例7] 容量 471(μF) tanδ 0.089 漏れ電流 10.9(μA) [実施例8] 容量 471(μF) tanδ 0.080 漏れ電流 9.4(μA) [実施例9] 容量 469(μF) tanδ 0.072 漏れ電流 9.5(μA) [実施例10] 容量 471(μF) tanδ 0.056 漏れ電流 9.3(μA) [実施例11] 容量 470(μF) tanδ 0.081 漏れ電流 9.2(μA) [比較例1] 容量 470(μF) tanδ 0.072 漏れ電流 37.2(μA) [比較例2]エージング中に防爆弁が動作したため測定
不可能である。 [比較例3] 容量 471(μF) tanδ 0.094 漏れ電流 25.6(μA) [比較例4] 容量 469(μF) tanδ 0.083 漏れ電流 17.2(μA)。
(3) Initial value Next, 20 aluminum electrolytic capacitors (50 V-470 μF) each manufactured using the electrolytic solution for driving the electrolytic capacitors of Examples 1 to 11 and Comparative Examples 1 to 4 were used at the initial stage. , Tan δ, and leakage current. [Example 1] Capacity 471 (µF) tan δ 0.071 Leakage current 11.5 (µA) [Example 2] Capacity 470 (µF) tan δ 0.055 Leakage current 10.1 (µA) [Example 3] Capacity 471 (μF) tan δ 0.092 Leakage current 9.2 (μA) [Example 4] Capacity 469 (μF) tan δ 0.081 Leakage current 10.5 (μA) [Example 5] Capacity 470 (μF) tan δ 0 0.069 Leakage current 9.4 (μA) [Example 6] Capacity 470 (μF) tan δ 0.057 Leakage current 8.7 (μA) [Example 7] Capacity 471 (μF) tan δ 0.089 Leakage current 10. 9 (μA) [Example 8] Capacity 471 (μF) tan δ 0.080 Leakage current 9.4 (μA) [Example 9] Capacity 469 (μF) tan δ 0.072 Leakage current 9.5 (μA) [Actual] Example 10 Capacity 471 (μF) tan δ 0.056 Leakage current 9.3 (μA) [Example 11] Capacity 470 (μF) tan δ 0.081 Leakage current 9.2 (μA) [Comparative example 1] Capacity 470 ( μF) tan δ 0.072 Leakage current 37.2 (μA) [Comparative example 2] Measurement is impossible because the explosion-proof valve operates during aging. [Comparative Example 3] Capacity 471 (µF) tan δ 0.094 Leakage current 25.6 (µA) [Comparative Example 4] Capacity 469 (µF) tan δ 0.083 Leakage current 17.2 (µA).

【0015】以上の実施例1乃至11と比較例1乃至4
の漏れ電流及びtanδを比較したグラフを図2に示
す。図2からわかるように、本発明の電解コンデンサ駆
動用電解液を使用し製作したアルミニウム電解コニデン
サは、従来の電解コンデンサ駆動用電解液を使用し製作
したアルミニウム電解コニデンサと比較して、初期段階
で比較例2のように50Vの製品でもエージング中に防
爆弁が動作せずに、また、火花電圧が高いために漏れ電
流、tanδも小さい。
The above Examples 1 to 11 and Comparative Examples 1 to 4
A graph comparing the leakage current and tan δ of is shown in FIG. As can be seen from FIG. 2, the aluminum electrolytic capacitor formed using the electrolytic capacitor driving electrolytic solution of the present invention has an initial stage in comparison with the aluminum electrolytic capacitor formed using the conventional electrolytic capacitor driving electrolytic solution. Even in the product of 50 V as in Comparative Example 2, the explosion-proof valve does not operate during aging, and the spark current is high, so that the leakage current and tan δ are small.

【0016】(4)高温負荷試験 次に、実施例1乃至11及び比較例1乃至4の駆動用電
解液を使用し製作したアルミニウム電解コニデンサ(5
0V−470μF)各20個をハロゲン化炭化水素
(1,1,2−トリクロロ−1,2,2−トリフロロエ
タン)で、5分間蒸気洗浄した後に高温負荷試験(10
5℃ 1000時間)を行った結果の容量変化率、ta
nδ、漏れ電流、外観、腐食等の特性を示す。 [実施例1] 容量変化率 −0.6(%) tanδ 0.072 漏れ電流 8.6(μA) 外観は異常なく、腐食も認められない。 [実施例2] 容量変化率 −0.8(%) tanδ 0.058 漏れ電流 7.5(μA) 外観は異常なく、腐食も認められない。 [実施例3] 容量変化率 −0.4(%) tanδ 0.099 漏れ電流 6.0(μA) 外観は異常なく、腐食も認められない。 [実施例4] 容量変化率 −0.9(%) tanδ 0.097 漏れ電流 9.5(μA) 外観は異常なく、腐食も認められない。 [実施例5] 容量変化率 −0.3(%) tanδ 0.070 漏れ電流 9.4(μA) 外観は異常なく、腐食も認められない。 [実施例6] 容量変化率 −0.5(%) tanδ 0.059 漏れ電流 7.7(μA) 外観は異常なく、腐食も認められない。 [実施例7] 容量変化率 −0.7(%) tanδ 0.092 漏れ電流 9.2(μA) 外観は異常なく、腐食も認められない。 [実施例8] 容量変化率 −0.6(%) tanδ 0.090 漏れ電流 8.6(μA) 外観は異常なく、腐食も認められない。 [実施例9] 容量変化率 −0.8(%) tanδ 0.075 漏れ電流 7.3(μA) 外観は異常なく、腐食も認められない。 [実施例10] 容量変化率 −0.7(%) tanδ 0.058 漏れ電流 6.5(μA) 外観は異常なく、腐食も認められない。 [実施例11] 容量変化率 −0.8(%) tanδ 0.088 漏れ電流 7.6(μA) 外観は異常なく、腐食も認められない。 [比較例1] 容量変化率 −3.5(%) tanδ 0.079 漏れ電流 21.4(μA) 弁ふくれとなったが腐食は認められい。 [比較例2]エージング中に防爆弁が動作したため測定
不可能である。 [比較例3] 容量変化率 −2.8(%) tanδ 0.102 漏れ電流 12.5(μA) 弁ふくれとなったが腐食は認められない。 [比較例4] 容量変化率 −2.8(%) tanδ 0.119 漏れ電流 10.3(μA) 弁ふくれとなったが腐食は認められない。
(4) High temperature load test Next, an aluminum electrolytic capacitor (5) manufactured by using the driving electrolyte solutions of Examples 1 to 11 and Comparative Examples 1 to 4 was used.
0V-470 μF) 20 pieces each of which was steam washed with a halogenated hydrocarbon (1,1,2-trichloro-1,2,2-trifluoroethane) for 5 minutes and then subjected to a high temperature load test (10
The rate of change in capacity, ta
Shows characteristics such as nδ, leakage current, appearance, and corrosion. [Example 1] Capacity change rate -0.6 (%) tan δ 0.072 Leakage current 8.6 (μA) Appearance is not abnormal and corrosion is not observed. [Example 2] Capacity change rate -0.8 (%) tan δ 0.058 Leakage current 7.5 (μA) Appearance is not abnormal and corrosion is not observed. [Example 3] Capacity change rate -0.4 (%) tan δ 0.099 Leakage current 6.0 (μA) Appearance is not abnormal and corrosion is not observed. [Example 4] Capacity change rate -0.9 (%) tan δ 0.097 Leakage current 9.5 (μA) Appearance is not abnormal and corrosion is not observed. [Example 5] Capacity change rate -0.3 (%) tan δ 0.070 Leakage current 9.4 (μA) Appearance is not abnormal and corrosion is not observed. [Example 6] Capacity change rate -0.5 (%) tan δ 0.059 Leakage current 7.7 (μA) Appearance is not abnormal and corrosion is not observed. [Example 7] Capacity change rate -0.7 (%) tan δ 0.092 Leakage current 9.2 (μA) Appearance is not abnormal and corrosion is not observed. [Example 8] Capacity change rate -0.6 (%) tan δ 0.090 Leakage current 8.6 (μA) Appearance is not abnormal and corrosion is not observed. [Example 9] Capacity change rate -0.8 (%) tan δ 0.075 Leakage current 7.3 (μA) Appearance is not abnormal and corrosion is not observed. [Example 10] Capacity change rate -0.7 (%) tan δ 0.058 Leakage current 6.5 (μA) Appearance is not abnormal and corrosion is not observed. Example 11 Capacity change rate −0.8 (%) tan δ 0.088 Leakage current 7.6 (μA) Appearance is not abnormal and corrosion is not observed. [Comparative Example 1] Capacity change rate -3.5 (%) tan δ 0.079 Leakage current 21.4 (μA) The valve blistered but no corrosion was observed. [Comparative Example 2] Measurement is impossible because the explosion-proof valve operates during aging. [Comparative Example 3] Capacity change rate -2.8 (%) tan δ 0.102 Leakage current 12.5 (μA) A valve blister occurred, but no corrosion was observed. [Comparative Example 4] Capacity change rate -2.8 (%) tan δ 0.119 Leakage current 10.3 (μA) Although the valve blistered, no corrosion was observed.

【0017】以上の実施例1乃至11と比較例1乃至4
の漏れ電流及びtanδを比較したグラフを図3に、容
量変化率を比較したグラフを図4に示す。
The above Examples 1 to 11 and Comparative Examples 1 to 4
3 shows a graph comparing the leakage current and tan δ of FIG. 3, and FIG. 4 shows a graph comparing the capacitance change rates.

【0018】図3及び図4からわかるように、本発明の
電解コンデンサ駆動用電解液を使用し製作したアルミニ
ウム電解コニデンサは、従来の電解コンデンサ駆動用電
解液を使用し製作したアルミニウム電解コニデンサと比
較して、105℃、1000時間の高温負荷試験後にお
いて、容量変化率、tanδ変化、漏れ電流変化が大幅
に少なく、また、従来の電解コンデンサ駆動用電解液を
使用し製作したアルミニウム電解コニデンサが弁ふくれ
となったのに対して、本発明の電解コンデンサ駆動用電
解液を使用し製作したアルミニウム電解コニデンサはす
べて弁ふくれ現象は皆無で、また、ハロゲン化炭化水素
洗浄による腐食も認められなかった。
As can be seen from FIGS. 3 and 4, the aluminum electrolytic capacitor formed using the electrolytic capacitor driving electrolytic solution of the present invention is compared with the aluminum electrolytic capacitor formed using the conventional electrolytic capacitor driving electrolytic solution. After a high temperature load test at 105 ° C for 1000 hours, the capacity change rate, tan δ change, and leakage current change were significantly small, and an aluminum electrolytic capacitor manufactured using a conventional electrolytic capacitor driving electrolytic solution was used as a valve. In contrast to the blistering, all the aluminum electrolytic capacitors produced by using the electrolytic solution for driving the electrolytic capacitor of the present invention showed no valve blister phenomenon and no corrosion due to halogenated hydrocarbon cleaning.

【0019】(5)実施例の効果 ヒドロキシル基及びカルボキシル基を持たないニトロ化
合物を添加することにより、比抵抗をほとんど変化させ
ずに、火花発生電圧を20〜40V上昇させることがで
き、火花電圧が高いために漏れ電流、tanδも小さ
い。
(5) Effects of Examples By adding a nitro compound having neither a hydroxyl group nor a carboxyl group, the spark generation voltage can be increased by 20 to 40 V with almost no change in the specific resistance. Is high, the leakage current and tan δ are also small.

【0020】また、105℃、1000時間の高温負荷
試験後において、容量変化率、tanδ変化、漏れ電流
変化が大幅に少なく、弁ふくれ現象は皆無でありハロゲ
ン化炭化水素洗浄による腐食もみとめられず、本発明の
顕著な効果を実証した。
After a high temperature load test at 105 ° C. for 1000 hours, the rate of change in capacity, the change in tan δ, and the change in leakage current were significantly small, there was no valve swelling, and corrosion due to halogenated hydrocarbon cleaning was not found. , Demonstrated a remarkable effect of the present invention.

【0021】なお、ヒドロキシル基及びカルボキシル基
を持たないニトロ化合物の添加量は0.1重量%未満で
は効果がなく、5重量%以上では電解液の比抵抗が上昇
するため、最も好ましくは0.5重量%から3重量%で
ある。
The addition amount of the nitro compound having no hydroxyl group or carboxyl group is less than 0.1% by weight, and the addition amount of 5% by weight or more increases the specific resistance of the electrolytic solution. It is 5% to 3% by weight.

【0022】[0022]

【発明の効果】以上述べたように、本発明の電解コンデ
ンサ駆動用電解液は、ハロゲン化炭化水素の侵入による
腐食を抑制し、かつ、比抵抗を上昇させることなく、火
花発生電圧を上昇させることができ、高温でも安定な長
寿命の電解コンデンサを提供することができる。
As described above, the electrolytic solution for driving an electrolytic capacitor according to the present invention suppresses corrosion due to invasion of halogenated hydrocarbons and increases the spark generation voltage without increasing the specific resistance. It is possible to provide an electrolytic capacitor having a long life which is stable even at high temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1乃至11と比較例1乃至4の電解コン
デンサ駆動用電解液の25℃での比抵抗及び火花発生電
圧を比較したグラフ。
FIG. 1 is a graph comparing the specific resistance at 25 ° C. and the spark generation voltage of electrolytic solutions for driving electrolytic capacitors of Examples 1 to 11 and Comparative Examples 1 to 4.

【図2】実施例1乃至11及び比較例1乃至4の電解コ
ンデンサ駆動用電解液を使用し製作したアルミニウム電
解コンデンサ(50V−470μF)各20個の初期段
階における容量、tanδ、並びに漏れ電流を比較した
グラフ。
FIG. 2 shows the capacity, tan δ, and leakage current of 20 aluminum electrolytic capacitors (50V-470 μF) each manufactured using the electrolytic capacitor driving electrolytic solutions of Examples 1 to 11 and Comparative Examples 1 to 4. Comparison graph.

【図3】実施例1乃至11及び比較例1乃至4の駆動用
電解液を使用し製作したアルミニウム電解コニデンサ
(50V−470μF)各20個をハロゲン化炭化水素
(1,1,2−トリクロロ−1,2,2−トリフロロエ
タン)で、5分間蒸気洗浄した後に高温負荷試験(10
5℃ 1000時間)を行った結果のtanδ、漏れ電
流を比較したグラフ。
FIG. 3 is a graph showing 20 halogenated hydrocarbons (1,1,2-trichloro-containing aluminum electrolytic condensor (50 V-470 μF) manufactured using the driving electrolytic solutions of Examples 1 to 11 and Comparative Examples 1 to 4 respectively. 1,2,2-trifluoroethane), after steam cleaning for 5 minutes, high temperature load test (10
The graph which compared tandelta and the leakage current of the result of having performed 5 degreeC and 1000 hours.

【図4】実施例1乃至11及び比較例1乃至4の駆動用
電解液を使用し製作したアルミニウム電解コニデンサ
(50V−470μF)各20個をハロゲン化炭化水素
(1,1,2−トリクロロ−1,2,2−トリフロロエ
タン)で、5分間蒸気洗浄した後に高温負荷試験(10
5℃ 1000時間)を行った結果の容量変化率を比較
したグラフ。
FIG. 4 is a graph showing that 20 aluminum electrolytic condensers (50 V-470 μF) each manufactured using the driving electrolytes of Examples 1 to 11 and Comparative Examples 1 to 4 were converted into halogenated hydrocarbons (1,1,2-trichloro-). 1,2,2-trifluoroethane), after steam cleaning for 5 minutes, high temperature load test (10
The graph which compared the capacity change rate of the result of having performed 5 degreeC 1000 hours).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 γ−ブチロラクトンを主体とする溶媒に
有機カルボン酸あるいはその塩を溶解してなる電解液
に、ヒドロキシル基及びカルボキシル基を持たないニト
ロ化合物を添加したことを特徴とする電解コンデンサ駆
動用電解液。
1. An electrolytic capacitor drive characterized in that a nitro compound having neither a hydroxyl group nor a carboxyl group is added to an electrolytic solution prepared by dissolving an organic carboxylic acid or a salt thereof in a solvent mainly containing γ-butyrolactone. Electrolyte.
【請求項2】 前記ヒドロキシル基及びカルボキシル基
を持たないニトロ化合物として、ニトロアセトフェノ
ン、ニトロアセトアニリド、ニトロベンズアミド、ニト
ロベンズアルデヒド、ニトロアニソール、ニトロアニリ
ン、ニトロベンゼン、ニトロフェネトール、ニトロフェ
ニレンジアミン、ニトロフェニルヒドラジン、ニトロナ
フタレンのうち少なくとも1種類以上を添加したことを
特徴とする請求項1記載の電解コンデンサ駆動用電解
液。
2. As the nitro compound having no hydroxyl group or carboxyl group, nitroacetophenone, nitroacetanilide, nitrobenzamide, nitrobenzaldehyde, nitroanisole, nitroaniline, nitrobenzene, nitrophenetol, nitrophenylenediamine, nitrophenylhydrazine, The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein at least one kind of nitronaphthalene is added.
JP05336395A 1995-02-16 1995-02-16 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP3612671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05336395A JP3612671B2 (en) 1995-02-16 1995-02-16 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05336395A JP3612671B2 (en) 1995-02-16 1995-02-16 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JPH08222484A true JPH08222484A (en) 1996-08-30
JP3612671B2 JP3612671B2 (en) 2005-01-19

Family

ID=12940733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05336395A Expired - Fee Related JP3612671B2 (en) 1995-02-16 1995-02-16 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP3612671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247611A (en) * 2017-10-24 2020-06-05 三洋化成工业株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184810A (en) * 1985-02-12 1986-08-18 三菱油化株式会社 Electrolytic liquid for electrolytic capacitor
JPH0374829A (en) * 1989-08-16 1991-03-29 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor
JPH05101982A (en) * 1991-10-04 1993-04-23 Matsushita Electric Ind Co Ltd Electrolytic capacitor drive electrolytic solution
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184810A (en) * 1985-02-12 1986-08-18 三菱油化株式会社 Electrolytic liquid for electrolytic capacitor
JPH0374829A (en) * 1989-08-16 1991-03-29 Matsushita Electric Ind Co Ltd Electrolyte for driving electrolytic capacitor
JPH05101982A (en) * 1991-10-04 1993-04-23 Matsushita Electric Ind Co Ltd Electrolytic capacitor drive electrolytic solution
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247611A (en) * 2017-10-24 2020-06-05 三洋化成工业株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor
CN111247611B (en) * 2017-10-24 2022-07-05 三洋化成工业株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Also Published As

Publication number Publication date
JP3612671B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JPH08222484A (en) Electrolytic capacitor driving electrolyte
JPH08335533A (en) Electrolyte for driving electrolytic capacitor
JP3722520B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH08264389A (en) Electrolyte for driving electrolytic capacitor
JPH08306590A (en) Electrolytic solution for driving electrolytic capacitor
JP4637683B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH0410515A (en) Electrolyte for electrolytic capacitor
JPH03102811A (en) Electrolyte for electrolytic capacitor
JPH0277109A (en) Electrolyte for driving electrolyte capacitor
JPS6182416A (en) Electrolytic liquid for electrolytic capacitor
JP4653595B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS6182415A (en) Electrolytic liquid for electrolytic capacitor
JPH0399416A (en) Electrolyte for electrolytic capacitor
JPS6182418A (en) Electrolytic liquid for electrolytic capacitor
JPS60242610A (en) Electrolyte for electrolytic condenser
JP2022053328A (en) Electrolytic capacitor
JPH08167542A (en) Electrolyte for driving of electrolytic capacitor
JP2960153B2 (en) Electrolyte for driving electrolytic capacitors
JPH08203786A (en) Electrolytic solution for electrolytic capacitor driving
JPH09148195A (en) Electrolyte for electrolytic capacitor drive use
JPH0658869B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3691545B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH0262026A (en) Electrolyte for driving electrolytic capacitor
JPH0364905A (en) Electrolyte for driving electrolytic capacitor
JPS6314862B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees