JPH0821798A - Method and apparatus for detecting foreign matter - Google Patents

Method and apparatus for detecting foreign matter

Info

Publication number
JPH0821798A
JPH0821798A JP6179361A JP17936194A JPH0821798A JP H0821798 A JPH0821798 A JP H0821798A JP 6179361 A JP6179361 A JP 6179361A JP 17936194 A JP17936194 A JP 17936194A JP H0821798 A JPH0821798 A JP H0821798A
Authority
JP
Japan
Prior art keywords
foreign matter
fluid
conduit
transparent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6179361A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP6179361A priority Critical patent/JPH0821798A/en
Publication of JPH0821798A publication Critical patent/JPH0821798A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect a foreign matter even when the foreign matter is transparent and wherever the foreign matter may be present in a conduit, by casting parallel beams on a transparent visible part set in the fluid conduit. CONSTITUTION:A visible part V is set at a part of a fluid conduit 1 so as to be able to observe the interior of the conduit 1. Cylindrical glass parts 2 are smoothly connected at both ends of a rectangular glass part 3 at the visible part V. End parts of the cylindrical glass parts 2 are connected to the conduit 1. A collimator 5 turns a luminous flux from a light source 4 into parallel beams, and a photographic lens 6 is constituted of a group of lenses to make it possible to observe the whole area in the thicknesswise direction of a fluid in Z-axis direction and the whole visual field in Y-axis direction. A one- dimensional CCD sensor 7 scans the whole area of a mask slit 8 in the widthwise direction, with outputting a signal proportional to an intensity of the coming light to a signal-processing device 11. The signal-processing device 11 processes the signal and detects count, shape, size, etc., of foreign matter 10 in the fluid. Since the parallel beams are cast, a contrast becomes clear even when the foreign matter is transparent, making the detection of the foreign matter possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体中の異物を検出す
る方法及び装置に関するものである。さらに詳しくは、
合成繊維、合成樹脂シート、合成樹脂膜、医薬品、食品
等の製造工程において、不良品発生の原因となる流体中
に微量存在する異物(不純物、金属粉、プラスチック摩
耗破片等)や気泡を光学的に全数検出する方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting foreign matter in a fluid. For more information,
In the manufacturing process of synthetic fibers, synthetic resin sheets, synthetic resin films, pharmaceuticals, foods, etc., the foreign substances (impurities, metal powder, plastic wear debris, etc.) present in trace amounts in the fluid that cause defective products are optically The present invention relates to a method and an apparatus for detecting 100%.

【0002】[0002]

【従来の技術】一般に、例えば合成繊維、合成樹脂シー
ト、合成樹脂膜、医薬品、食品等の多くの場合において
は、高品質性や安全性確保のため異物は含有されるべき
ではない。また、これらの製造工程において異物が存在
することは、製造工程中の種々のトラブルの原因となっ
たり、合成繊維等に必要な特性を発揮させる上で重大な
障害となる場合がある。従って、従来、あらゆる方法を
駆使してこれらの異物の検出及び除去が行われている。
しかし乍ら、実際には、製造環境や工程から微小の金属
粉やプラスチック破片が微量発生し、また、製造工程に
おいて洗浄、製造に用いる水や溶媒等に気泡が混入する
ことは避けられず、これを完全に防止することは極めて
困難である。また、これらの異物は定常的に発生するも
のではなく、突発的に発生するのが通常であるため、異
物を全数検出することは頗る困難である。
2. Description of the Related Art Generally, in many cases such as synthetic fibers, synthetic resin sheets, synthetic resin films, pharmaceuticals, foods, etc., foreign substances should not be contained in order to ensure high quality and safety. In addition, the presence of foreign matter in these manufacturing processes may cause various troubles during the manufacturing process or may be a serious obstacle to exhibiting the properties required for synthetic fibers and the like. Therefore, conventionally, these foreign substances are detected and removed by making full use of all methods.
However, in reality, a minute amount of fine metal powder or plastic fragments is generated from the manufacturing environment or process, and in the manufacturing process, it is inevitable that air bubbles are mixed in water, solvent, etc. used for manufacturing, It is extremely difficult to prevent this completely. Further, since these foreign substances are not constantly generated but are usually generated suddenly, it is extremely difficult to detect all the foreign substances.

【0003】しかも、これらの微量で突発的に発生する
異物が製品の微細な構造を変化させ、製品として必要な
特性に重大な影響を及ぼす場合がある。従って、このよ
うな異物が発生したことをその都度検出するためには、
流体の全てを連続的に測定でき、かつ異物が高密度にで
はなく単一に存在する場合でも検出可能な測定方法が必
要とされる。
In addition, a foreign substance generated suddenly by such a small amount may change the fine structure of the product, and may seriously affect the characteristics required as the product. Therefore, in order to detect the occurrence of such foreign matter each time,
There is a need for a measurement method that can continuously measure all of fluids and that can detect foreign substances even when they are present singly rather than in high density.

【0004】微小気泡、粒子の測定方法としては、コー
ルターカウンタ式、レーザードップラー式、超音波式、
光散乱式等の方法を応用した測定方法が知られている。
コールターカウンタ式の測定方法は検出感度が高いが、
一つの測定素子で測定できる異物の大きさ(直径等)の
範囲が狭いため、流体中に存在する異物の直径分布が広
い場合は全数測定に向かない測定方法である。また、コ
ールターカウンタ式の測定方法で異物を検出するために
は、流体にある程度の電気伝導度が必要であり、かつ流
体中の異物がピンホール(開口径2mm以下)を通過する
必要があるので、オンライン測定、インライン測定や、
大流量の流体全量を測定する目的には利用できない。
Microbubbles and particles can be measured by the Coulter counter method, laser Doppler method, ultrasonic method,
A measurement method applying a method such as a light scattering method is known.
The Coulter counter method has high detection sensitivity,
Since the range of the size (diameter, etc.) of foreign matter that can be measured by one measuring element is narrow, this method is not suitable for 100% measurement when the diameter distribution of foreign matter existing in the fluid is wide. Further, in order to detect a foreign substance by the Coulter counter type measurement method, the fluid needs to have a certain degree of electrical conductivity, and the foreign substance in the fluid must pass through the pinhole (opening diameter 2 mm or less). , Online measurement, in-line measurement,
It cannot be used for the purpose of measuring a large amount of fluid at a large flow rate.

【0005】レーザードップラー式等のコールターカウ
ンタ式以外の測定方法は、異物等の測定対象が流体中で
高密度に存在している必要があり、流体中に単一に存在
したり極微量の異物を測定するためには検出感度が低い
ため採用できない場合が多い。また、サンプリング測定
や流体の一部分の測定には好適であるが、全数測定には
採用できない。従って、上記課題を解決する測定方法と
しては、これらの測定方法は採用できない。
In the measuring methods other than the Coulter counter method such as the laser Doppler method, it is necessary that the object to be measured such as a foreign matter be present in the fluid at a high density, and a single foreign matter or a very small amount of the foreign matter is present in the fluid. In many cases, this method cannot be used for measuring C because of its low detection sensitivity. Further, although it is suitable for sampling measurement and measurement of a part of fluid, it cannot be used for total number measurement. Therefore, these measuring methods cannot be adopted as the measuring methods for solving the above problems.

【0006】光学的手段(光の透過率や散乱光強度の測
定、散乱光パターンの画像処理等)による測定方法は、
全数測定を可能にする手段があり、検出感度も高いので
上記課題を解決する測定方法としては適当である。しか
し、この測定方法を上記課題の解決に応用すると以下に
述べるような問題を生じる。
The measuring method by optical means (measurement of light transmittance and scattered light intensity, image processing of scattered light pattern, etc.) is
Since there is a means that enables 100% measurement and the detection sensitivity is high, it is suitable as a measurement method for solving the above problems. However, if this measuring method is applied to solve the above problems, the following problems will occur.

【0007】即ち、流体流路の内径はある程度の大きさ
を持つので、異物が流路断面において管壁近傍と中心付
近を通過する場合では、異物とイメージセンサカメラ等
の撮像レンズとの距離に差が生じるため、レンズの被射
界深度の範囲外を流れる異物が測定できなくなり、異物
の全数測定ができない場合がある。
That is, since the inner diameter of the fluid flow path has a certain size, when the foreign matter passes near the tube wall and near the center in the cross section of the flow channel, the distance between the foreign matter and the image pickup lens of the image sensor camera or the like becomes large. Due to the difference, it may not be possible to measure the foreign matter flowing outside the range of the depth of field of the lens, and it may not be possible to measure the total number of the foreign matter.

【0008】この問題を解決するために、流体流路の管
路の一部を偏平にする方法が特開平4−54441号に
記載されている。しかし、この方法では管路を偏平にす
ることによって管路の切口断面の断面積が小さくなり流
量が制限される場合があり、連続的に大量の流体を測定
対象とする場合には適用できない。流路を確保するため
偏平の管路の幅方向を大きくして切口断面の断面積を大
きくすることも可能であるが、それに伴って測定視野が
拡がり、イメージセンサカメラ等の観測視野の制約もあ
るために、例えば、その視野全域を観測するために複数
のイメージセンサカメラ等が必要になる場合がある。ま
た、偏平な検出部分の形状が管路前後の形状(例えば、
円筒形)や寸法と著しく異なる場合は、検出部分での渦
流等の流れの乱れが生じ、例えば検出位置を同じ異物が
何度も往復することがあり、このため重複してカウント
する等正確な測定ができない場合がある。また、偏平な
部分で流体中の大きな異物やスケール等によって管路が
詰まる虞れもある。
In order to solve this problem, a method of flattening a part of the conduit of the fluid flow path is described in Japanese Patent Application Laid-Open No. 4-54441. However, this method may not be applicable to a case where a large amount of fluid is continuously measured because the cross-sectional area of the cut cross section of the pipeline becomes small and the flow rate is limited by flattening the pipeline. It is possible to increase the width direction of the flat pipe to increase the cross-sectional area of the cut cross section to secure the flow path, but the measurement field of view also expands accordingly, and the observation field of view of the image sensor camera is also restricted. Therefore, for example, a plurality of image sensor cameras or the like may be required to observe the entire field of view. In addition, the shape of the flat detection part is the shape before and after the conduit (for example,
(Cylindrical shape) and dimensions are significantly different, flow turbulence such as eddy current may occur at the detection part, and for example, the same foreign matter may reciprocate repeatedly at the detection position. Measurement may not be possible. In addition, there is a risk that the pipe line may be clogged at the flat portion due to large foreign matter in the fluid, scale, or the like.

【0009】さらに、上記特開平4−54441号に、
「光学的手段(光の透過率、散乱等の測定)による方法
は被検流体そのものの透明度が低い場合、あるいはこの
流体と異物とのコントラストがはっきりしていない場合
には適用することができない。」と記載されているよう
に、モノマー等の有機液体、気泡、透明あるいは半透明
な粒子を水等の透明な流体中で測定する場合は光学的手
段を採用することが困難である。
Further, in the above-mentioned JP-A-4-54441,
"The method using optical means (measurement of light transmittance, scattering, etc.) cannot be applied when the fluid to be measured itself has low transparency or when the contrast between the fluid and foreign matter is not clear. As described above, it is difficult to employ an optical means when measuring an organic liquid such as a monomer, bubbles, transparent or translucent particles in a transparent fluid such as water.

【0010】さらにまた、上記した異物やスケール等に
よる管路の詰まりを解決するために、管路の一部の検査
部で、流路の切口断面を細長状とし、その検査部で流速
を速め、検査部の側壁面に付着した粘着物が高速で流れ
る液状物で押し流す方法が特開平6−43104号に記
載されている。しかし、この方法では水溶液中の液滴等
の壊れやすい異物がある場合には、細長状になった検出
部分で液滴等の分離、合一等が発生して正確な検出がで
きず、後工程へも影響を及ぼすことがある。また、流速
を速くするに従って異物の流れも速くなるため、イメー
ジセンサカメラ等の走査周期も速くする必要があるが、
走査周期の高速化には限界があるため、微小な異物が検
出できなくなるという虞れもある。
Furthermore, in order to solve the above-mentioned clogging of the conduit due to foreign matter, scale, etc., the cut cross section of the flow path is made elongated in a part of the inspection part of the conduit, and the flow velocity is accelerated in the inspection part. Japanese Patent Application Laid-Open No. 6-43104 discloses a method in which a sticky substance adhered to the side wall surface of an inspection unit is swept away by a liquid substance flowing at a high speed. However, with this method, if there are fragile foreign substances such as liquid droplets in the aqueous solution, separation and coalescence of the liquid droplets etc. occur at the elongated detection part and accurate detection cannot be performed. It may also affect the process. Also, as the flow velocity increases, the flow of foreign matter also increases, so it is necessary to increase the scanning cycle of the image sensor camera, etc.
Since there is a limit to speeding up the scanning cycle, there is a possibility that minute foreign matter cannot be detected.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記問題点
を解消し、透明な異物であっても検出ができ、さらには
異物が管路のどの部分にあっても検出可能な異物の検出
方法及び装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and can detect even transparent foreign matter, and further detect foreign matter which can be detected regardless of where in the pipeline. Methods and apparatus are provided.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
を解決するべく鋭意研究の結果、流体管路の一部に管路
の内部が観測できるように透明な可視部を設け、流体の
流れ方向とほぼ直角の方向からこの可視部の流路の幅全
体(以下、視野と呼ぶ)をカバーするように平行光(平
行な光束線)を照射するとにより透明な異物であっても
コントラストが鮮明となり検出可能となること、さらに
は被射界深度を大きくすることにより、光軸方向全域
(流体の厚さ全域)を監視し検出可能となることを見出
し、本発明を完成した。
Means for Solving the Problems As a result of intensive research to solve the above-mentioned problems, the present inventors have provided a transparent visible portion on a part of a fluid conduit so that the inside of the conduit can be observed. Even if it is a transparent foreign matter, the contrast is increased by irradiating parallel light (parallel luminous flux lines) so as to cover the entire width of this visible channel (hereinafter called the field of view) from a direction almost perpendicular to the flow direction of The present invention has been completed based on the finding that it becomes clear and can be detected, and that the entire region in the optical axis direction (the entire thickness of the fluid) can be monitored and detected by increasing the depth of field.

【0013】即ち、請求項1記載の発明は、流体管路に
透明な可視部を設け、該可視部に流体の流れ方向とほぼ
直角の方向から平行光を照射し、前記可視部を通過する
流体と該流体中に含まれる異物の光学的差異を受光素子
で検出することを特徴とする流体中の異物検出方法を提
供する。
That is, according to the first aspect of the invention, a transparent visible portion is provided in the fluid conduit, and the visible portion is irradiated with parallel light from a direction substantially perpendicular to the flow direction of the fluid and passes through the visible portion. Provided is a method for detecting foreign matter in a fluid, which comprises detecting an optical difference between the fluid and the foreign matter contained in the fluid with a light receiving element.

【0014】請求項2記載の発明は、上記請求項1記載
の発明において、被射界深度の大きい撮像レンズを用い
ることを特徴とする。
The invention described in claim 2 is characterized in that, in the invention described in claim 1, an image pickup lens having a large depth of field is used.

【0015】請求項3記載の発明は、流体管路に透明な
可視部を設け、該可視部に流体の流れ方向とほぼ直角の
方向から平行光を照射する手段を設けるとともに、該流
体を透過した光を撮像することにより、該流体中に含ま
れる異物の光学的差異を検出する検出手段を設けたこと
を特徴とする流体中の異物検出装置を提供する。
According to a third aspect of the present invention, a transparent visible portion is provided in the fluid conduit, a means for irradiating the visible portion with parallel light from a direction substantially perpendicular to the flow direction of the fluid is provided, and the fluid is transmitted. There is provided a foreign matter detecting device in a fluid, which is provided with a detecting means for detecting an optical difference of the foreign matter contained in the fluid by capturing the imaged light.

【0016】請求項4記載の発明は、上記請求項3記載
の発明において、撮像手段が被射界深度の大きな撮像レ
ンズからなることを特徴とする。
A fourth aspect of the invention is characterized in that, in the third aspect of the invention, the image pickup means comprises an image pickup lens having a large depth of field.

【0017】[0017]

【作用】指向性の高い平行光を用いることにより、例え
ば水に含まれる気泡等の透明な異物であっても光の屈折
が一層顕著となり、その結果、コントラストが格段に鮮
明となり(受光素子には気泡が黒く、水が白く認識され
る)、異物としての検出が可能となる。また、被射界深
度を大きくすることにより、光軸方向全域(流体の厚さ
全域)の監視が可能となり、液体の表面付近の異物も、
また深度の大きい部分の異物も同時に検出することが可
能となる。
By using parallel light having a high directivity, even if a transparent foreign substance such as bubbles contained in water is used, the refraction of light becomes more remarkable, and as a result, the contrast becomes remarkably clear. The bubbles are recognized as black and the water is recognized as white), and it can be detected as a foreign substance. Also, by increasing the depth of field, it is possible to monitor the entire area in the optical axis direction (the entire thickness of the fluid), and foreign matter near the surface of the liquid
Further, it becomes possible to simultaneously detect foreign matter in a portion having a large depth.

【0018】[0018]

【実施例】本発明の異物検出方法及び装置には、流体と
均一に混ざらないもの、無色のもの、着色しているも
の、透明度の低いもの、粘度の低いもの、粘度の高いも
の、等のいずれも適用できる。
EXAMPLES The foreign matter detection method and apparatus of the present invention include those that do not mix uniformly with a fluid, those that are colorless, those that are colored, those that have low transparency, those that have low viscosity, those that have high viscosity, etc. Both are applicable.

【0019】水等の透明度が高い流体中において透明度
が高い異物は、背景との光学的差異が不明瞭(コントラ
ストが低い)になるため、透明度が高い異物は光学的手
段による検出は通常適用できないことは上述の特開平4
−54441号に記載の通りである。しかし、その透明
な異物の屈折率が流体の屈折率と異なる場合、例えば水
を流体とする系で、異物が気泡であったり、モノマー等
の水に不溶の有機溶剤である場合は、可視部を通過した
光を観測すると流体と透明な異物とのコントラストに差
が生じる。この透過光を観測することにより気泡、モノ
マー等有機液体のような透明な異物は、光を散乱、屈
折、反射して背景である水等に対してイメージセンサカ
メラ等が受ける光量が減少または増大する結果、センサ
(受光素子)には流体の背景に比べて暗くまたは明るく
認識され、異物と流体との間に光学的差異を生じる。
Foreign matter having high transparency in a fluid having high transparency such as water has an unclear optical difference from the background (low contrast). Therefore, foreign matter having high transparency cannot usually be detected by optical means. That is, Japanese Patent Laid-Open No.
No. 54441. However, when the refractive index of the transparent foreign matter is different from that of the fluid, for example, in a system using water as the fluid, the foreign matter is a bubble or an organic solvent insoluble in water such as a monomer, the visible portion When the light passing through is observed, there is a difference in the contrast between the fluid and the transparent foreign matter. By observing this transmitted light, transparent foreign substances such as organic liquids such as bubbles and monomers scatter, refract, and reflect light, and the amount of light received by the image sensor camera, etc. against the background water etc. decreases or increases. As a result, the sensor (light receiving element) recognizes it as darker or brighter than the background of the fluid, and causes an optical difference between the foreign matter and the fluid.

【0020】この場合、照明装置には安価で輝度が安定
している蛍光灯が一般的に用いられるが、蛍光灯照明に
よる光線は指向性がない拡散照明であるため、透明な異
物は光学的濃度が緩やかな分布となり、結果的にコント
ラストが充分に明確にならない。例えば水中の気泡を拡
散照明で観測すると、光学濃度に分布があるので気泡の
立体的な像となるが、コントラストは不明瞭であるため
水と気泡の光学的差異を検出することが困難である。こ
れに対し、本発明における平行光(コリメータレンズ等
で集光した平行度の高い光線束)で照明する場合には、
拡散照明よりも気泡等の透明な異物によって光の屈折等
がより顕著になり、コントラストが格段に明確になり
(受光素子には気泡が黒く、水が白く認識される)、気
泡等の透明な異物も検出可能になる。
In this case, a fluorescent lamp which is inexpensive and has stable brightness is generally used for the illuminating device. However, since the light beam by the fluorescent lamp illumination is a diffused illumination having no directivity, transparent foreign matter is optically reflected. The density has a gentle distribution, and as a result, the contrast is not sufficiently clear. For example, when observing bubbles in water with diffuse illumination, the images have a three-dimensional image because of the optical density distribution, but the contrast is unclear and it is difficult to detect the optical difference between water and bubbles. . On the other hand, in the case of illuminating with parallel light (a bundle of rays with high parallelism condensed by a collimator lens etc.) in the present invention,
The refraction of light becomes more noticeable by transparent foreign substances such as bubbles than diffused illumination, and the contrast becomes significantly clear (the light receiving element recognizes black bubbles and white water), and transparent bubbles such as bubbles. Foreign matter can also be detected.

【0021】また、平行光を用いることにより拡散照明
よりも被射界深度を深くすることができ、光軸方向全域
(流体の厚さ全域)を同時に観測するために有効な手段
である。
Further, by using parallel light, the depth of field can be made deeper than that of diffuse illumination, and this is an effective means for simultaneously observing the entire region in the optical axis direction (the entire thickness of the fluid).

【0022】光軸方向全域(流体の厚さ全域)を同時に
観測するには、被射界深度を大きくする方法が有効であ
る。一般に、被射界深度を深くする手段として、光学系
のF値を大きくする(例えば、写真レンズでは絞りを絞
り込む)、光学系の焦点距離を短くする、ピントを遠く
に調整すること等が挙げられる。これらの中で、開口絞
りを系の像側焦点に配置してF値を大きくし、被射界深
度を深くする方法が好適である。この場合、F値に逆比
例して光学系の解像力は低下して回折ボケによって像の
鮮鋭さが損なわれる場合があるので、検出しようとする
最小の対象(異物)が観測できる範囲内においてF値を
大きくすることが好ましい。
A method of increasing the depth of field is effective in simultaneously observing the entire region in the optical axis direction (the entire thickness of the fluid). Generally, as means for increasing the depth of field, increasing the F value of the optical system (for example, narrowing the diaphragm in a photographic lens), shortening the focal length of the optical system, adjusting the focus far, etc. To be Among these, a method of arranging an aperture stop at the image side focal point of the system to increase the F value and deepen the depth of field is preferable. In this case, the resolving power of the optical system decreases in inverse proportion to the F value, and the image sharpness may be impaired due to diffraction blurring. Therefore, in the range where the minimum target (foreign matter) to be detected can be observed, It is preferable to increase the value.

【0023】流路内の可視部を通過する流体と流体に含
まれる異物の光学的差異を検出する撮像手段としては、
CCD、MOS型、撮像管等を用いたイメージセンサカ
メラ等が挙げられるが、高速性、高分解能、低価格等の
面で1次元CCDセンサが好適である。
As the image pickup means for detecting the optical difference between the fluid passing through the visible portion in the channel and the foreign matter contained in the fluid,
An image sensor camera using a CCD, a MOS type, an image pickup tube, or the like can be used, but a one-dimensional CCD sensor is preferable in terms of high speed, high resolution, low cost, and the like.

【0024】可視部の材質は透明であること、主に近赤
外、可視領域の波長の光に対して透過率が高いこと、化
学的に変化を受けないもの、また、摩耗しにくく疵がつ
きにくいものがよく、衛生上安全なものが好ましい。具
体的には、硬質ガラス、サファイヤガラス、アクリル樹
脂等の透明プラスチックを用いることができるが、スケ
ールの付着しにくさ、疵のつきにくさ、耐熱性、耐腐食
性等の点から硬質ガラス、サファイヤガラスが好適であ
る。
The material of the visible portion is transparent, has a high transmittance for light of wavelengths in the near infrared and visible regions, is not chemically changed, and is resistant to abrasion and has flaws. Those that are hard to stick are good, and those that are safe in terms of hygiene are preferable. Specifically, hard glass, sapphire glass, transparent plastics such as acrylic resin can be used, but hard to adhere scale, hard to scratch, heat resistance, hard glass in terms of corrosion resistance, etc. Sapphire glass is preferred.

【0025】また、可視部は可視部の流路内面において
流体への抵抗を生じせしめないよう流路に配置し、可視
部の内部は流体の流れに過度の乱れがないように内部形
状を調節する。過度に乱れがあると異物を重複して検出
したり、異物の大きさの判定を誤る等の事態を生じるか
らである。流体の流れに乱れがないようにするには、検
出部分前後の管路の内部形状や断面積を同一にするが理
想的である。しかし、管路断面は通常円筒形が多く、例
えば、これに円筒形のガラス管を接続して可視部とした
場合、円筒形のガラス管を通過した光は屈折するため、
管内の異物等の形状が歪んで観測されることになる。そ
こで、可視部の検出視野の部分については、切口断面が
正方形または長方形の矩形状にするのが好ましい。
The visible portion is arranged in the flow passage so as not to cause resistance to the fluid on the inner surface of the flow passage of the visible portion, and the internal shape of the visible portion is adjusted so that the fluid flow is not excessively disturbed. To do. This is because if there is excessive disturbance, foreign matter may be detected redundantly, and the size of the foreign matter may be erroneously determined. In order to prevent turbulence in the fluid flow, it is ideal to make the internal shapes and cross-sectional areas of the conduits before and after the detection portion the same. However, the cross-section of the conduit is usually cylindrical, and for example, when a cylindrical glass tube is connected to this to make it visible, the light passing through the cylindrical glass tube is refracted.
The shape of foreign matter in the tube will be distorted and observed. Therefore, it is preferable that the section of the detection field of view in the visible portion has a rectangular cross section.

【0026】金属やプラスチック製の円筒状の管路と、
ガラス等からなる可視部を接続する際に、ガラス等から
なる可視部の両端の形状も円筒状にすることにより流体
の漏れがないようにシールすることが容易で、かつシー
ルのための締め付けにより可視部の破損を起こりにくく
することができる。従って、可視部は両端の円筒ガラス
部と観測を行うための矩形ガラス部を滑らかな形状で接
続した形状とするのが好ましい。また、ガラスからなる
可視部を金属、プラスチック等から作られた枠状のサポ
ート内に収納し、取扱いを容易にするとともに、可視部
の破損を避けることが好ましい。
A cylindrical pipe made of metal or plastic,
When connecting the visible part made of glass, etc., it is easy to seal the end part of the visible part made of glass, etc., so that there is no fluid leakage. It is possible to prevent the visible part from being damaged. Therefore, it is preferable that the visible portion has a shape in which the cylindrical glass portions at both ends and the rectangular glass portions for observation are connected in a smooth shape. Further, it is preferable that the visible portion made of glass is housed in a frame-shaped support made of metal, plastic or the like to facilitate handling and avoid damage to the visible portion.

【0027】以下、本発明の実施例を図1〜6に基づい
て具体的に説明する。図1は本発明の異物検出装置の概
要図、図2は図1におけるY−Y断面図、図3は要部拡
大図である。これらの図において、可視部Vは矩形ガラ
ス部3の両端を円筒ガラス部2で滑らかに接続した形状
からなり、該円筒ガラス部2端部を管路1に接続してな
る。4は光源(ハロゲンランプ)、5は光源4からの光
線束を平行光9にするコリメータ、6はZ軸方向の流体
厚さ全域及びY軸方向の視野全域を同時に観測可能にす
るためのレンズ群で構成される撮像レンズ、7は1次元
CCDセンサ(受光素子)であり、1次元CCDセンサ
7は図3のA−B間を走査する。1次元CCDセンサ7
は入射光の強度に比例した、図4に示すようなアナログ
信号を出力し、信号処理装置11に入力する。信号処理
装置11は図4のアナログ信号を演算処理し、流体中の
異物の個数、形状、大きさ等を検出する。
An embodiment of the present invention will be specifically described below with reference to FIGS. FIG. 1 is a schematic view of a foreign matter detection device of the present invention, FIG. 2 is a sectional view taken along line YY in FIG. 1, and FIG. In these figures, the visible portion V has a shape in which both ends of the rectangular glass portion 3 are smoothly connected by the cylindrical glass portion 2, and the end portions of the cylindrical glass portion 2 are connected to the conduit 1. Reference numeral 4 is a light source (halogen lamp), 5 is a collimator for collimating the light flux from the light source 4 into parallel light 9, and 6 is a lens for simultaneously observing the entire fluid thickness in the Z-axis direction and the entire visual field in the Y-axis direction. An imaging lens composed of a group, 7 is a one-dimensional CCD sensor (light receiving element), and the one-dimensional CCD sensor 7 scans between A and B in FIG. One-dimensional CCD sensor 7
Outputs an analog signal proportional to the intensity of incident light as shown in FIG. 4 and inputs it to the signal processing device 11. The signal processing device 11 arithmetically processes the analog signal of FIG. 4 to detect the number, shape, size, etc. of foreign matter in the fluid.

【0028】図3のA−B間を走査したアナログ信号に
ついて説明すると、走査方向(図1のY軸方向)でマス
クスリット8の幅に比例した立ち上り(透過照明光を受
けて明るい状態)幅の信号波形になり、A−B間を横切
った異物10によっての立ち下りE(透過照明光が一部
遮られて暗い状態)が発生し、それを適当な閾値Fでカ
ットして異物の大きさを検出する。矩形ガラス部の内壁
部でCとDのように若干の立ち下りが生じるが、これは
該矩形部の直角度を高く、かつ各対向面との平行度を高
くし、光学系のアラインメントを厳密に調整することに
より、信号処理的に無視できるレベルにすることが可能
である。
An analog signal scanned between A and B in FIG. 3 will be described. A rising width (a bright state when receiving transmitted illumination light) proportional to the width of the mask slit 8 in the scanning direction (Y-axis direction in FIG. 1). And a trailing edge E (a dark state in which the transmitted illumination light is partially blocked) occurs due to the foreign substance 10 that crosses between A and B, and is cut at an appropriate threshold F to increase the size of the foreign substance. To detect A slight fall like C and D occurs on the inner wall part of the rectangular glass part, but this causes the rectangularity of the rectangular part to be high and the parallelism with each facing surface to be high, and the alignment of the optical system to be exact. It is possible to adjust the level to a level that can be ignored in signal processing.

【0029】可視部Vの好ましい一例を図5、図6に示
す。図6に示すように、両端の円筒ガラス部2と観測部
の矩形ガラス部3を滑らかに形状変化するように接続し
たガラス部品(以下、ガラスセルと呼ぶ)を用い、該ガ
ラスセルCを、図5に示す如く、金属製やプラスチック
製のフレームからなるサポート13内に収納し、パッキ
ング14を介してジョイナー12により管路1に接続さ
れている。8はマスクスリットである。
A preferred example of the visible portion V is shown in FIGS. As shown in FIG. 6, a glass part (hereinafter referred to as a glass cell) in which a cylindrical glass part 2 at both ends and a rectangular glass part 3 of an observation part are connected so as to smoothly change their shape is used, and the glass cell C is As shown in FIG. 5, it is housed in a support 13 made of a metal or plastic frame and is connected to the conduit 1 by a joiner 12 via a packing 14. 8 is a mask slit.

【0030】光学系は、図7、図8に示す如く、光軸1
8にほぼ平行な光の照明で、受光部は開口絞り15を系
の像側焦点面にセットし、物体側にテレセントリックな
系にすることにより、被射界深度を大きくできるような
系に構成されている。即ち、図7において、物体平面X
1、X2、X3上の同寸法の像17が、像平面上で同寸
法に結像される。このことは、図8に示すように、流体
の厚みdのどの位置に異物10があっても、異物の像の
大きさが変化せずに結像され、また像が鮮明に結像でき
るように構成されていることを意味する。
The optical system has an optical axis 1 as shown in FIGS.
The light receiving part is configured to be a system that can increase the depth of field by setting the aperture stop 15 at the image side focal plane of the system and making it telecentric on the object side by illumination of light substantially parallel to 8 Has been done. That is, in FIG. 7, the object plane X
Images 17 having the same size on 1, X2, and X3 are formed to have the same size on the image plane. This means that, as shown in FIG. 8, regardless of the position of the fluid thickness d where the foreign matter 10 is formed, the image of the foreign matter is formed without changing its size, and the image can be clearly formed. It means that it is composed of.

【0031】以下、本発明で採用した光学系の効果を確
認するために、平行光と拡散光の照明条件の違いによる
被射界深度の比較、本発明の撮像レンズ(以下、大被射
界深度光学系と呼ぶ)と接写用カメラレンズを用いた場
合の被射界深度の比較を行った。さらに、本発明装置の
性能評価についても実施した。
Hereinafter, in order to confirm the effect of the optical system adopted in the present invention, the depth of field is compared by the difference in the illumination condition of the parallel light and the diffused light, and the image pickup lens of the present invention (hereinafter referred to as the large field of view). The depth of field was compared using a depth optics) and a close-up camera lens. Furthermore, performance evaluation of the device of the present invention was also performed.

【0032】実験例1(平行光と拡散光の照明条件の比
較) 図1〜図3において、受光素子7として2次元CCDを
用い、光学系6には接写用カメラレンズ(100mmF
2.8)を用いて倍率を−1.0倍に設定し、照明部に
コリメータ5を用いた場合(平行光)と、コリメータ5
を除去して同位置に拡散板を設置した場合(拡散光)に
ついて、照明条件の違いによる被射界深度の比較を行っ
た。
Experimental Example 1 (Comparison of Illumination Conditions of Parallel Light and Diffused Light) In FIGS. 1 to 3, a two-dimensional CCD is used as the light receiving element 7, and the optical system 6 has a close-up camera lens (100 mmF).
2.8) is used to set the magnification to -1.0 and the collimator 5 is used for the illumination unit (parallel light), and the collimator 5 is used.
When the diffuser was installed at the same position after removing the (diffused light), the depth of field was compared by different illumination conditions.

【0033】被射界深度の比較は、可視部の内部を液封
し、可視部の中に直径が0.05〜0.1mmのガラスビ
ーズ及び気泡を封入して静止させ、図1の矩形ガラス部
3の上面に気泡、下面にガラスビーズを静止させ、流体
の厚みに相当する矩形ガラス部3の内部の寸法(以下、
流体の厚みと呼ぶ)を段階的に変化させ、上面の気泡と
下面のガラスビーズが同時に観測できる範囲を被射界深
度として測定する方法で行った。上記条件で測定した結
果、被射界深度は、拡散光照明では1.6mm、平行光照
明では2.2mmであり、平行光照明が被射界深度を深く
する上で有利であることが確認された。
For comparison of the depth of field, the inside of the visible portion was liquid-sealed, and glass beads and bubbles having a diameter of 0.05 to 0.1 mm were enclosed in the visible portion and allowed to stand still. With the air bubbles on the upper surface of the glass part 3 and the glass beads on the lower surface, the internal dimension of the rectangular glass part 3 corresponding to the thickness of the fluid (hereinafter,
The thickness of the fluid) is changed stepwise, and the range in which the bubbles on the upper surface and the glass beads on the lower surface can be observed simultaneously is measured as the depth of field. As a result of measuring under the above conditions, the depth of field was 1.6 mm for diffuse light illumination and 2.2 mm for parallel light illumination, and it was confirmed that parallel light illumination is advantageous in deepening the depth of field. Was done.

【0034】実験例2(大被射界深度光学系と接写用カ
メラレンズの比較) 実験例1で用いた装置において、光学系6に100mmF
2.8の接写用カメラレンズに代えて図7、図8の大被
射界深度光学系(F値:約40)装置を使用して被射界
深度の比較を行った。被射界深度の比較は上記実験例1
と同様の方法で行い、コリメータ5を用いた平行光の照
明条件下と、及びコリメータ5を除去して同位置に拡散
板を設置した拡散光の照明条件下の両方について評価し
た。
Experimental Example 2 (Comparison between a large depth of field optical system and a close-up camera lens) In the apparatus used in Experimental Example 1, the optical system 6 has 100 mmF.
The depth of field was compared using the large depth of field optical system (F value: about 40) device of FIGS. 7 and 8 instead of the close-up camera lens of 2.8. For comparison of depth of field, see Experimental Example 1 above.
The evaluation was performed in the same manner as above under both the illumination conditions of parallel light using the collimator 5 and the illumination conditions of diffused light in which the collimator 5 was removed and a diffusion plate was installed at the same position.

【0035】その結果、平行光の照明条件下での被射界
深度は20mmであり、拡散光の照明条件下での被射界深
度は14mmであった。上記の結果から、照明として平行
光を用い、かつF値の大きな大被射界深度光学系を用い
ることにより被射界深度を大きくできることが確認され
た。
As a result, the depth of field under the illumination condition of the parallel light was 20 mm, and the depth of field under the illumination condition of the diffused light was 14 mm. From the above results, it was confirmed that the depth of field can be increased by using the parallel light as the illumination and by using the large depth of field optical system having a large F value.

【0036】実験例3(本発明装置の性能評価) 図1〜図3、図5〜図8に示した本発明装置(照明:平
行光、大被射界深度光学系のF値:約40)の測定精度
を検証するために、寸法(0.05〜0.5mm)及び形
状(球状、楕円球状)が既知の微小対象(ポリスチレン
ラテックス、マイクロ球レンズ)を異物のモデルとして
流体に混入させて可視部を通過させ、図1〜図3に示し
た装置により、異物の個数、大きさ(最大径、面積)、
形状をオンラインで測定した。装置の下流側には、測定
した物体を貯槽に受け入れて異物を静止させ、2次元C
CDカメラにより、異物の個数、大きさ(最大径、面
積)、形状を観測し、本発明装置の測定データと照合し
て測定精度、及び再現性を評価した。
Experimental Example 3 (Performance evaluation of the device of the present invention) The device of the present invention shown in FIGS. 1 to 3 and 5 to 8 (illumination: parallel light, F value of large depth of field optical system: about 40) In order to verify the measurement accuracy of), a minute object (polystyrene latex, microsphere lens) of known size (0.05 to 0.5 mm) and shape (spherical, elliptical) is mixed into the fluid as a model of foreign matter. Through the visible part, and by the device shown in FIGS. 1 to 3, the number and size (maximum diameter, area) of the foreign matter,
The shape was measured online. On the downstream side of the device, the measured object is received in the storage tank to make the foreign matter stand still, and the two-dimensional C
The number, size (maximum diameter, area) and shape of the foreign matter were observed with a CD camera, and the measurement accuracy and reproducibility were evaluated by collating with the measurement data of the device of the present invention.

【0037】上記条件で異物の個数について、直径0.
05mm以上のものは全数確実に測定でき、寸法測定精度
は±0.007mm(再現性:σ=0.3%以内)であ
り、また1次元CCDセンサの時系列信号を2値化表示
した図形と2次元CCDカメラの観測像とを照合し、形
状についても認識できることを確認した。
Under the above-mentioned conditions, the number of foreign matters is 0.
100 mm or more can be reliably measured, and the dimension measurement accuracy is ± 0.007 mm (reproducibility: within σ = 0.3%), and the time series signals of the one-dimensional CCD sensor are binarized and displayed. It was confirmed that the shape could be recognized by collating with the observation image of the two-dimensional CCD camera.

【0038】以下、実験例3で用いた本発明装置を使用
して、実際に流体中の異物を検出した例を示す。
An example of actually detecting foreign matter in a fluid by using the device of the present invention used in Experimental Example 3 will be shown below.

【0039】検出例1〔流水中の異物(気泡、ガラスビ
ーズ)の検出〕 微量のガラスビーズと気泡を含む透明な水溶液の移送配
管の途中に本発明の異物検出装置を取り付けてオンライ
ン測定を行った。内径φ12mmの配管の途中に可視部を
装着し、可視部における流体の厚み(図1Z軸方向)は
12mm、可視部における流体の幅(図1Y軸方向)は1
2mm、図1のマスクスリットの幅(図1Y軸方向)は1
4mm、可視部を通過する流体の線速度(図1X軸方向)
は35mm/sec 、受光素子は5000ビットの1次元C
CDで走査周期が0.5msec 、受光光学系の倍率は−
1.0倍の条件により測定した。その結果、可視部を通
過する直径0.05〜5mmの大きさの異物(気泡、ガラ
スビーズ)に対して、流体の上面部を通過する気泡と流
体下面部を通過するガラスビーズが全数確実に検出さ
れ、異物の個数、大きさ、形状が測定できることが確認
された。
Detection Example 1 [Detection of foreign matter (air bubbles, glass beads) in running water] The foreign matter detection device of the present invention is attached in the middle of a transfer pipe for a transparent aqueous solution containing a small amount of glass beads and air bubbles to perform online measurement. It was A visible part is installed in the middle of a pipe with an inner diameter of 12 mm, the thickness of the fluid in the visible part (Z axis direction in Fig. 1) is 12 mm, and the width of the fluid in the visible part (Y axis direction in Fig. 1) is 1.
2 mm, the width of the mask slit in FIG. 1 (Y axis direction in FIG. 1) is 1
4 mm, linear velocity of fluid passing through visible part (X axis direction in Fig. 1)
Is 35 mm / sec, and the photo detector is 5000-bit one-dimensional C
The scanning cycle is 0.5 msec for a CD, and the magnification of the light receiving optical system is-
It was measured under the condition of 1.0 times. As a result, with respect to foreign matters (air bubbles, glass beads) having a diameter of 0.05 to 5 mm that pass through the visible portion, all the bubbles that pass through the upper surface of the fluid and the glass beads that pass through the lower surface of the fluid are reliably It was confirmed that it was possible to measure the number, size, and shape of foreign matter.

【0040】検出例2〔有機溶剤中の異物(気泡、熱変
成スケール、プラスチック摩耗片)の検出〕 脱泡処理した有機溶剤の移送配管の途中に、本発明の異
物検出装置を取り付けた。この有機溶媒中には、微量の
気泡、有機溶剤が部分的に過剰に加熱されて発生するス
ケール、ギヤポンプのパッキンの摩耗片等の異物が含ま
れており、配管の途中のフィルタで除去しきれない異物
が可視部を通過することがある状況とした。流体は茶褐
色透明であり、粘度は300cp(at80℃)であった。
内径φ10mm移送配管に可視部を装着し、可視部におけ
る流体の厚み(図1Z軸方向)は10mm、可視部におけ
る流体の幅(図1Y軸方向)は15mm、図1のマスクス
リットの幅(図1Y軸方向)は17mm、可視部を通過す
る流体の線速度(図1X軸方向)は25mm/sec 、受光
素子は5000ビットの1次元CCDで走査周期が0.
5msec の条件により測定した。その結果、可視部を通
過する直径0.1〜10mmの大きさの異物(気泡、熱変
成スケール、プラスチック摩耗片等)が全数確実に検出
され、異物の個数、大きさ、形状が測定できることが確
認された。
Detection Example 2 [Detection of foreign matter (air bubbles, heat-modified scale, plastic wear pieces) in organic solvent] The foreign matter detecting apparatus of the present invention was attached in the middle of the degassed organic solvent transfer pipe. This organic solvent contains a small amount of bubbles, foreign matter such as scale generated when the organic solvent is partially heated excessively, and wear debris of the gear pump packing, which cannot be completely removed by a filter in the middle of the pipe. It was set as the situation where there is no foreign matter passing through the visible area. The fluid was dark brown and transparent, and the viscosity was 300 cp (at 80 ° C.).
Inner diameter φ10 mm The visible part is attached to the transfer pipe, the thickness of the fluid in the visible part (Z axis direction in FIG. 1) is 10 mm, the width of the fluid in the visible part (Y axis direction in FIG. 1) is 15 mm, and the mask slit width in FIG. 17 mm in the 1Y axis direction, 25 mm / sec in the linear velocity of the fluid passing through the visible portion (X axis direction in FIG. 1), the light receiving element is a 5000-bit one-dimensional CCD, and the scanning period is 0.
It was measured under the condition of 5 msec. As a result, it is possible to reliably detect all foreign matters (air bubbles, heat-metamorphic scales, plastic wear pieces, etc.) with a diameter of 0.1 to 10 mm that pass through the visible part, and to measure the number, size, and shape of foreign matters. confirmed.

【0041】[0041]

【発明の効果】以上から明らかなように、本発明は下記
の如き優れた特徴を有する。 (1)流体の配管(管路)の途中に流れを乱さない可視
部を設置することにより、液滴等の壊れやすい異物を壊
さずに検出でき、さらに可視部での渦流等の流れの乱れ
を発生させないので重複して検出する等のミスを防止
し、高精度に検出することができる。 (2)密閉系で流体中の異物の検出ができるので、流体
に物性変化が生じることがなく、衛生的である。 (3)流体と流体中の異物との間に、ある程度の屈折率
の差があれば、透明もしくは不透明の固体、液体、気体
のいずれの異物も検出できる。 (4)流体中の異物の数量が微量でも検出でき、また直
径0.05mm程度の微小な異物も正確に検出できる。 (5)平行光照明及び大被射界深度光学系を採用するこ
とにより、矩形ガラス部内部の流体の厚みと幅の全域が
同時に観測できるため、可視部を通過する異物を全数も
れなく検出できる。 (6)異物を検出した受光素子の出力信号を処理するこ
とにより、異物の個数、大きさ、形状等を認識すること
ができる。
As is apparent from the above, the present invention has the following excellent features. (1) By installing a visible part that does not disturb the flow in the middle of the fluid pipe (pipe), it is possible to detect fragile foreign substances such as liquid droplets without breaking them, and further turbulence of the flow such as vortex in the visible part. Since it does not occur, mistakes such as duplicate detection can be prevented and detection can be performed with high accuracy. (2) Since the foreign matter in the fluid can be detected by the closed system, the physical property of the fluid does not change and it is hygienic. (3) If there is a certain degree of difference in the refractive index between the fluid and the foreign matter in the fluid, any foreign matter such as a transparent or opaque solid, liquid, or gas can be detected. (4) It is possible to detect even a small amount of foreign matter in the fluid, and it is possible to accurately detect minute foreign matter having a diameter of about 0.05 mm. (5) By adopting the parallel light illumination and the large depth-of-field optical system, the entire thickness and width of the fluid inside the rectangular glass portion can be observed at the same time, so that it is possible to detect all foreign substances passing through the visible portion. (6) By processing the output signal of the light receiving element that has detected the foreign matter, the number, size, shape, etc. of the foreign matter can be recognized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異物検出装置の実施例を示す概要図で
ある。
FIG. 1 is a schematic view showing an embodiment of a foreign matter detection device of the present invention.

【図2】図1のY−Y断面図である。FIG. 2 is a sectional view taken along line YY of FIG.

【図3】図1の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 1;

【図4】受光素子の一走査方の出力信号の一例を示す。FIG. 4 shows an example of an output signal of one scanning method of a light receiving element.

【図5】可視部の一例を示す概要図である。FIG. 5 is a schematic diagram showing an example of a visible portion.

【図6】ガラスセルの一例を示す斜視図である。FIG. 6 is a perspective view showing an example of a glass cell.

【図7】本発明に用いられる光学系の一例を示す概要図
である。
FIG. 7 is a schematic diagram showing an example of an optical system used in the present invention.

【図8】図7の光学系の実施例を示す概要図である。8 is a schematic diagram showing an embodiment of the optical system of FIG.

【符号の説明】[Explanation of symbols]

1 管路 2 円筒ガラス部 3 矩形ガラス部 4 光源 5 コリメータ 6 光学系(対物レン
ズ) 7 受光素子 8 マスクスリット 9 平行光 10 異物 11 信号処理装置 12 ジョイナー 13 サポート 14 パッキング 15 開口絞り 16 対物レンズ 17 物体平面 18 光軸 19 結像
1 Pipeline 2 Cylindrical glass part 3 Rectangular glass part 4 Light source 5 Collimator 6 Optical system (objective lens) 7 Light receiving element 8 Mask slit 9 Parallel light 10 Foreign matter 11 Signal processing device 12 Joiner 13 Support 14 Packing 15 Aperture stop 16 Objective lens 17 Object plane 18 Optical axis 19 Imaging

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体管路に透明な可視部を設け、該可視
部に流体の流れ方向とほぼ直角の方向から平行光を照射
し、前記可視部を通過する流体と該流体中に含まれる異
物の光学的差異を受光素子で検出することを特徴とする
流体中の異物検出方法。
1. A fluid visible line is provided with a transparent visible portion, and the visible portion is irradiated with parallel light from a direction substantially perpendicular to the flow direction of the fluid, and the fluid passing through the visible portion and the fluid are contained in the fluid. A method for detecting foreign matter in a fluid, which comprises detecting an optical difference of the foreign matter by a light receiving element.
【請求項2】 受光素子の撮像レンズとして、被射界深
度の大きな撮像レンズを用いる請求項1記載の異物検出
方法。
2. The foreign matter detecting method according to claim 1, wherein an imaging lens having a large depth of field is used as the imaging lens of the light receiving element.
【請求項3】 流体管路に透明な可視部を設け、該可視
部に流体の流れ方向とほぼ直角の方向から平行光を照射
する手段を設けるとともに、該流体を透過した光を撮像
することにより、該流体中に含まれる異物の光学的差異
を検出する検出手段を設けたことを特徴とする流体中の
異物検出装置。
3. A transparent visible portion is provided in the fluid conduit, means for irradiating the visible portion with parallel light from a direction substantially perpendicular to the flow direction of the fluid, and imaging the light transmitted through the fluid. Therefore, the foreign matter detecting device in the fluid is provided with a detecting means for detecting an optical difference of the foreign matter contained in the fluid.
【請求項4】 撮像手段が被射界深度の大きな撮像レン
ズからなる請求項3記載の異物検出装置。
4. The foreign matter detecting device according to claim 3, wherein the image pickup means comprises an image pickup lens having a large depth of field.
JP6179361A 1994-07-06 1994-07-06 Method and apparatus for detecting foreign matter Withdrawn JPH0821798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6179361A JPH0821798A (en) 1994-07-06 1994-07-06 Method and apparatus for detecting foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6179361A JPH0821798A (en) 1994-07-06 1994-07-06 Method and apparatus for detecting foreign matter

Publications (1)

Publication Number Publication Date
JPH0821798A true JPH0821798A (en) 1996-01-23

Family

ID=16064514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6179361A Withdrawn JPH0821798A (en) 1994-07-06 1994-07-06 Method and apparatus for detecting foreign matter

Country Status (1)

Country Link
JP (1) JPH0821798A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340808A (en) * 2001-05-21 2002-11-27 Dai Ichi Seiyaku Co Ltd Detection method of in-liquid foreign matter
JP2008102027A (en) * 2006-10-19 2008-05-01 Denso Corp Foreign matter detection device and foreign matter detection method
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
JP2008238759A (en) * 2007-03-29 2008-10-09 Sharp Corp Bubble detecting device, bubble detecting system, and ink bag
KR102259123B1 (en) * 2020-11-16 2021-06-01 (주)키웍스 Vision inspection apparatus and method for controlling thereof
WO2024116482A1 (en) * 2022-12-02 2024-06-06 株式会社日本製鋼所 Detection system and detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340808A (en) * 2001-05-21 2002-11-27 Dai Ichi Seiyaku Co Ltd Detection method of in-liquid foreign matter
JP4580122B2 (en) * 2001-05-21 2010-11-10 第一三共株式会社 Detecting foreign matter in liquid
JP2008102027A (en) * 2006-10-19 2008-05-01 Denso Corp Foreign matter detection device and foreign matter detection method
JP2008180643A (en) * 2007-01-25 2008-08-07 Kyokko Denki Kk Liquid detection sensor
JP2008238759A (en) * 2007-03-29 2008-10-09 Sharp Corp Bubble detecting device, bubble detecting system, and ink bag
KR102259123B1 (en) * 2020-11-16 2021-06-01 (주)키웍스 Vision inspection apparatus and method for controlling thereof
WO2024116482A1 (en) * 2022-12-02 2024-06-06 株式会社日本製鋼所 Detection system and detection method

Similar Documents

Publication Publication Date Title
US6153873A (en) Optical probe having an imaging apparatus
CN204116189U (en) The imaging of intelligent optical miniflow and detection system
CN102792148B (en) Flexible sample container
EP0118896B1 (en) Particle counting apparatus
DE69831721T2 (en) METHOD FOR THE INVESTIGATION OF AN IMPROPER MATERIALITY OF A TRANSPARENT MATERIAL
US6765661B2 (en) Lens inspection
TW476847B (en) Dark view inspection system for transparent media
JP7490655B2 (en) Sheet illumination for particle detection in pharmaceutical containers
US9612144B2 (en) Method and arrangement for measuring flow rate of optically non-homogenous material
US7355706B2 (en) Particle detection system implemented with an immersed optical system
EP0899548A2 (en) Cross-correlation method and apparatus for suppressing the effects of multiple scattering
TW201109646A (en) Inspection systems for glass sheets
EP3088863A1 (en) Improvements relating to particle characterisation
US20070222986A1 (en) Measurement of Light from a Predefined scatter angle from particulate matter in a media
PL176293B1 (en) Method of inspecting transparent container and apparatus therefor
CN107561007A (en) A kind of measured thin film apparatus and method
JP3673649B2 (en) Non-uniformity inspection method and inspection apparatus for translucent material
JPH0821798A (en) Method and apparatus for detecting foreign matter
EP1248092B1 (en) Lens inspection
KR101860733B1 (en) Film inspection device and film inspection method
US2969708A (en) Means for analyzing microscopic particles and the like
DE102004017237A1 (en) Method and device for the quantitative determination of the optical quality of a transparent material
US4121247A (en) Population and profile display of transparent bodies in a transparent mass
FI127243B (en) Method and measuring device for continuous measurement of Abbe number
JP3102493B2 (en) Foreign matter inspection method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002