JPH08213285A - Solid-state electrolytic capacitor and its manufacture - Google Patents

Solid-state electrolytic capacitor and its manufacture

Info

Publication number
JPH08213285A
JPH08213285A JP7303967A JP30396795A JPH08213285A JP H08213285 A JPH08213285 A JP H08213285A JP 7303967 A JP7303967 A JP 7303967A JP 30396795 A JP30396795 A JP 30396795A JP H08213285 A JPH08213285 A JP H08213285A
Authority
JP
Japan
Prior art keywords
fine powder
electrolyte layer
solid
solid electrolyte
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7303967A
Other languages
Japanese (ja)
Other versions
JP2790100B2 (en
Inventor
Tomohisa Arai
智久 荒井
Takashi Fukami
隆 深海
Toshihiko Nishiyama
利彦 西山
Hiromichi Taniguchi
博通 谷口
Atsushi Kobayashi
淳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7303967A priority Critical patent/JP2790100B2/en
Publication of JPH08213285A publication Critical patent/JPH08213285A/en
Application granted granted Critical
Publication of JP2790100B2 publication Critical patent/JP2790100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To prevent an oxide film from being damaged by a stress during armoring and to prevent a leakage current from increasing in a solid-state electrolytic capacitor wherein conductive high polymer is solid-state electrolyte. CONSTITUTION: A first solid-state electrolyte layer 3 consisting of conductive high polymer alone by chemical polymerization is formed on an oxide film 2 formed in a surface of a metallic anode body 1 with valve function. Then, chemical polymerization is performed by using liquid wherein fine powder consisting of a material which is harder than conductive high polymer is dispersed in reaction liquid of chemical polarization for forming a second solid- state electrolyte layer 4 consisting of conductive high polymer containing fine powder on the first solid-state electrolyte layer 3. Thereby, even if stress is generated when resin armor 8 is hardened, stress is prevented from being applied to the oxide film 2 by the solid-state electrolyte layer 4 consisting of conductive high polymer containing fine powder and increase of leakage current is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サ及びその製造方法に関し、特に導電性高分子からなる
固体電解質を改良した固体電解質を有する固体電解コン
デンサ及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to a solid electrolytic capacitor having a solid electrolyte obtained by improving a solid electrolyte made of a conductive polymer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】固体電解コンデンサは、アルミニウム、
タンタルなどの弁作用を有する金属のエッチング箔ある
いは金属粉末の焼結体を陽極体としており、この表面に
誘電体として酸化皮膜が形成される。さらにこの酸化皮
膜上に形成される陰極層としては固体電解質層と、その
上に形成されるグラファイト層および銀ペースト層など
の金属層を有して構成される。
2. Description of the Related Art Solid electrolytic capacitors are made of aluminum,
An etching foil of metal such as tantalum or the like having a valve action or a sintered body of metal powder is used as an anode body, and an oxide film is formed on this surface as a dielectric. Further, the cathode layer formed on the oxide film has a solid electrolyte layer and metal layers such as a graphite layer and a silver paste layer formed thereon.

【0003】最近では、この固体電解質に導電性高分子
が使われるようになってきた。導電性高分子は、従来か
ら使用されている二酸化マンガン等に比べて導電率が高
いため、これを固体電解質に用いると高周波数でも損失
分の少ない良好な周波数性をもった固体電解コンデンサ
を得る事ができる。
Recently, conductive polymers have been used for this solid electrolyte. Conductive polymers have higher conductivity than manganese dioxide, which has been used conventionally, so when used as a solid electrolyte, a solid electrolytic capacitor with good frequency characteristics with little loss even at high frequencies is obtained. I can do things.

【0004】固体電解質としての導電性高分子の形成方
法には、気相重合、化学重合、電解重合がある。
Methods for forming a conductive polymer as a solid electrolyte include gas phase polymerization, chemical polymerization and electrolytic polymerization.

【0005】気相重合は、酸化剤及びドーパントを含む
溶液中に陽極体を浸漬し、ついで導電性高分子のモノマ
ー蒸気中にさらし、重合するものである。
In the gas phase polymerization, the anode body is immersed in a solution containing an oxidizing agent and a dopant, and then exposed to a vapor of a monomer of a conductive polymer to perform polymerization.

【0006】化学重合は、酸化剤及びドーパントを含む
溶液と導電性高分子のモノマー溶液に交互に浸漬して重
合したり、予め反応液を低温で調整しておき、その反応
液に浸漬後温度を上昇させる過程で重合するものであ
る。
The chemical polymerization is carried out by alternately immersing in a solution containing an oxidant and a dopant and a monomer solution of a conductive polymer to carry out polymerization, or by preliminarily adjusting the reaction solution at a low temperature and then immersing the reaction solution in a temperature after the immersion. Is polymerized in the process of increasing.

【0007】電解重合は、導電性高分子のモノマーを溶
解した電解液中に陽極体を浸漬し、電圧を印加して重合
するものである。
In the electrolytic polymerization, an anode body is immersed in an electrolytic solution in which a monomer of a conductive polymer is dissolved, and a voltage is applied to polymerize it.

【0008】これらの重合方法はそれぞれ特徴があり、
気相重合は誘電体への密着性は良好であるが、生成した
膜が粗いためそれのみではグラファイト層、銀ペースト
層との密着が悪く、特性が安定しない。
Each of these polymerization methods has its own characteristics,
The vapor phase polymerization has good adhesion to the dielectric, but the resulting film is rough, and thus the adhesion to the graphite layer and the silver paste layer is poor and the characteristics are not stable.

【0009】化学重合も誘電体への密着性は良好である
が、生成した膜の緻密さでは電解重合に劣る。電解重合
は緻密な膜が形成されるが、誘電体への密着性は悪く、
また、電圧を印加するための電極となる下地の層が必要
である。このため、実際はこれらを組み合わせて固体電
解質層を二層構造とすることが知られている。
Although chemical polymerization has good adhesion to the dielectric, it is inferior to electrolytic polymerization in the denseness of the formed film. Electrolytic polymerization forms a dense film, but the adhesion to the dielectric is poor,
In addition, an underlying layer that becomes an electrode for applying a voltage is required. Therefore, in practice, it is known that these are combined to form a solid electrolyte layer having a two-layer structure.

【0010】例えば、特開昭64−21913では気相
重合による第1の導電性高分子化合物からなる固体電解
質層上に電解重合による第2の導電性高分子化合物から
なる固体電解質層を形成することが開示されている。ま
た特開平3−46215では固体電解質層を得るために
化学重合による導電性高分子膜を形成した後に電解重合
による導電性高分子膜を形成することが開示されてい
る。
For example, in Japanese Patent Laid-Open No. 64-21913, a solid electrolyte layer made of a second conductive polymer compound is formed by electrolytic polymerization on a solid electrolyte layer made of a first conductive polymer compound by gas phase polymerization. It is disclosed. Further, JP-A-3-46215 discloses that in order to obtain a solid electrolyte layer, a conductive polymer film is formed by chemical polymerization and then a conductive polymer film is formed by electrolytic polymerization.

【0011】[0011]

【発明が解決しようとする課題】上記従来技術におい
て、固体電解コンデンサは、いずれも形成方法の異なる
二層構造の導電性高分子層より構成されているが、柔ら
かい導電性高分子のみで構成されているため、従来から
固体電解質に使われている二酸化マンガン等と比較する
と、外部からの応力に対し酸化皮膜を保護する強度が十
分ではない。
In the above-mentioned prior art, the solid electrolytic capacitors are each composed of a conductive polymer layer having a two-layer structure which is different in forming method, but are composed of only a soft conductive polymer. Therefore, as compared with manganese dioxide and the like which have been conventionally used for solid electrolytes, the strength for protecting the oxide film against external stress is not sufficient.

【0012】このため、外部から機械的ストレスが加わ
ると酸化皮膜が損傷しコンデンサの漏れ電流特性が劣化
する。特に、製造工程中では樹脂外装の際に発生するス
トレスが大きいので、この工程後に漏れ電流が増加する
問題がある。
Therefore, when mechanical stress is applied from the outside, the oxide film is damaged and the leakage current characteristic of the capacitor is deteriorated. In particular, during the manufacturing process, the stress generated at the time of the resin coating is large, so there is a problem that the leakage current increases after this process.

【0013】[0013]

【課題を解決するための手段】本発明は、導電性高分子
からなる二層構造の固体電解質層が導電性高分子のみか
らなる第一の固体電解質層と、第一の固体電解質層の外
側に導電性高分子より硬い微粉末を含有する導電性高分
子からなる第二の固体電解質層とで構成される固体電解
コンデンサである。
According to the present invention, a solid electrolyte layer having a two-layer structure composed of a conductive polymer is a first solid electrolyte layer composed only of a conductive polymer, and the outside of the first solid electrolyte layer. And a second solid electrolyte layer made of a conductive polymer containing fine powder harder than the conductive polymer.

【0014】その無機微粉末としては、シリカ、アルミ
ナまたはジルコニア等の絶縁体微粉末の一種または二種
以上が選択される。
As the inorganic fine powder, one or more kinds of insulating fine powder of silica, alumina, zirconia or the like are selected.

【0015】また、無機微粉末が、金、銀、銅、ニッケ
ル、パラジウム、またはこれらの合金の金属微粉末の一
種または二種以上から選択されても良い。
The inorganic fine powder may be selected from one or more metal fine powders of gold, silver, copper, nickel, palladium, or alloys thereof.

【0016】また、本発明によれば、微粉末を含有する
導電性高分子からなる第二の固体電解質層の形成方法
が、重合の反応液中に微粉末を分散し、導電性高分子層
の形成と同時に層内に微粉末を取り込むことを特徴とす
る固体電解コンデンサの製造方法も得られる。
Further, according to the present invention, a method for forming a second solid electrolyte layer made of a conductive polymer containing fine powder comprises dispersing the fine powder in a reaction liquid for polymerization to form a conductive polymer layer. A method for manufacturing a solid electrolytic capacitor, characterized in that fine powder is incorporated into the layer simultaneously with the formation of

【0017】[0017]

【作用】本発明において、導電性高分子のみからなる第
一の固体電解質層の外側に、微粉末を含有したことによ
り硬度が上った第二の固体電解質層を形成することによ
り、コンデンサに加わる外部からの機械的ストレスに対
し、酸化皮膜を保護することができるものである。
In the present invention, a capacitor is formed by forming a second solid electrolyte layer, which is hardened by containing fine powder, on the outside of the first solid electrolyte layer consisting only of a conductive polymer. The oxide film can be protected against mechanical stress applied from the outside.

【0018】[0018]

【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。 [実施例1]図1(A)は本発明の固体電解コンデンサ
の断面図、図1(B)は本発明の固体電解コンデンサの
陰極部の拡大図である。
Next, embodiments of the present invention will be described with reference to the drawings. Example 1 FIG. 1A is a sectional view of a solid electrolytic capacitor of the present invention, and FIG. 1B is an enlarged view of a cathode portion of the solid electrolytic capacitor of the present invention.

【0019】タンタル粉末の焼結体からなる陽極体1に
酸化皮膜2を形成した後、ポリピロールのみからなる第
1導電性高分子層3と、シリカ微粉末を含有したポリピ
ロールからなる第2導電性高分子層4を順次形成する。
この後、さらにグラファイト層5、銀ペースト層6を順
次形成して4層構造からなる陰極層を形成する。この陰
極層に陰極外部リード71が導電ペーストにより接続さ
れる。タンタル粉末の焼結体1からタンタル線などの陽
極線材9が導出され陽極外部リード72と溶接されてい
る。そしてトランスファモールドにより樹脂外装され
る。一対の外部リード71,72は外装樹脂8に沿って
下方へ折り曲げ加工されて、図1の固体電解コンデンサ
が得られる。
After forming the oxide film 2 on the anode body 1 made of a sintered body of tantalum powder, the first conductive polymer layer 3 made only of polypyrrole and the second conductive body made of polypyrrole containing fine silica powder. The polymer layer 4 is sequentially formed.
After that, the graphite layer 5 and the silver paste layer 6 are sequentially formed to form a cathode layer having a four-layer structure. The cathode external lead 71 is connected to this cathode layer by a conductive paste. An anode wire material 9 such as a tantalum wire is derived from the sintered body 1 of tantalum powder and welded to the anode outer lead 72. Then, it is resin-molded by transfer molding. The pair of outer leads 71, 72 is bent downward along the exterior resin 8 to obtain the solid electrolytic capacitor of FIG.

【0020】ポリピロールのみからなる第1導電性高分
子層3は、焼結体1をピロールのモノマー液に浸漬し、
ついでP−トルエンスルホン酸第二鉄塩などの酸化剤溶
液に浸漬し、これを数回繰り返して、ピロールと酸化剤
の化学反応による重合によって形成する。シリカ微粉末
を含有したポリピロールからなる第2導電性高分子層4
は、ピロールのモノマー液に平均粒径0.01ミクロン
のシリカ微粉末を分散した液を作成し、この液に焼結体
を浸漬し、ついで酸化剤溶液に浸漬して重合を行って形
成する。この化学重合の際に、シリカ微粉末がポリピロ
ール層の内部に取り込まれる。
The first conductive polymer layer 3 consisting only of polypyrrole is prepared by immersing the sintered body 1 in a pyrrole monomer solution,
Then, it is immersed in an oxidizing agent solution such as ferric P-toluenesulfonic acid salt, and this is repeated several times to form a polymer by the chemical reaction of pyrrole and the oxidizing agent. Second conductive polymer layer 4 made of polypyrrole containing fine silica powder
Is formed by forming a liquid in which silica fine powder having an average particle diameter of 0.01 micron is dispersed in a monomer liquid of pyrrole, immersing the sintered body in this liquid, and then immersing it in an oxidant solution for polymerization. . During this chemical polymerization, fine silica powder is incorporated inside the polypyrrole layer.

【0021】この方法は重合の際のピロールのモノマー
液を、微粉末を分散した液に交換するだけで、微粉末を
含有した第2導電性高分子層が形成できるので、生産性
が良い。
According to this method, the second conductive polymer layer containing the fine powder can be formed by simply exchanging the monomer liquid of pyrrole at the time of the polymerization for the liquid in which the fine powder is dispersed, so that the productivity is good.

【0022】ピロールのモノマー液に分散させるシリカ
微粉末は、添加量が少ないと効果がなく、添加量が多い
とポリピロールの導電率を低下させるので、実験により
その範囲を確認した。
The silica fine powder dispersed in the monomer liquid of pyrrole has no effect when the amount added is small, and the conductivity of the polypyrrole decreases when the amount added is large, so the range was confirmed by experiments.

【0023】表1にシリカ微粉末の添加量を変えて製造
した固体電解コンデンサの外装後の漏れ電流不良率と、
等価直列抵抗(ESR)の平均値を示す。
Table 1 shows the leakage current defect rate after packaging of solid electrolytic capacitors manufactured by changing the amount of silica fine powder added,
The average value of equivalent series resistance (ESR) is shown.

【0024】その結果、添加量が重量%で、1%未満で
は、シリカ微粉末を添加しないものと比べて、外装後の
漏れ電流不良率に顕著な差はなく、添加量が10%以上
ではポリピロールの導電率の低下によって、ESRの平
均値が大きくなった。よって微粉末の添加量の範囲は1
%〜10未満%が好ましく、より適切なシリカ微粉末の
添加量の範囲は1〜7%であった。
As a result, when the addition amount is less than 1% by weight, there is no remarkable difference in the leakage current defective rate after the packaging as compared with the case where the silica fine powder is not added, and when the addition amount is 10% or more. The average value of ESR was increased due to the decrease in conductivity of polypyrrole. Therefore, the range of addition amount of fine powder is 1
% To less than 10% is preferable, and the range of more appropriate addition amount of fine silica powder is 1 to 7%.

【0025】[0025]

【表1】 漏れ電流規格:500nA以下(5分値) ESR:100kHz また、シリカ微粉末の添加量についての実験であるが、
アルミナまたはジルコニアの微粉末の添加でも、または
シリカ、アルミナまたはジルコニアの微粉末の二種以上
の添加においても、添加量が少ないと効果がなく、添加
量が多いとポリピロールの導電率を低下させるので、微
粉末の添加量の範囲は1%〜10未満%が好ましく、よ
り適切なシリカ微粉末の添加量の範囲は1〜7%であっ
た。 [実施例2]この実施例2では、ピロールのモノマー液
に分散する微粉末として、シリカ以外のアルミナ、ジル
コニア等の絶縁体微粉末、及び、金、銀、銅、ニッケ
ル、パラジウム、銀−パラジウム合金等の金属微粉末を
使用して実施例1と同様に固体電解コンデンサを製造し
た。
[Table 1] Leakage current standard: 500 nA or less (5 minutes value) ESR: 100 kHz In addition, in the experiment on the addition amount of silica fine powder,
Even in the case of adding fine powder of alumina or zirconia, or in the case of adding two or more kinds of fine powder of silica, alumina or zirconia, there is no effect when the addition amount is small, and the conductivity of polypyrrole decreases when the addition amount is large. The range of the addition amount of the fine powder is preferably 1% to less than 10%, and the more appropriate range of the addition amount of the silica fine powder is 1 to 7%. [Embodiment 2] In this embodiment 2, as fine powder dispersed in a monomer solution of pyrrole, fine powder of insulator such as alumina and zirconia other than silica, and gold, silver, copper, nickel, palladium, silver-palladium. A solid electrolytic capacitor was manufactured in the same manner as in Example 1 using fine metal powders such as alloys.

【0026】[0026]

【表2】 漏れ電流規格:500nA以下(5分値) ESR:100kHz 表2に各種の微粉末を使用して製造した固体電解コンデ
ンサの外装後の漏れ電流不良率と、ESRの平均値を示
す。
[Table 2] Leakage current standard: 500 nA or less (5 minutes value) ESR: 100 kHz Table 2 shows the leakage current failure rate after packaging of the solid electrolytic capacitors manufactured using various fine powders, and the average value of ESR.

【0027】本実施例での樹脂外装後の漏れ電流不良率
は、表2に示すように3〜7%であり、微粉末を添加し
ないものに比べて不良率が改善されている。
The defective rate of leakage current after resin coating in this example is 3 to 7% as shown in Table 2, which is improved as compared with the case where no fine powder is added.

【0028】表2における、各添加量は全て5重量%で
ある。
In Table 2, each addition amount is 5% by weight.

【0029】導電性高分子に添加含有させる量について
は、金、銀、銅、ニッケル、パラジウム、またはこれら
の合金の金属微粉末の一種または二種以上を導電性高分
子に添加含有させる場合、その量は、添加量が少ないと
効果がなく、金属微粉末同志が結合しない範囲で添加量
が多いとポリピロール自体の導電率を低下させるので、
これら微粉末の添加量の範囲は、1%以上10%未満が
好ましく、より適切な添加量の範囲は1〜7%であっ
た。
Regarding the amount to be added to the conductive polymer, when one or more kinds of fine metal powder of gold, silver, copper, nickel, palladium, or an alloy thereof is added to the conductive polymer, The amount is ineffective when the addition amount is small, and since the conductivity of the polypyrrole itself is lowered when the addition amount is large in a range in which the metal fine powders do not combine,
The range of addition amount of these fine powders is preferably 1% or more and less than 10%, and the more appropriate addition amount range is 1 to 7%.

【0030】また、これら微粉末の粒径は、より細粒で
あることが好ましいが、ここでは具体的には、アルミナ
は平均粒径0.01ミクロン、ジルコニア、金、銅、ニ
ッケル、パラジウム、銀−パラジウム合金では、平均粒
径0.1ミクロン程度のものが用いられる。
Further, although the particle size of these fine powders is preferably finer, specifically, here, alumina has an average particle size of 0.01 micron, zirconia, gold, copper, nickel, palladium, A silver-palladium alloy having an average particle size of about 0.1 micron is used.

【0031】本実施例では、ピロールのモノマー液と酸
化剤溶液に交互に浸漬してポリピロールを形成する重合
方法を例にとり説明したが、予め反応液を低温で調整
し、この反応液に浸漬した後に温度を上昇させて重合さ
せる方法においても、反応液中に前記微粉末を添加して
おくことにより同様の効果が得られることはいうまでも
ない。
In this embodiment, the polymerization method in which the pyrrole monomer solution and the oxidant solution are alternately dipped to form polypyrrole has been described. However, the reaction solution was adjusted in advance at a low temperature and immersed in this reaction solution. Needless to say, the same effect can be obtained by adding the fine powder to the reaction solution also in the method in which the temperature is subsequently raised to carry out the polymerization.

【0032】また、本実施例では、導電性高分子として
ポリピロールを例にとり説明したが、液中で重合反応さ
せることにより形成する導電性高分子例えばポリアニリ
ン、ポリチオフェン等でも同様の効果が得られる。
In the present embodiment, polypyrrole is used as an example of the conductive polymer, but a conductive polymer formed by a polymerization reaction in a liquid, such as polyaniline or polythiophene, has the same effect.

【0033】また、第2導電性高分子に含有される微粉
末が、シリカ、アルミナまたはジルコニア微粉末の一種
を選択する場合について説明したが、これらを二種以上
含有する場合にも同様の効果が得られるものである。
Although the fine powder contained in the second conductive polymer is selected from one of silica, alumina or zirconia fine powder, the same effect can be obtained when two or more of them are contained. Is obtained.

【0034】また、第二の固体電解質層の導電性高分子
に含有する微粉末が、金、銀、銅、ニッケル、パラジウ
ム、銀−パラジウム合金について説明したが、銀−パラ
ジウム合金のほか、金、銀、銅、ニッケル、パラジウム
の成分よりなる合金微粉末でも、これらの金属微粉末、
合金微粉末の二種以上含有する場合にも同様の効果が得
られるものである。また微粉末の例として無機物を対象
としたが、導電性高分子層より硬い有機物の微粉末(例
えばエポキシ樹脂の微粉末)も採用できるであろう。さ
らに実施例では固体電解質層の形成に化学重合を用いた
が、気相重合も採用できるであろう。
The fine powder contained in the conductive polymer of the second solid electrolyte layer is gold, silver, copper, nickel, palladium, or a silver-palladium alloy. , Alloy fine powder made of silver, copper, nickel and palladium components, these fine metal powders,
Similar effects can be obtained when two or more kinds of fine alloy powders are contained. Further, although an inorganic substance is used as an example of the fine powder, fine powder of an organic substance harder than the conductive polymer layer (for example, fine powder of epoxy resin) may be used. Furthermore, although chemical polymerization was used for forming the solid electrolyte layer in the examples, gas phase polymerization could be adopted.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、導
電性高分子のみからなる第一の固体電解質層の外側に、
硬度を上げるような微粉末を含有する導電性高分子から
なる第二の固体電解質層を形成し二層構造とすることに
より、コンデンサに加わる外部からの機械的ストレスに
対し、酸化皮膜を保護することができ、漏れ電流劣化の
小さいコンデンサを得ることができる。すなわち、外部
から機械的ストレスが加わっても酸化皮膜が損傷するこ
となく、コンデンサの漏れ電流特性が劣化することがな
い。また、製造工程中の樹脂外装の際に発生するストレ
スが小さいので、この工程後に漏れ電流が増加すること
もないという効果を奏するものである。
As described above, according to the present invention, on the outside of the first solid electrolyte layer made of only the conductive polymer,
Protects the oxide film against external mechanical stress applied to the capacitor by forming a second solid electrolyte layer consisting of a conductive polymer containing fine powder that increases hardness Therefore, it is possible to obtain a capacitor with less deterioration of leakage current. That is, even if mechanical stress is applied from the outside, the oxide film is not damaged and the leakage current characteristic of the capacitor is not deteriorated. Further, since the stress generated at the time of covering the resin during the manufacturing process is small, there is an effect that the leakage current does not increase after this process.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)本発明の固体電解コンデンサの断面図 (B)図1のAの部分の拡大図FIG. 1A is a cross-sectional view of a solid electrolytic capacitor of the present invention. FIG. 1B is an enlarged view of a portion A in FIG.

【符号の説明】[Explanation of symbols]

1 焼結体 2 酸化皮膜 3 導電性高分子層 4 微粉末を含有する導電性高分子層 5 グラファイト層 6 銀ペースト 71,72 外部リード 8 外装樹脂 9 陽極線材 DESCRIPTION OF SYMBOLS 1 Sintered body 2 Oxide film 3 Conductive polymer layer 4 Conductive polymer layer containing fine powder 5 Graphite layer 6 Silver paste 71, 72 External lead 8 Exterior resin 9 Anode wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 博通 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 小林 淳 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Hiromichi Taniguchi, 5-7 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor, Jun Kobayashi, 5-7-1, Shiba, Minato-ku, Tokyo Japan Electric stock company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 弁作用を有する金属からなる陽極体と、
前記陽極体の表面に形成された酸化皮膜と、前記酸化皮
膜上に形成された導電性高分子のみからなる第一の固体
電解質層と、前記第一の固体電解質層上に前記導電性高
分子より硬い物質からなる微粉末を含有する導電性高分
子からなる第二の固体電解質層と、前記第二の固体電解
質層上に形成された金属層とを有する固体電解コンデン
サ。
1. An anode body made of a metal having a valve action,
An oxide film formed on the surface of the anode body, a first solid electrolyte layer consisting only of a conductive polymer formed on the oxide film, and the conductive polymer on the first solid electrolyte layer A solid electrolytic capacitor having a second solid electrolyte layer made of a conductive polymer containing fine powder made of a harder substance, and a metal layer formed on the second solid electrolyte layer.
【請求項2】 前記微粉末が、シリカ、アルミナまたは
ジルコニアの微粉末の少くとも一種である請求項1記載
の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the fine powder is at least one fine powder of silica, alumina or zirconia.
【請求項3】 前記微粉末が、金、銀、銅、ニッケル、
パラジウム、またはこれらの合金の金属微粉末の少くと
も一種である請求項1記載の固体電解コンデンサ。
3. The fine powder is gold, silver, copper, nickel,
The solid electrolytic capacitor according to claim 1, which is at least one kind of fine metal powder of palladium or an alloy thereof.
【請求項4】 弁作用金属の陽極体の表面に誘電体とし
ての酸化皮膜を形成する工程と、前記酸化皮膜上に導電
性高分子のみからなる第一の固体電解質層を形成する工
程と、前記第二の固体電解質層上に微粉末を含有する導
電性高分子からなる第二の固体電解質層を形成する工程
と、前記第二の固体電解質層上に金属層を形成する工程
を有し、前記第二の固体電解質層を形成する工程は重合
の反応液中に微粉末を分散し、導電性高分子層の形成と
同時に層内に微粉末を取り込む方法を採用している固体
電解コンデンサの製造方法。
4. A step of forming an oxide film as a dielectric on the surface of the valve metal anode body, and a step of forming a first solid electrolyte layer consisting only of a conductive polymer on the oxide film. A step of forming a second solid electrolyte layer made of a conductive polymer containing fine powder on the second solid electrolyte layer, and a step of forming a metal layer on the second solid electrolyte layer The step of forming the second solid electrolyte layer employs a method in which fine powder is dispersed in a polymerization reaction solution and the fine powder is taken into the layer simultaneously with the formation of the conductive polymer layer. Manufacturing method.
JP7303967A 1994-11-25 1995-11-22 Solid electrolytic capacitor and method of manufacturing the same Expired - Lifetime JP2790100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303967A JP2790100B2 (en) 1994-11-25 1995-11-22 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31557694 1994-11-25
JP6-315576 1994-11-25
JP7303967A JP2790100B2 (en) 1994-11-25 1995-11-22 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08213285A true JPH08213285A (en) 1996-08-20
JP2790100B2 JP2790100B2 (en) 1998-08-27

Family

ID=26563718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303967A Expired - Lifetime JP2790100B2 (en) 1994-11-25 1995-11-22 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2790100B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
KR20030000110A (en) * 2001-06-22 2003-01-06 파츠닉(주) Making method of capacitor by using solid electrolyte
JP2008198681A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2010087344A (en) * 2008-10-01 2010-04-15 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor and solid-state electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
KR20030000110A (en) * 2001-06-22 2003-01-06 파츠닉(주) Making method of capacitor by using solid electrolyte
JP2008198681A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2010087344A (en) * 2008-10-01 2010-04-15 Nichicon Corp Manufacturing method of solid-state electrolytic capacitor and solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP2790100B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US5621608A (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
EP0637043B1 (en) Solid electrolytic capacitor and method for manufacturing the same
JP3350846B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
JP4789751B2 (en) Manufacturing method of solid electrolytic capacitor
JP2950670B2 (en) Solid electrolytic capacitors
JP5623214B2 (en) Solid electrolytic capacitor
JP3307224B2 (en) Manufacturing method of capacitor
EP0633583A1 (en) Low impedance solid electrolytic capacitor and method for fabricating the same
JP2790100B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000188243A (en) Capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0997747A (en) Solid electrolytic capacitor and manufacture thereof
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2850823B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3206776B2 (en) Method for manufacturing solid electrolytic capacitor
JP6952921B1 (en) Solid Electrolytic Capacitors and Manufacturing Methods for Solid Electrolytic Capacitors
JP2004289139A (en) Chip type solid electrolytic capacitor
JPH10284351A (en) Solid-state electrolytic capacitor and manufacture of the same
JP4699082B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3544518B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04192405A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 16

EXPY Cancellation because of completion of term