JPH08203536A - Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method - Google Patents

Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method

Info

Publication number
JPH08203536A
JPH08203536A JP7012156A JP1215695A JPH08203536A JP H08203536 A JPH08203536 A JP H08203536A JP 7012156 A JP7012156 A JP 7012156A JP 1215695 A JP1215695 A JP 1215695A JP H08203536 A JPH08203536 A JP H08203536A
Authority
JP
Japan
Prior art keywords
nickel
catalyst
fuel electrode
battery
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7012156A
Other languages
Japanese (ja)
Inventor
Hiroko Ueki
裕子 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7012156A priority Critical patent/JPH08203536A/en
Publication of JPH08203536A publication Critical patent/JPH08203536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To enhance resistance of a fuel electrode against carbon monoxide so as to decide the optimum operation method of a battery by using this electrode. CONSTITUTION: A catalyst formed by mixing catalyst for supporting platinum on a carbon holder, with a catalyst for supporting nickle l on a carbon holder or catalyst for holding platinum and nickel fine particles on one carbon holder is proposed as a catalyst formed in a fuel electrode. Thereby, when a battery is operated at a comparatively low temperature at its start and stop, bad effect caused by suction of carbon monoxide included in fuel gas is eliminated so that the service life characteristic of the battery can be improved. Furthermore, any drop of resistant property of a fuel electrode against carbon monoxide owing to decreased nickel is prevented as the best operation method of the battery by using this fuel electrode by measuring a nickel quantity included in the exhaust gas on fuel electrode side and supplying optionally nickel carbonyl in response to a decreased quantity of nickel so as to raise the temperature of the battery up to 190 deg.C, thus precipitating nickel and supplying it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、白金系触媒を有する燃
料電池の燃料電極と、その触媒製造方法およびこの燃料
電極を用いた電池の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a fuel cell having a platinum catalyst, a method for producing the catalyst, and a method for operating a cell using the fuel electrode.

【0002】[0002]

【従来の技術】燃料電池を運転する際、燃料ガスとして
純水素を使用するのは経済的に好ましくないので、天然
ガスなどの炭化水素系の原燃料を水素分に富んだガスに
改質して使用している。このような改質ガスには、水素
ガスのほかに、二酸化炭素または一酸化炭素などの不純
物ガスが含まれている。
2. Description of the Related Art When operating a fuel cell, it is economically unpreferable to use pure hydrogen as a fuel gas. Therefore, a hydrocarbon-based raw fuel such as natural gas is reformed into a gas rich in hydrogen. I am using it. Such reformed gas contains, in addition to hydrogen gas, an impurity gas such as carbon dioxide or carbon monoxide.

【0003】ところで、比較的低い温度で運転されるり
ん酸形燃料電池や固体高分子形燃料電池では、白金黒や
カーボン担体に白金を担持した白金触媒、または白金に
白金以外の成分を加えた白金合金触媒が電極に使用され
ている。これらの電極触媒は、燃料ガス中に一酸化炭素
が含有されていると、この一酸化炭素が吸着することに
よって、燃料電極における分極が大きくなり、その結
果、燃料電池の発生電圧が低下し、とくに燃料電池の運
転温度が低い場合は、発生電圧が極端に低下することが
知られている。
By the way, in a phosphoric acid fuel cell or a polymer electrolyte fuel cell operated at a relatively low temperature, platinum black or a platinum catalyst in which platinum is supported on a carbon carrier, or a component other than platinum is added to platinum. Platinum alloy catalysts are used in the electrodes. In these electrode catalysts, when carbon monoxide is contained in the fuel gas, the adsorption of the carbon monoxide increases the polarization in the fuel electrode, resulting in a decrease in the generated voltage of the fuel cell. It is known that the generated voltage drops extremely when the operating temperature of the fuel cell is low.

【0004】このことから、通常、原燃料を水素分に富
んだガスに改質するための装置に、一酸化炭素を除去す
るか、もしくはこれを二酸化炭素に酸化するなどの機能
を持たせることにより、燃料ガス中の一酸化炭素濃度を
電池の性能に影響を及ぼさない程度に保つようにしてい
る。また、電池本体は、燃料電極に用いる触媒に、一酸
化炭素の被毒を受け難い白金−ルテニウム合金の触媒な
どを用いている。
Therefore, usually, an apparatus for reforming a raw fuel into a gas rich in hydrogen has a function of removing carbon monoxide or oxidizing it into carbon dioxide. In this way, the carbon monoxide concentration in the fuel gas is kept to such an extent that it does not affect the cell performance. Further, the cell body uses a platinum-ruthenium alloy catalyst or the like that is not easily poisoned by carbon monoxide as a catalyst used for the fuel electrode.

【0005】[0005]

【発明が解決しようとする課題】一酸化炭素の触媒への
吸着量は、温度が低くなるほど大きくなる。前述のよう
に、改質装置によって燃料ガス中の一酸化炭素濃度は低
くなっているが、燃料電池の運転の際、起動時と停止時
に、通常の運転温度より低い温度で運転が行なわれ、一
酸化炭素の吸着量が多くなることがあり、したがって、
電池の起動停止時には、(1)式に示す触媒反応による
水素の解離が妨げられる。
The adsorption amount of carbon monoxide on the catalyst increases as the temperature decreases. As described above, the carbon monoxide concentration in the fuel gas is lowered by the reformer, but at the time of starting and stopping the fuel cell, the fuel cell is operated at a temperature lower than the normal operating temperature, The adsorbed amount of carbon monoxide can be high and therefore
When the battery is stopped, dissociation of hydrogen due to the catalytic reaction represented by the formula (1) is prevented.

【0006】 H2 →2H+ +2e- (1) その結果、電極では(2)式に示すカーボンの腐食反応 C+2H2 O→CO2 +4H+ +4e- (2) が起こりやすくなる。以上のことから、燃料電池の起動
停止時に電極の腐食が進み、電池の寿命が短くなるとい
う問題を生ずる。
H 2 → 2H + + 2e (1) As a result, the carbon corrosion reaction C + 2H 2 O → CO 2 + 4H + + 4e (2) is likely to occur at the electrode. From the above, there arises a problem that the corrosion of electrodes progresses when the fuel cell is stopped and the life of the cell is shortened.

【0007】本発明は上述の点に鑑みてなされたもので
あり、その目的は、改質燃料ガスに含まれている一酸化
炭素が電池の起動停止時に悪影響を及ぼすことのない燃
料電極とその触媒製造方法、およびこの燃料電極を用い
た電池の運転方法を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a fuel electrode and carbon monoxide contained in the reformed fuel gas, which does not adversely affect the start and stop of the cell. It is intended to provide a method for producing a catalyst and a method for operating a battery using this fuel electrode.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するために、燃料電極に形成する触媒に関して、 カーボン担体上に白金を担持した触媒と、カーボン
担体上にニッケルを担持した触媒とを混合してなる触媒
を用いる。
In order to solve the above problems, the present invention relates to a catalyst formed on a fuel electrode, comprising a catalyst in which platinum is supported on a carbon carrier and a catalyst in which nickel is supported on a carbon carrier. Is used as a catalyst.

【0009】 一つのカーボン担体上に白金とニッケ
ルの微粒子を担持してなる触媒を用いる。 これらの触媒の製造方法に関して、とくにの場合以下
のように行なう。アセチレンブラックまたはファーネス
ブラックを純水に分散し、これにニッケル塩を加え、さ
らに塩基を添加し攪拌した後、得られたケーキを不活性
ガス雰囲気中で加熱してニッケルを析出させ、このニッ
ケルを担持したカーボンを再び純水に分散し、これに白
金酸塩水溶液を加え、次いで還元剤を徐々に添加して白
金塩を還元してカーボン上に白金を析出させる。
A catalyst in which platinum and nickel fine particles are supported on one carbon carrier is used. Regarding the method for producing these catalysts, the following is carried out in particular cases. Acetylene black or furnace black was dispersed in pure water, a nickel salt was added to this, and a base was further added and stirred, and then the obtained cake was heated in an inert gas atmosphere to precipitate nickel. The supported carbon is again dispersed in pure water, an aqueous solution of a platinum salt is added thereto, and then a reducing agent is gradually added to reduce the platinum salt to deposit platinum on the carbon.

【0010】このような触媒を有する燃料電極を用いた
電池の運転方法に関して、燃料電極側の排ガス中のニッ
ケル量を測定し、ニッケルの減少量に応じてニッケルカ
ルボニルを随時補給するが、ニッケル量の累計が電池製
造時に燃料電極の保有するニッケル量の60%とな時点
で運転を停止し、ニッケルカルボニルを燃料電極に供給
し、電池を190℃に昇温させることによりニッケルを
析出させ補充するという方法をとる。
Regarding a method of operating a cell using a fuel electrode having such a catalyst, the amount of nickel in the exhaust gas on the fuel electrode side is measured, and nickel carbonyl is replenished at any time according to the amount of decrease in nickel. Operation is stopped when the cumulative total of 60% of the amount of nickel held in the fuel electrode at the time of manufacturing the cell, nickel carbonyl is supplied to the fuel electrode, and the temperature of the cell is raised to 190 ° C. to deposit and replenish nickel. Method.

【0011】[0011]

【作用】ニッケルは微粒子の状態では、60℃以上で一
酸化炭素と反応して(3)式のようにニッケルカルボニ
ルとなる。 Ni+4CO→Ni(CO)4 (3) ニッケルカルボニルは約180℃でニッケルと一酸化炭
素に分解する。
In the state of fine particles, nickel reacts with carbon monoxide at 60 ° C. or higher to form nickel carbonyl as shown in the formula (3). Ni + 4CO → Ni (CO) 4 (3) Nickel carbonyl decomposes into nickel and carbon monoxide at about 180 ° C.

【0012】また、例えば、りん酸形燃料電池では、起
動時は、電池の昇温中150℃以下で反応ガスを流し、
発電を開始することがあり、通常はさらに昇温を続け、
200℃前後で経時運転を行なう。運転停止の際は、1
50℃以下に降温した後、発電を停止し、反応ガスを止
めることが多い。以上のことを勘案し、本発明の燃料電
池の燃料電極は、電極に形成される触媒として、カーボ
ン担体に白金微粒子を担持した触媒とともに、カーボン
担体にニッケル微粒子を担持した触媒を用いるものであ
り、一酸化炭素の影響が大きい180℃以下である電池
の起動停止時には、ニッケルが一酸化炭素と反応し、ニ
ッケルカルボニルが生成されるので、触媒表面への一酸
化炭素の吸着が抑制され、電池反応である水素の解離反
応は良好な状態で進行する。そして、ニッケルカルボニ
ルがニッケルと一酸化炭素に分解する180℃の電池の
経時運転中は、一酸化炭素の触媒表面への吸着は非常に
小さいから、水素の解離反応に影響を及ぼすことはな
い。加えて、電池の運転温度が180℃以上であり、ニ
ッケルは一酸化炭素と反応しないので、電池の経時運転
中のニッケル量は殆ど減少しない。
Further, for example, in a phosphoric acid fuel cell, at the time of start-up, a reaction gas is caused to flow at a temperature of 150 ° C. or lower during temperature rise of the cell,
Power generation may be started, and usually the temperature is further increased,
Aging operation is performed at about 200 ° C. 1 when the operation is stopped
After lowering the temperature to 50 ° C. or lower, power generation is often stopped and reaction gas is often stopped. Taking the above into consideration, the fuel electrode of the fuel cell of the present invention uses, as a catalyst formed on the electrode, a catalyst in which platinum particles are supported on a carbon carrier and a catalyst in which nickel particles are supported on a carbon carrier. When the temperature of the battery is 180 ° C. or lower, which is greatly affected by carbon monoxide, nickel reacts with carbon monoxide to generate nickel carbonyl, so that the adsorption of carbon monoxide on the catalyst surface is suppressed and The hydrogen dissociation reaction, which is a reaction, proceeds in a good state. Then, during the aging operation of the battery at 180 ° C. where nickel carbonyl decomposes into nickel and carbon monoxide, the adsorption of carbon monoxide on the catalyst surface is very small, and therefore the hydrogen dissociation reaction is not affected. In addition, since the operating temperature of the battery is 180 ° C. or higher and nickel does not react with carbon monoxide, the amount of nickel during the aging operation of the battery hardly decreases.

【0013】さらに、燃料電極側の排ガス中のニッケル
量を測定し、ニッケルの減少量に応じてニッケルカルボ
ニルを随時補給し、190℃に昇温してニッケルを析出
させているために、180℃以下の起動停止時の運転に
おけるニッケルと一酸化炭素の反応でニッケルが減少す
ることによる本発明の燃料電極の一酸化炭素に対する耐
性の低下を防止する。
Further, the amount of nickel in the exhaust gas on the fuel electrode side is measured, nickel carbonyl is replenished at any time in accordance with the amount of decrease in nickel, and the temperature is raised to 190 ° C. to deposit nickel. It is possible to prevent a decrease in resistance to carbon monoxide of the fuel electrode of the present invention due to a decrease in nickel due to a reaction between nickel and carbon monoxide during the following start-stop operation.

【0014】[0014]

【実施例】以下、本発明を実施例に基づき説明する。実施例1 .白金20wt%をカーボンブラックに担持し
た触媒の所定量と、ニッケル50wt%をカーボンブラ
ックに担持した触媒の所定量とを、界面活性剤を含むイ
オン交換水に超音波ホモジナイザーを用いて均一に分散
させた後、触媒1cm3 当たり1gのPTFE(ポリテ
トラフルオロエチレン)が混合するようなPTFE分散
溶液(濃度60%,比重1.5)を加え、さらに混合し
て、触媒とPTFEの分散液を作製し、これを分散液1
とする。
EXAMPLES The present invention will be described below based on examples. Example 1 . A predetermined amount of a catalyst supporting 20 wt% of platinum on carbon black and a predetermined amount of a catalyst supporting 50 wt% of nickel on carbon black are uniformly dispersed in ion-exchanged water containing a surfactant using an ultrasonic homogenizer. Then, a PTFE dispersion solution (concentration 60%, specific gravity 1.5) in which 1 g of PTFE (polytetrafluoroethylene) was mixed per 1 cm 3 of the catalyst was added, and further mixed to prepare a dispersion liquid of the catalyst and PTFE. Then, this is dispersion liquid 1
And

【0015】次に、あらかじめ、フッ素系樹脂で撥水処
理を施した多孔性カーボン基材の上に、分散液1をブレ
ード法,スプレー法などにより塗布し、乾燥後、PTF
Eが溶融する温度で焼成して燃料極1とする。さらに、
比較のために、白金10wt%をカーボンブラックに担
持した触媒のみを用い、分散液1と同様の方法で分散液
2を作製し、フッ素系樹脂で撥水処理を施した多孔性カ
ーボン基材に、ブレード法,スプレー法などにより塗布
し、乾燥後、PTFEが溶融する温度で焼成して、これ
を燃料極2とした。このとき分散液2に用いる触媒の使
用量は、燃料極2の単位面積当たりの白金量が、燃料極
1の単位面積当たりの白金量と同程度となるようにす
る。
Next, the dispersion liquid 1 is applied by a blade method, a spray method or the like on a porous carbon base material which has been previously subjected to a water repellent treatment with a fluororesin, dried, and then PTF.
The fuel electrode 1 is fired at a temperature at which E melts. further,
For comparison, Dispersion 2 was prepared in the same manner as Dispersion 1, using only a catalyst in which 10 wt% of platinum was supported on carbon black, and used as a porous carbon base material that was subjected to a water repellent treatment with a fluororesin. It was applied by a blade method, a spray method, or the like, dried, and then baked at a temperature at which PTFE melted to obtain a fuel electrode 2. At this time, the amount of the catalyst used in the dispersion liquid 2 is such that the amount of platinum per unit area of the fuel electrode 2 is approximately the same as the amount of platinum per unit area of the fuel electrode 1.

【0016】以上のようにして作製した燃料電極を用い
て電池を作製して、これを一酸化炭素100ppmを含
む燃料ガスを使用して電池を運転し、起動停止を繰り返
したときの電池の出力特性の経時変化を求め、得られた
結果を図1の線図に示す。図1の曲線イは、カーボン担
体上に白金を担持させた触媒と、カーボン担体上にニッ
ケルを担持させた触媒とを混合した触媒を用いた本発明
の燃料極1を有する電池の特性変化を示し、曲線ロは、
比較のために従来電極に相当する燃料極2を有する電池
の特性変化を示したものである。図1中の○印は、その
時間に起動または停止を行なったことを表わしている。
A cell is produced using the fuel electrode produced as described above, the cell is operated using a fuel gas containing 100 ppm of carbon monoxide, and the output of the cell when the start and stop are repeated. The change over time in the characteristics was determined, and the obtained results are shown in the diagram of FIG. Curve A in FIG. 1 shows a change in characteristics of a cell having a fuel electrode 1 of the present invention using a catalyst in which a catalyst supporting platinum on a carbon carrier and a catalyst supporting nickel on a carbon carrier are mixed. And the curve b is
For comparison, the change in the characteristics of the cell having the fuel electrode 2 corresponding to the conventional electrode is shown. A circle mark in FIG. 1 indicates that the system was started or stopped at that time.

【0017】図1の結果から、カーボン担体上に白金を
担持させた触媒と、カーボン担体上にニッケルを担持さ
せた触媒とを混合した触媒を用いた燃料極を用いた電池
の方が、特性の劣化が少なく長期的に安定であることが
わかる。また、運転後の電池を解体し、電極の状態を調
べた結果、従来相当の電極には腐食が見られたのに対し
て、本発明による電極は腐食は殆ど認められなかった。
From the results shown in FIG. 1, the characteristics of the cell using the fuel electrode using the catalyst in which the catalyst in which platinum is supported on the carbon carrier and the catalyst in which nickel is supported on the carbon carrier are mixed are better. It can be seen that there is little deterioration and is stable over the long term. Moreover, as a result of disassembling the battery after operation and examining the state of the electrode, corrosion was observed in the electrode equivalent to the conventional one, but almost no corrosion was observed in the electrode according to the present invention.

【0018】実施例2.アセチレンブラックまたはファ
ーネスブラック0.5gを、脱イオン水または蒸留水4
00mlに十分分散させ、これにニッケル塩、例えばニ
ッケル0.5gを含む硝酸ニッケルの水溶液300ml
を添加し、攪拌しながら、塩基として例えば0.1M水
酸化カリウム水溶液を約1時間かけて徐々に添加する。
塩基はこのほかに、アンモニアや水酸化ナトリウムを使
用することもできる。さらに1時間攪拌を続けた後、反
応物を濾過し、脱イオン水で十分に洗浄を行なう。洗浄
が終了した後、ケーキ(反応物)を50℃で約20時間
真空乾燥し、乾燥した試料を粉砕して熱処理炉に挿入
し、炉内の酸素を除去するため30分以上、不活性ガス
例えば窒素でパージする。この後、炉を900℃まで昇
温し、この温度で約2時間処理してニッケル担持触媒を
調製する。次に、炉の温度を窒素雰囲気のまま室温まで
下げ、炉内に徐々に空気を流して置換した後、試料を取
り出す。
Example 2 0.5 g of acetylene black or furnace black, deionized water or distilled water 4
300 ml of an aqueous solution of nickel nitrate containing 0.5 g of nickel salt, for example, 0.5 g
And 0.1M potassium hydroxide aqueous solution is gradually added as a base over about 1 hour with stirring.
Besides the base, ammonia or sodium hydroxide can be used. After continuing stirring for an additional hour, the reaction is filtered and washed thoroughly with deionized water. After the washing is completed, the cake (reactant) is vacuum dried at 50 ° C. for about 20 hours, the dried sample is crushed and inserted into a heat treatment furnace, and 30 minutes or more for removing oxygen in the furnace, an inert gas is used. For example, purging with nitrogen. After that, the furnace is heated to 900 ° C. and treated at this temperature for about 2 hours to prepare a nickel-supported catalyst. Next, the temperature of the furnace is lowered to room temperature in a nitrogen atmosphere, air is gradually flown in the furnace to replace the air, and then the sample is taken out.

【0019】次いで、このニッケル担持触媒を粉砕し、
再び脱イオン水または蒸留水に十分分散させ、これに白
金0.05gを含む塩化白金酸水溶液300mlを添加
し、攪拌しながら50℃に昇温して、この状態で約1時
間攪拌を続ける。その後、還元剤として例えば0.1M
酢酸水溶液を約1時間かけて徐々に添加する。還元剤は
このほかに、蟻酸ナトリウムや蟻酸を使用することもで
きる。さらに1時間攪拌を続けた後、反応物を濾過し、
脱イオン水で十分に洗浄を行なう。洗浄終了後、ケーキ
(反応物)を50℃で約20時間真空乾燥し、白金−ニ
ッケル担持触媒を得ることができる。白金およびニッケ
ルの生成は、X線回折により確認されている。
Then, the nickel-supported catalyst is pulverized,
It is sufficiently dispersed again in deionized water or distilled water, 300 ml of a chloroplatinic acid aqueous solution containing 0.05 g of platinum is added thereto, the temperature is raised to 50 ° C. with stirring, and stirring is continued for about 1 hour in this state. Then, as a reducing agent, for example, 0.1M
Aqueous acetic acid solution is added slowly over about 1 hour. In addition to this, sodium formate or formic acid can be used as the reducing agent. After stirring for another hour, the reaction was filtered,
Thoroughly wash with deionized water. After washing, the cake (reactant) is vacuum dried at 50 ° C. for about 20 hours to obtain a platinum-nickel supported catalyst. The formation of platinum and nickel has been confirmed by X-ray diffraction.

【0020】以上のようにして得られた白金−ニッケル
担持触媒を用いて、先述の分散液1と同様の方法で分散
液3を作製し、先述の燃料極1と同様に、あらかじめ、
フッ素系樹脂で撥水処理を施した多孔性カーボン基材の
上に、分散液3をブレード法,スプレー法などにより塗
布し、乾燥後、PTFEが溶融する温度で焼成して燃料
極3とする。このとき分散液3に用いる触媒の使用量
は、燃料極3の単位面積当たりの白金量が、燃料極1の
単位面積当たりの白金量と同程度となるようにする。
Using the platinum-nickel-supported catalyst obtained as described above, a dispersion liquid 3 was prepared in the same manner as the dispersion liquid 1 described above, and was prepared in advance in the same manner as the fuel electrode 1 described above.
The dispersion liquid 3 is applied onto a porous carbon substrate that has been subjected to a water repellent treatment with a fluororesin by a blade method, a spray method, or the like, dried, and then baked at a temperature at which PTFE melts to form the fuel electrode 3. . At this time, the amount of the catalyst used in the dispersion liquid 3 is set such that the amount of platinum per unit area of the fuel electrode 3 is about the same as the amount of platinum per unit area of the fuel electrode 1.

【0021】ここで、実施例1の場合と同様に、この燃
料電極を用いて電池を作製して、実施例1の場合と同じ
条件のもとに電池を運転し、起動停止を繰り返したとき
の電池の出力特性の経時変化を求め、得られた結果は、
既に示した図1の線図に付記してある。再び図1を参照
すると、図1の曲線ハは、カーボン担体上に白金とニッ
ケルの微粒子を担持させた触媒を用いた本発明の燃料極
3を有する電池の特性変化を示している。図1の結果か
らわかるように、燃料極3は燃料極1と同等以上の特性
を有し、即ち、カーボン担体上に白金とニッケルの微粒
子を担持させた触媒を用いた燃料極を有する電池の方
が、比較のために作製した従来電極に相当する燃料極2
を有する電池より特性の劣化が少なく、長期間の運転に
対して安定性を持続する。なお、燃料極3も、実施例1
におけると同様、運転後の電池を解体し、電極の状態を
調べ、腐食が殆ど発生していないことを確認している。
Here, in the same manner as in the case of Example 1, when a battery was produced using this fuel electrode, the battery was operated under the same conditions as in Example 1, and the start and stop were repeated. The change over time in the output characteristics of the battery of
It is added to the diagram of FIG. 1 already shown. Referring again to FIG. 1, the curve C in FIG. 1 shows changes in characteristics of a cell having the fuel electrode 3 of the present invention using a catalyst in which fine particles of platinum and nickel are supported on a carbon carrier. As can be seen from the results of FIG. 1, the fuel electrode 3 has characteristics equal to or higher than those of the fuel electrode 1, that is, a fuel electrode having a fuel electrode using a catalyst in which platinum and nickel fine particles are supported on a carbon carrier. One is the fuel electrode 2 corresponding to the conventional electrode prepared for comparison.
The characteristics are less deteriorated and the stability is maintained for long-term operation than the battery having The fuel electrode 3 is also the same as in the first embodiment.
Similar to the above, the battery after operation is disassembled, the state of the electrodes is examined, and it is confirmed that almost no corrosion occurs.

【0022】実施例3.ここでは本発明の燃料電極を用
いて作製した電池の運転方法について述べる。燃料極1
を用いて幾つかの電池を作製し、これらの電池を、0.
1%の一酸化炭素を含む燃料ガスを使用して運転し、起
動停止を繰り返したときの燃料極1側の排ガス中のニッ
ケル量を測定し、その累計が、この電池を作製した際に
燃料極1の保有していたニッケル量の一定の割合に達す
る毎に、電池の運転を中断し、ニッケルカルボニルを燃
料極1に供給して、空気極には窒素を供給し、電池の温
度を190℃に2時間保持した後、燃料極1,空気極と
もに窒素を供給して150℃以下に降温、その後、再び
反応ガスを流して電池の運転を再開するという試験を繰
り返し行なった。
Example 3 Here, a method of operating a cell manufactured using the fuel electrode of the present invention will be described. Fuel pole 1
Were used to make several batteries and these batteries were
The amount of nickel in the exhaust gas on the fuel electrode 1 side was measured when the fuel gas containing 1% of carbon monoxide was used and the start and stop were repeated. Each time the electrode 1 reached a certain percentage of the amount of nickel it had, the operation of the battery was interrupted, nickel carbonyl was supplied to the fuel electrode 1, nitrogen was supplied to the air electrode, and the temperature of the battery was adjusted to 190 After the temperature was kept at 2 ° C. for 2 hours, nitrogen was supplied to both the fuel electrode and the air electrode to lower the temperature to 150 ° C. or lower, and then the reaction gas was flowed again to restart the operation of the cell.

【0023】一方でこれとは別に、電池の運転を中断し
て、ニッケルカルボニルを燃料極1に供給する前の段階
で解体する電池と、ニッケルカルボニルを燃料極1に供
給し、電池の温度を190℃に2時間保持した後の段階
で解体する電池とを作製して、それぞれの燃料極1中の
ニッケル量を原子吸光法により分析し、供給したニッケ
ルカルボニルが全てニッケルに変わることを確かめた。
On the other hand, separately from this, the operation of the battery is interrupted, and the battery to be disassembled at a stage before the nickel carbonyl is supplied to the fuel electrode 1 and the nickel carbonyl are supplied to the fuel electrode 1 to change the temperature of the battery. A battery that was to be disassembled after being held at 190 ° C. for 2 hours was manufactured, and the amount of nickel in each fuel electrode 1 was analyzed by an atomic absorption method, and it was confirmed that all of the supplied nickel carbonyl was changed to nickel. .

【0024】燃料極1側の排ガス中のニッケル量の累計
が、燃料極1の初期のニッケル量に対する割合で分類し
て、電池作製時の30%で運転を中断したものを電池
A,40%で中断したものを電池B,50%で中断した
ものを電池C,60%で中断したものを電池D,70%
で中断したものを電池E,80%で中断したものを電池
Fとし、これら各電池の種類別に出力特性の劣化速度を
求め、これを図2の棒グラフに示す。
The total amount of nickel in the exhaust gas on the side of the fuel electrode 1 is classified by the ratio to the initial amount of nickel of the fuel electrode 1, and the operation is interrupted at 30% during the cell preparation. Battery B for what was interrupted at 50%, Battery C for what was interrupted at 50%, Battery D for which it was interrupted at 60%, 70%
A battery E was interrupted at 80% and a battery F was interrupted at 80%, and the deterioration rate of the output characteristics was obtained for each type of these batteries, and this is shown in the bar graph of FIG.

【0025】図2の結果は、燃料極1側の排ガス中のニ
ッケル量の累計が、電池作製時の70%未満(電池A〜
D)のときニッケルを補充した電池の特性の劣化は、電
池作製時の70%以上(電池E〜F)に達した時点でニ
ッケルを補充した電池の特性劣化より小さく、長期的に
安定であることを示している。また、実施例1で述べた
と同様に、運転後の電池を解体し、電極の状態を調べた
結果、燃料極1側の排ガス中のニッケル量の累計が、電
池作製時の60%以下に達した時点でニッケルを補充し
た電池には、殆ど腐食が認められない。
The results of FIG. 2 indicate that the total amount of nickel in the exhaust gas on the side of the fuel electrode 1 is less than 70% of that during cell production (cells A to
In the case of D), the deterioration of the characteristics of the battery supplemented with nickel is smaller than the deterioration of the characteristics of the battery supplemented with nickel when the battery reaches 70% or more (batteries E to F) at the time of battery preparation, and is stable in the long term. It is shown that. Further, as described in Example 1, the battery after operation was disassembled and the state of the electrodes was examined. As a result, the cumulative total amount of nickel in the exhaust gas on the side of the fuel electrode 1 reached 60% or less when the battery was manufactured. Almost no corrosion was observed in the battery supplemented with nickel at that time.

【0026】さらに、燃料電極として本発明の燃料極3
を用いて電池を作製し、上記と同様の試験を行なった
が、同様の結果が得られている。以上の結果と、電池の
運転の中断回数を少なく抑える必要性など、総合的に見
て、燃料電極側の排ガス中のニッケル量の累計が、電池
作製時の60%に達する時点で、ニッケルを補充するの
が、本発明の燃料電極を用いた燃料電池の最適運転方法
ということができる。
Further, the fuel electrode 3 of the present invention is used as a fuel electrode.
A battery was prepared by using the above, and the same test as the above was conducted, but similar results were obtained. When looking at the above results and the need to keep the number of cell operation interruptions low, the total amount of nickel in the exhaust gas on the fuel electrode side reaches 60% of that during cell production Replenishment can be said to be the optimum operation method of the fuel cell using the fuel electrode of the present invention.

【0027】[0027]

【発明の効果】以上実施例で述べた如く、本発明の燃料
電池用燃料電極に形成する触媒は、カーボン担体上に白
金を担持した触媒と、カーボン担体上にニッケルを担持
した触媒とを混合した触媒、もしくは一つのカーボン担
体上に白金とニッケルの微粒子を担持した触媒とするこ
とにより、電池の起動停止時の比較的低温で運転される
とき、燃料ガス中に含まれる一酸化炭素の吸着による悪
影響を除去し、電池の寿命特性を向上させることができ
る。
As described in the above examples, the catalyst formed in the fuel electrode for a fuel cell of the present invention is a mixture of a catalyst in which platinum is supported on a carbon carrier and a catalyst in which nickel is supported on a carbon carrier. Adsorption of carbon monoxide contained in the fuel gas when the cell is operated at a relatively low temperature when the cell is started and stopped by using the above catalyst or a catalyst in which fine particles of platinum and nickel are supported on one carbon carrier. It is possible to eliminate the adverse effect caused by and improve the life characteristics of the battery.

【0028】さらに、本発明の燃料電極を用いた電池の
最適運転方法として、燃料電極側の排ガス中のニッケル
量を測定し、ニッケルの減少量に応じたニッケルカルボ
ニルを随時補給して、190℃に昇温しニッケルを析出
させるという方法を採用することにより、ニッケルの減
少に起因する燃料電極の一酸化炭素に対する耐性の低下
を防止するものである。
Furthermore, as an optimum operation method of a cell using the fuel electrode of the present invention, the amount of nickel in the exhaust gas on the fuel electrode side is measured, and nickel carbonyl is replenished as needed according to the amount of decrease in nickel, and the temperature is set to 190 ° C. By adopting the method in which the temperature is raised to precipitate nickel, the decrease in resistance to carbon monoxide of the fuel electrode due to the decrease in nickel is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電極を用いた電池の出力特性を従
来電極を用いた電池との比較で示した線図
1 is a diagram showing the output characteristics of a cell using a fuel electrode of the present invention in comparison with a cell using a conventional electrode.

【図2】本発明の燃料電極を用いた電池の出力特性の劣
化速度をニッケル補給時点で比較した棒グラフ
FIG. 2 is a bar graph comparing the deterioration rates of the output characteristics of cells using the fuel electrode of the present invention at the time of nickel replenishment.

【符号の説明】[Explanation of symbols]

なし None

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】触媒を備えた燃料電池の燃料電極であっ
て、前記触媒としてカーボン担体上に白金を担持した触
媒と、カーボン担体上にニッケルを担持した触媒とを混
合してなる触媒を用いることを特徴とする燃料電池の燃
料電極。
1. A fuel electrode for a fuel cell provided with a catalyst, wherein the catalyst is a mixture of a catalyst having platinum supported on a carbon carrier and a catalyst having nickel supported on the carbon carrier. A fuel electrode for a fuel cell, which is characterized in that
【請求項2】触媒を備えた燃料電池の燃料電極であっ
て、前記触媒としてカーボン担体上に白金とニッケルの
微粒子を担持してなる触媒を用いることを特徴とする燃
料電池の燃料電極。
2. A fuel electrode for a fuel cell provided with a catalyst, wherein the catalyst comprises a catalyst in which fine particles of platinum and nickel are supported on a carbon carrier as the catalyst.
【請求項3】請求項2記載の触媒を製造するに当たり、
アセチレンブラックまたはファーネスブラックを純水に
分散し、これにニッケル塩を加え、さらに塩基を添加し
攪拌した後、得られたケーキを不活性ガス雰囲気中で加
熱してニッケルを析出させ、このニッケルを担持したカ
ーボンを再び純水に分散し、これに白金酸塩水溶液を加
え、次いで還元剤を徐々に添加して白金塩を還元してカ
ーボン上に白金を析出させることを特徴とする燃料電極
の触媒製造方法。
3. In producing the catalyst according to claim 2,
Acetylene black or furnace black was dispersed in pure water, a nickel salt was added to this, and a base was further added and stirred, and then the obtained cake was heated in an inert gas atmosphere to precipitate nickel. The supported carbon is again dispersed in pure water, an aqueous platinate solution is added thereto, and then a reducing agent is gradually added to reduce the platinum salt to deposit platinum on the carbon. Catalyst manufacturing method.
【請求項4】請求項1および2記載の燃料電極を用いた
電池を運転するに当たり、燃料電極側の排ガス中のニッ
ケル量を測定し、減少したニッケルを随時補給すること
を特徴とする燃料電池の運転方法。
4. A fuel cell characterized by measuring the amount of nickel in the exhaust gas on the fuel electrode side and replenishing the reduced nickel as needed when operating the cell using the fuel electrode according to claim 1. Driving method.
【請求項5】請求項4記載の運転方法において、電池の
起動時から経時的に排ガス中のニッケル量を測定し、ニ
ッケル量の累計が電池製造時に燃料電極の保有するニッ
ケル量の60%となる時点で運転を停止し、ニッケルカ
ルボニルを燃料電極に供給し、電池を190℃に昇温さ
せることによりニッケルを析出させ補給することを特徴
とする燃料電池の運転方法。
5. The operating method according to claim 4, wherein the amount of nickel contained in the exhaust gas is measured with time from the time of starting the battery, and the total amount of nickel is 60% of the amount of nickel held in the fuel electrode at the time of manufacturing the battery. At a certain point, the operation is stopped, nickel carbonyl is supplied to the fuel electrode, and the temperature of the cell is raised to 190 ° C. to deposit and replenish nickel, thereby operating the fuel cell.
JP7012156A 1995-01-30 1995-01-30 Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method Pending JPH08203536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7012156A JPH08203536A (en) 1995-01-30 1995-01-30 Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7012156A JPH08203536A (en) 1995-01-30 1995-01-30 Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method

Publications (1)

Publication Number Publication Date
JPH08203536A true JPH08203536A (en) 1996-08-09

Family

ID=11797606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7012156A Pending JPH08203536A (en) 1995-01-30 1995-01-30 Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method

Country Status (1)

Country Link
JP (1) JPH08203536A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
JP2002289208A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Electrode catalyst for fuel cell and its manufacturing method
WO2003100890A1 (en) * 2002-05-29 2003-12-04 Nec Corporation Fuel cell catalyst carrying particle, composite electrolyte containing the same, catalytic electrode, fuel cell and process for producing tehm
JP2007005162A (en) * 2005-06-24 2007-01-11 Permelec Electrode Ltd Manufacturing method of catalyst for fuel cell, gas diffusion electrode and fuel cell using the catalyst
JP2007209980A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Metal catalyst and its manufacturing method, electrode and its manufacturing method, and fuel cell
JP2008027848A (en) * 2006-07-25 2008-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell catalyst layer
US7837968B2 (en) 2004-11-02 2010-11-23 Samsung Sdi Co., Ltd. Carbon nanosphere with at least one opening, method for preparing the same, carbon nanosphere-impregnated catalyst using the carbon nanosphere, and fuel cell using the catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
JP4721539B2 (en) * 2001-03-26 2011-07-13 パナソニック株式会社 Fuel cell electrode catalyst and method for producing the same
JP2002289208A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Electrode catalyst for fuel cell and its manufacturing method
WO2003100890A1 (en) * 2002-05-29 2003-12-04 Nec Corporation Fuel cell catalyst carrying particle, composite electrolyte containing the same, catalytic electrode, fuel cell and process for producing tehm
US8236724B2 (en) 2002-05-29 2012-08-07 Nec Corporation Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
US8603934B2 (en) 2004-11-02 2013-12-10 Samsung Sdi Co., Ltd. Carbon nanosphere with at least one opening, method for preparing the same, carbon nanosphere-impregnated catalyst using the carbon nanosphere, and fuel cell using the catalyst
US7837968B2 (en) 2004-11-02 2010-11-23 Samsung Sdi Co., Ltd. Carbon nanosphere with at least one opening, method for preparing the same, carbon nanosphere-impregnated catalyst using the carbon nanosphere, and fuel cell using the catalyst
US8173096B2 (en) 2004-11-02 2012-05-08 Samsung Sdi Co., Ltd. Carbon nanosphere with at least one opening, method for preparing the same, carbon nanosphere-impregnated catalyst using the carbon nanosphere, and fuel cell using the catalyst
JP2007005162A (en) * 2005-06-24 2007-01-11 Permelec Electrode Ltd Manufacturing method of catalyst for fuel cell, gas diffusion electrode and fuel cell using the catalyst
US8029945B2 (en) 2006-02-07 2011-10-04 Samsung Sdi Co., Ltd. Method of preparing metal catalyst and electrode including the same
JP4695612B2 (en) * 2006-02-07 2011-06-08 三星エスディアイ株式会社 Method for producing metal catalyst and method for producing electrode
JP2007209980A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Metal catalyst and its manufacturing method, electrode and its manufacturing method, and fuel cell
JP2008027848A (en) * 2006-07-25 2008-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell catalyst layer

Similar Documents

Publication Publication Date Title
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
JP5456797B2 (en) Fuel cell electrode catalyst
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
JP2005118671A (en) Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
KR101670929B1 (en) Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
CN101411014A (en) Electrode catalyst for fuel cell and method for producing the same
JP5426910B2 (en) Fuel cell
JP2022106781A (en) Metal-doped tin oxide for electrocatalysis applications
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
KR20160128951A (en) Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
JPH0785874A (en) Fuel electrode for fuel cell
JP2005317546A (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
WO2019179530A1 (en) Platinum-based alloy catalyst and preparation method therefor, membrane electrode, and fuel cell
JP5365231B2 (en) Method for producing conductive oxide carrier
KR20100100124A (en) Method for manufacturing cathode of fuel cell
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
JPH08203536A (en) Fuel electrode of fuel battery, catalyst manufacture thereof and battery operation method
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
CN112151811A (en) Catalyst composite for fuel cell, method for producing same, and electrode
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
EP1547708A1 (en) Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifyi
JP7093860B1 (en) Fuel cell electrode catalyst
JPH1032009A (en) Manufacture of fuel cell
CN114250487B (en) Carbon paper-supported ruthenium manganide catalyst and preparation method and application thereof