JPH1032009A - Manufacture of fuel cell - Google Patents

Manufacture of fuel cell

Info

Publication number
JPH1032009A
JPH1032009A JP8185675A JP18567596A JPH1032009A JP H1032009 A JPH1032009 A JP H1032009A JP 8185675 A JP8185675 A JP 8185675A JP 18567596 A JP18567596 A JP 18567596A JP H1032009 A JPH1032009 A JP H1032009A
Authority
JP
Japan
Prior art keywords
ruthenium
fuel electrode
fuel
temperature
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185675A
Other languages
Japanese (ja)
Inventor
Hiroko Ueki
裕子 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8185675A priority Critical patent/JPH1032009A/en
Publication of JPH1032009A publication Critical patent/JPH1032009A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To carry out the adding of luthenium adequately and relatively easily, and to obtain a sufficient durability to a carbon monoxide, by adding the luthenium to a fuel cell furnishing a catalyst layer including platinum, after a single battery is formed thereto. SOLUTION: To this fuel cell, an unit cell formed by combining an air electrode and an electrolyte is formed, and after that, the adding operation of luthenium is carried out. As the concrete method, a luthenium tetroxide gas is fed to the fuel cell while maintaining at the temperature 70 to 170 deg.C, it is sealed in some case, and then the temperature is made less than 50 deg.C, so as to deposit the luthenium tetroxide on the electrode. Furthermore, the temperature is raised to 110 to 170 deg.C, a hydrogen deluted by an inert gas such as a nitrogen is fed, and it is maintained for 20h or more, so as to reduce the luthenium. The feeding of the luthenium tetroxide at the initial phase may be carried out gradually from the downstream side at the temperature 50 to 60 deg.C. Furthermore, this method is applied to the unit cells of a fuel cell formed by layering plural unit cells.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リン酸型や固体高
分子電解質型の燃料電池の製造方法、とくに燃料電極の
触媒層の製造方法に関する。
The present invention relates to a method for producing a phosphoric acid type or solid polymer electrolyte type fuel cell, and more particularly to a method for producing a catalyst layer of a fuel electrode.

【0002】[0002]

【従来の技術】燃料電池においては、燃料電極に水素
を、また酸化剤電極に酸素を供給し、電気化学反応によ
り発電している。しかしながら、燃料電極に供給する燃
料ガスとして純水素を使用することは経済的に不利であ
ることから、天然ガスなどの炭化水素系の原燃料を改質
して得られた水素分に富んだ改質ガスを燃料ガスとして
使用している。このような改質ガスには水素ガス以外に
二酸化炭素あるいは一酸化炭素などの不純物ガスが含有
されている。
2. Description of the Related Art In a fuel cell, hydrogen is supplied to a fuel electrode and oxygen is supplied to an oxidant electrode to generate power by an electrochemical reaction. However, since it is economically disadvantageous to use pure hydrogen as the fuel gas supplied to the fuel electrode, a reformate rich in hydrogen obtained by reforming a hydrocarbon-based raw fuel such as natural gas is used. High quality gas is used as fuel gas. Such a reformed gas contains an impurity gas such as carbon dioxide or carbon monoxide in addition to hydrogen gas.

【0003】ところで、比較的低い温度で運転されるり
ん酸形燃料電池や固体高分子形燃料電池においては、白
金黒やカーボン担体に白金を担持した白金触媒あるいは
白金に白金以外の成分を加えた白金合金触媒が電極触媒
層に使用されている。これらの電極触媒層は、燃料ガス
中に一酸化炭素が含有されていると、この一酸化炭素が
吸着することによって燃料電極における分極が大きくな
り、その結果燃料電池の発生電圧が低下するという問題
がある。
In a phosphoric acid fuel cell or a polymer electrolyte fuel cell which is operated at a relatively low temperature, platinum black or a platinum catalyst having platinum supported on a carbon carrier or a component other than platinum is added to platinum. A platinum alloy catalyst is used for the electrode catalyst layer. In these electrode catalyst layers, when carbon monoxide is contained in the fuel gas, the carbon monoxide is adsorbed to increase the polarization at the fuel electrode, thereby lowering the voltage generated in the fuel cell. There is.

【0004】特に、燃料電池の運転温度が低いと発生電
圧が極端に低下することが知られているが、一般に、燃
料電池は複数個の電池と冷却板を組み合わせた積層体と
して構成されており、冷却板の近傍の電池の運転温度は
相対的に低くなるので、この部分の電池の発生電圧は低
くなる。また、一酸化炭素の触媒への吸着量はその濃度
に比例する。電極上では、燃料ガスの流れに沿って燃料
ガス中の水素が徐々に消費されていくので、燃料ガスの
流れの下流側では相対的に一酸化炭素濃度が高くなる。
[0004] In particular, it is known that when the operating temperature of a fuel cell is low, the generated voltage is extremely lowered. In general, a fuel cell is configured as a laminate in which a plurality of cells and a cooling plate are combined. Since the operating temperature of the battery near the cooling plate is relatively low, the voltage generated by the battery in this portion is low. The amount of carbon monoxide adsorbed on the catalyst is proportional to the concentration. On the electrode, the hydrogen in the fuel gas is gradually consumed along the flow of the fuel gas, so that the concentration of carbon monoxide is relatively high downstream of the flow of the fuel gas.

【0005】従って、冷却板の近傍の電池の燃料電極
や、電極の燃料ガスの下流側では、一酸化炭素の吸着量
が多くなり、次式(1)のごとき触媒反応による水素の
解離が妨げられ、(2)式に示すカーボンの腐食反応が
起こりやすくなる。
Accordingly, the amount of carbon monoxide adsorbed on the fuel electrode of the battery near the cooling plate and on the downstream side of the fuel gas of the electrode increases, and dissociation of hydrogen by the catalytic reaction as shown in the following equation (1) is hindered. Therefore, the carbon corrosion reaction shown in the equation (2) is likely to occur.

【0006】[0006]

【化1】 H2 →2H+ +2e- (1) C+2H2 O → CO2 +4H+ +4e- (2) このため、冷却板の近傍の電池の燃料電極の腐食や、燃
料ガスの下流側からの電極の腐食が進み、電池の寿命が
短くなるという問題がある。
H 2 → 2H + + 2e (1) C + 2H 2 O → CO 2 + 4H + + 4e (2) For this reason, corrosion of the fuel electrode of the battery in the vicinity of the cooling plate and the generation of fuel gas from the downstream side There is a problem that the corrosion of the electrode proceeds and the life of the battery is shortened.

【0007】したがって、これらの課題を解決する方策
の一つとして、一酸化炭素の被毒を受けにくいルテニウ
ムを燃料電極に含有させる方法が従来より採られてい
る。ルテニウムを燃料電極に含有させる方法としては、
カーボン等の担体に、ルテニウム、あるいは白金とルテ
ニウムの合金等の微粒子を担持した触媒を作製し、それ
を用いて燃料電極を作製する方法が一般に用いられてい
る。
Therefore, as one of measures for solving these problems, a method of incorporating ruthenium, which is hardly poisoned by carbon monoxide, into a fuel electrode has been adopted. As a method of including ruthenium in the fuel electrode,
In general, a method is used in which a catalyst is prepared in which fine particles such as ruthenium or an alloy of platinum and ruthenium are supported on a carrier such as carbon, and a fuel electrode is prepared using the catalyst.

【0008】[0008]

【発明が解決しようとする課題】上記のごとく、従来よ
り、一酸化炭素による冷却板の近傍の電池の燃料電極の
腐食や、燃料ガスの下流側からの電極の腐食を防止する
ために、ルテニウムを担持した触媒を適用する方法が用
いられており、その具体的方法として、 該当箇所の腐食の防止に必要なルテニウム触媒を均等
に含有させて燃料電極を作製する方法。
As described above, in order to prevent corrosion of a fuel electrode of a cell near a cooling plate due to carbon monoxide and corrosion of an electrode from a downstream side of fuel gas, ruthenium has conventionally been used. A method of applying a catalyst that supports the same is used. As a specific method, a method of preparing a fuel electrode by uniformly containing a ruthenium catalyst necessary for preventing corrosion of a corresponding portion.

【0009】該当箇所の腐食の防止ができるようにル
テニウム触媒を多量に用いた電極と、その他の部分に用
いるものとしてルテニウム触媒量を減らした電極を作製
する方法。 ルテニウムの割合の異なる触媒を2種類以上作製し、
これを用いて電極を作製し、腐食の危険度に応じて、ル
テニウム量の多い電極と、少ない電極を組み込む方法。
A method for producing an electrode using a large amount of a ruthenium catalyst so as to prevent corrosion of a corresponding portion, and an electrode using a small amount of a ruthenium catalyst for use in other portions. Produce two or more types of catalysts with different ruthenium ratios,
A method in which an electrode is manufactured using this, and an electrode having a large amount of ruthenium and an electrode having a small amount of ruthenium are incorporated according to the risk of corrosion.

【0010】等の方法が採られている。しかしながら、
上記のの方法では、必要以上に多量のルテニウムを使
用することとなるので、コストが高くなるという難点が
あり、また、あるいはの方法では、数種類の触媒の
作製が必要で電極作製方法が煩雑となり,また所定の電
極を所定の箇所に組み入れる必要があるので電池作製方
法が煩雑となり、コスト的にも、作業性の上からも効率
が悪いという難点がある。さらに、これらの方法におい
ては、作製し運転を開始した電池に対しては、腐食の危
険が生じても対応できないという問題点がある。
And the like. However,
In the above-mentioned method, since a large amount of ruthenium is used more than necessary, there is a disadvantage that the cost is high, and in the other method, several kinds of catalysts need to be produced, and the electrode production method becomes complicated. In addition, since it is necessary to incorporate a predetermined electrode into a predetermined location, the battery manufacturing method is complicated, and there is a disadvantage that efficiency is low in terms of cost and workability. Furthermore, these methods have a problem that a battery that has been manufactured and started operating cannot be dealt with even if there is a danger of corrosion.

【0011】本発明の目的は、上記のごとき従来技術の
難点を解消し、燃料電極に適切に、かつ比較的容易にル
テニウムが添加され、一酸化炭素に対し十分な耐性を備
えた燃料電池が得られる燃料電池の製造方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a fuel cell in which ruthenium is appropriately and relatively easily added to a fuel electrode and which has sufficient resistance to carbon monoxide. An object of the present invention is to provide a method for manufacturing the obtained fuel cell.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の燃料電池の製造方法においては、(1)
白金を含有する触媒層を備えた燃料電極を形成し、この
燃料電極を空気電極および電解質層と組み合わせて単電
池を形成し、しかるのち、燃料電極へのルテニウムの添
加操作を行うことにより燃料電極を作製することとし、
燃料電極へのルテニウムの具体的な添加操作を、(2)
温度を70℃以上170 ℃以下に保持しつつ、燃料電極に四
酸化ルテニウムガスを供給し、場合によっては封入し、
燃料電極の温度を50℃以下に降温し、さらに、燃料電極
の温度を110 ℃以上170 ℃以下に昇温し、その後、不活
性ガスで希釈した水素を供給し、20時間以上保持してル
テニウムを還元させる方法により行うこととする。
Means for Solving the Problems To solve the above-mentioned problems, a method of manufacturing a fuel cell according to the present invention comprises the steps of (1)
A fuel electrode having a platinum-containing catalyst layer is formed, and this fuel electrode is combined with an air electrode and an electrolyte layer to form a unit cell. Thereafter, the operation of adding ruthenium to the fuel electrode is performed to form a fuel electrode. To make,
The specific operation of adding ruthenium to the fuel electrode is described in (2)
While maintaining the temperature at 70 ° C or higher and 170 ° C or lower, supply ruthenium tetroxide gas to the fuel electrode, and in some cases, encapsulate the fuel electrode.
The temperature of the fuel electrode is lowered to 50 ° C or less, and the temperature of the fuel electrode is further raised to 110 ° C or more and 170 ° C or less.After that, hydrogen diluted with an inert gas is supplied, and the ruthenium is held for at least 20 hours. To be reduced.

【0013】(3)あるいは、温度を50℃以上60℃未満
に保持しつつ、燃料電極に供給される燃料ガスの下流側
から四酸化ルテニウムガスを徐々に供給し、燃料電極の
温度を50℃以下に降温し、さらに、燃料電極の温度を11
0 ℃以上170 ℃以下に昇温し、その後、不活性ガスで希
釈した水素を供給し、20時間以上保持してルテニウムを
還元させる方法により行うこととする。
(3) Alternatively, while maintaining the temperature at 50 ° C. or more and less than 60 ° C., gradually supply ruthenium tetroxide gas from the downstream side of the fuel gas supplied to the fuel electrode, and raise the temperature of the fuel electrode to 50 ° C. The temperature dropped below, and the temperature of the fuel electrode was reduced to 11
The temperature is raised to 0 ° C. or more and 170 ° C. or less, and thereafter, hydrogen diluted with an inert gas is supplied and maintained for 20 hours or more to reduce ruthenium.

【0014】(4)また、複数個の単電池を積層して構
成される燃料電池の単電池の燃料電極を、上記のごとき
方法により作製することとし、(5)例えば、添加する
ルテニウムの量を、運転温度の低い単電池ほど多量と
し、運転温度の高い単電池ほど少量として作製すること
とする。上記のごとき方法を用いることとすれば、電池
を形成した状態で燃料電極にルテニウムを添加するの
で、一酸化炭素に対する耐性を高める必要のある電極に
適切、かつ比較的容易にルテニウムが添加でき、コスト
が低く抑えられ、かつ電池の製造作業の作製作業の効率
も向上する。
(4) In addition, the fuel electrode of the unit cell of the fuel cell constituted by stacking a plurality of unit cells is manufactured by the above-described method. (5) For example, the amount of added ruthenium Are made larger for a single cell having a lower operating temperature and smaller for a single cell having a higher operating temperature. If the above method is used, ruthenium is added to the fuel electrode in a state where the battery is formed, so that ruthenium can be added to the electrode that needs to increase resistance to carbon monoxide, and relatively easily, The cost is kept low, and the efficiency of the battery manufacturing operation is improved.

【0015】さらに、本方法を用いれば、運転開始後の
電池においても、一旦運転を停止させて所定の温度に保
持すればルテニウムの添加が可能であり、電池の寿命が
一段と向上することとなる。
Further, if the method is used, ruthenium can be added to the battery after the start of operation, if the operation is temporarily stopped and maintained at a predetermined temperature, and the life of the battery is further improved. .

【0016】[0016]

【発明の実施の形態】以下、本発明を実施例に基づき説
明する。 <実施例1>白金 10 wt%をカーボンブラックに担持し
た触媒( 以下、触媒Aと呼ぶ)の所定量を界面活性剤の
入ったイオン交換水に超音波ホモジナイザーを用いて均
一に分散させた後、触媒1cm3 当たり1gのPTFE
(ポリテトラフルオロエチレン)が混合するPTFE分
散溶液(濃度60%,比重 1.5)を加え、更に混合して、
触媒/PTFE分散液を作製する。次に、PTFEを用
いて撥水処理を施した多孔性カーボン基材の上に、基材
1cm2 当たり 0.1gのPTFEが存在するように、触媒
/PTFE分散液を散布、塗布し、乾燥した後、PTF
Eが溶融する温度で焼成して燃料電極(燃料電極A)を
作製した。なお、上記の分散液の作製ならびに多孔性カ
ーボン基材の撥水処理において、PTFEの代わりにF
EP(ポリテトラフルオロエチレン−プロピレン)を用
いてもよく、また、分散液の散布、塗布にはブレード
法, スプレー等の方法を用いればよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments. <Example 1> After a predetermined amount of a catalyst in which 10 wt% of platinum is supported on carbon black (hereinafter referred to as catalyst A) is uniformly dispersed in ion-exchanged water containing a surfactant using an ultrasonic homogenizer. , 1 g of PTFE per cm 3 of catalyst
(Polytetrafluoroethylene) mixed PTFE dispersion solution (concentration 60%, specific gravity 1.5) is added and further mixed,
Prepare a catalyst / PTFE dispersion. Next, a catalyst / PTFE dispersion was sprayed, applied and dried on a porous carbon substrate subjected to a water-repellent treatment using PTFE so that 0.1 g of PTFE was present per 1 cm 2 of the substrate. Later, PTF
The fuel was fired at a temperature at which E melted to produce a fuel electrode (fuel electrode A). In the preparation of the dispersion and the water-repellent treatment of the porous carbon substrate, F was used instead of PTFE.
EP (polytetrafluoroethylene-propylene) may be used, and a method such as a blade method or a spray method may be used for dispersion and application of the dispersion.

【0017】次いで、白金 20 wt%をカーボンブラック
に担持した触媒を用い、その他は燃料電極Aの作製に用
いた方法と同様の方法により空気電極を作製し、作製し
た燃料電極Aと空気電極を用いて電池を構成した。得ら
れた電池を昇温して一定温度に保ちながら、窒素で希釈
した四酸化ルテニウムガスを燃料電極に封入し、電池の
温度を 50 ℃以下に下げて四酸化ルテニウムを電極上に
析出させた。その後、110 ℃以上に昇温し、電極内を窒
素で置換し、次に、窒素で希釈した水素を供給して一定
時間保持した後、電池を分解して、内部を調査した。
Next, an air electrode was prepared by the same method as that used for preparing the fuel electrode A, except that a catalyst in which 20 wt% of platinum was supported on carbon black was used. A battery was constructed using the above. While maintaining the obtained battery at a constant temperature, ruthenium tetroxide gas diluted with nitrogen was sealed in the fuel electrode, and the temperature of the battery was lowered to 50 ° C. or lower, and ruthenium tetroxide was deposited on the electrode. . Thereafter, the temperature was raised to 110 ° C. or higher, the inside of the electrode was replaced with nitrogen, and then hydrogen diluted with nitrogen was supplied and held for a certain period of time. Then, the battery was disassembled and the inside was inspected.

【0018】その結果、分解した電池の燃料電極上にル
テニウムが生成されていることがX線回折により確認さ
れた。また、窒素で希釈した水素を供給した後の保持時
間が20 時間以上のものは全てルテニウムとして存在し
たが、 20 時間未満のものには、一部、酸化ルテニウム
の部分があった。次に、分解した電池の燃料電極上のル
テニウムの分布をEPMA分析により分析した結果、四
酸化ルテニウムガスを封入する際の保持温度が 70 ℃以
上のものは電極全面に一様にルテニウムが分布している
のに対して、保持温度が 50 ℃以上 60 ℃以下のものは
四酸化ルテニウムガスの供給部付近にルテニウムが偏析
している部分があった。また保持温度が50 ℃未満では
四酸化ルテニウムがガスとして安定に存在せず、供給不
可能であった。
As a result, it was confirmed by X-ray diffraction that ruthenium was formed on the fuel electrode of the disassembled cell. In addition, all of those having a retention time of 20 hours or more after supplying hydrogen diluted with nitrogen were present as ruthenium, while those having a retention time of less than 20 hours contained a part of ruthenium oxide. Next, the distribution of ruthenium on the fuel electrode of the disassembled battery was analyzed by EPMA analysis. As a result, ruthenium with a holding temperature of 70 ° C or more when sealing ruthenium tetroxide gas was distributed uniformly over the entire surface of the electrode. On the other hand, when the holding temperature was 50 ° C or higher and 60 ° C or lower, there was a portion where ruthenium segregated near the ruthenium tetroxide gas supply section. Further, when the holding temperature was lower than 50 ° C., ruthenium tetroxide was not stably present as a gas and could not be supplied.

【0019】したがって、電極内に一様にルテニウムを
分布させるためには、四酸化ルテニウムガスを封入する
際の温度は 70 ℃以上が望ましい。加えて、触媒に用い
られている白金は、180 ℃以上では溶解が大きくなるの
で、電極温度は 170℃以下に抑える必要がある。また、
電極の温度を 50 ℃以上 60 ℃以下に保ち、四酸化ルテ
ニウムガスの供給を適切な位置から行うことにより、電
極内のルテニウムの分布に傾斜を持たせることが可能な
ことがわかる。また、ルテニウムを全て還元するために
は、電極に水素を供給した後、20時間以上保持する必要
がある。
Therefore, in order to uniformly distribute ruthenium in the electrode, the temperature at which ruthenium tetroxide gas is sealed is desirably 70 ° C. or higher. In addition, platinum used as a catalyst dissolves more at 180 ° C. or higher, so that the electrode temperature must be suppressed to 170 ° C. or lower. Also,
It can be seen that the distribution of ruthenium in the electrode can be inclined by maintaining the temperature of the electrode between 50 ° C and 60 ° C and supplying ruthenium tetroxide gas from an appropriate position. Further, in order to reduce all ruthenium, it is necessary to supply hydrogen to the electrode and hold it for 20 hours or more.

【0020】次に、燃料電極Aと空気電極を用いて構成
した電池に四酸化ルテニウムガスを供給する際の保持温
度を 70 ℃以上 170℃以下に保ち、燃料電極に使用した
触媒Aに対して 10 wt%のルテニウムを含む窒素で希釈
した四酸化ルテニウムガスを封入した後、電池の温度を
50 ℃以下に下げ、その後、110 ℃以上に昇温した。次
いで、電極内を窒素で置換し、その後、窒素で希釈した
水素を供給し、20時間以上保持して、燃料電極にルテニ
ウムを供給した電池(電池A)を作製した。図1は、電
池Aの製作工程をとりまとめて表示したフロー図であ
る。
Next, the temperature at which the ruthenium tetroxide gas is supplied to the battery composed of the fuel electrode A and the air electrode is maintained at 70 ° C. or more and 170 ° C. or less, and the temperature of the catalyst A used for the fuel electrode is maintained. After filling ruthenium tetroxide gas diluted with nitrogen containing 10 wt% ruthenium, the temperature of the battery was reduced.
The temperature was lowered to 50 ° C or lower, and then raised to 110 ° C or higher. Next, the inside of the electrode was replaced with nitrogen, and then hydrogen diluted with nitrogen was supplied and held for 20 hours or more, thereby producing a battery (battery A) in which ruthenium was supplied to the fuel electrode. FIG. 1 is a flowchart showing the manufacturing steps of the battery A.

【0021】一方、9gの触媒Aを脱イオン水 400mlに
十分分散させ、これに、ルテニウム塩、すなわち1gの
ルテニウムを含む 300mlの塩化ルテニウム水溶液を添加
して十分攪拌したのち、アルカリ溶液として O.1M アンモニ
ア 水溶液を約1時間かけて攪拌しながら徐々に添加し、
反応物を濾過し、脱イオン水で十分に洗浄を行った。洗
浄終了後、ケーキ(反応物)を 50 ℃で約 20 時間真空
乾燥し,乾燥した試料を粉砕して熱処理炉に挿入し、炉
内の酸素を除去するため 30 分以上、不活性ガスでパー
ジした。この後、炉を 900℃まで昇温し、この温度で約
2時間処理した後、窒素雰囲気のまま室温まで下げ、炉
内に徐々に空気を流して置換した後、取り出して、ルテ
ニウム−白金触媒(触媒B)を得た。得られた触媒にお
けるルテニウム−白金触媒の生成はX線回折によって確
認した。
On the other hand, 9 g of the catalyst A was sufficiently dispersed in 400 ml of deionized water, and a ruthenium salt, that is, 300 ml of an aqueous solution of ruthenium chloride containing 1 g of ruthenium was added thereto, and the mixture was sufficiently stirred. 1M ammonia aqueous solution is added gradually with stirring for about 1 hour,
The reaction was filtered and washed well with deionized water. After washing, the cake (reactant) is vacuum dried at 50 ° C for about 20 hours, and the dried sample is crushed and inserted into a heat treatment furnace, and purged with an inert gas for 30 minutes or more to remove oxygen in the furnace. did. Thereafter, the furnace was heated to 900 ° C., treated at this temperature for about 2 hours, cooled down to room temperature in a nitrogen atmosphere, air was gradually flown into the furnace, and the furnace was removed. (Catalyst B) was obtained. The formation of the ruthenium-platinum catalyst in the obtained catalyst was confirmed by X-ray diffraction.

【0022】以上にようにして得られた触媒Bを用い、
燃料電極Aと同様の作製方法を用いて燃料電極(燃料電
極B)を作製した。さらに、この燃料電極Bと、電池A
の構成に用いたものと同様の空気電極を用いて電池(電
池C)を構成した。図2は、上記のごとく作製した電池
Aと電池Cについて、燃料電極に燃料ガスとして供給さ
れる水素と炭酸ガスの混合ガスが一酸化炭素を含まない
場合の出力電圧と一酸化炭素を5%含む場合の出力電圧
の差、すなわち一酸化炭素による特性の劣化を示した特
性図で、図に併記した電池Bは、燃料電極Aと空気電極
を用いて構成された電池で、燃料電極にルテニウムが供
給されてない電池である。図に見られるように、電池
A、すなわち本発明の製造方法により、電池を形成した
のち燃料電極にルテニウムを供給して得られた電池の出
力特性の劣化は、電池C、すなわちルテニウム−白金触
媒を用いて作製した従来型の燃料電極を持つ電池の出力
特性の劣化と同等であり、燃料電極にルテニウムを持た
ない電池Bの出力特性の劣化より格段に小さく、電池形
成後のルテニウム添加により一酸化炭素への耐性が大幅
に向上していることがわかる。
Using the catalyst B obtained as described above,
A fuel electrode (fuel electrode B) was manufactured using the same manufacturing method as that for the fuel electrode A. Further, the fuel electrode B and the battery A
A battery (battery C) was constructed using the same air electrode as that used in the above configuration. FIG. 2 shows the output voltage and the carbon monoxide of 5% for the batteries A and C manufactured as described above when the mixed gas of hydrogen and carbon dioxide supplied as the fuel gas to the fuel electrode does not contain carbon monoxide. In the characteristic diagram showing the difference in output voltage in the case of including, that is, the deterioration of the characteristics due to carbon monoxide, the battery B shown in the figure is a battery configured using the fuel electrode A and the air electrode, and the ruthenium is used for the fuel electrode. Battery is not supplied. As shown in the figure, the deterioration of the output characteristics of the battery A, that is, the battery obtained by supplying ruthenium to the fuel electrode after forming the battery by the manufacturing method of the present invention, is the same as that of the battery C, that is, the ruthenium-platinum catalyst. The deterioration of the output characteristics of a battery having a conventional fuel electrode manufactured using the same method is substantially the same as the deterioration of the output characteristics of the battery B having no ruthenium in the fuel electrode. It can be seen that the resistance to carbon oxide has been greatly improved.

【0023】また、図3は、これらの3種類の電池の出
力特性の経時変化を示す特性図で、図中の曲線A,B,
Cがそれぞれ電池A,電池B,電池Cの特性の経時変化
を示したものである。図に見られるように、本発明の製
造方法により作製された電池Aは、ルテニウム−白金触
媒を用いて作製した従来型の燃料電極をもつ電池Cと同
等の長時間安定性を持ち、燃料電極にルテニウムを持た
ない電池Bに比べて、格段に優れた長時間安定性を有し
ていることがわかる。
FIG. 3 is a characteristic diagram showing the change over time in the output characteristics of these three types of batteries. Curves A, B, and
C indicates the change over time in the characteristics of Battery A, Battery B, and Battery C, respectively. As shown in the figure, the battery A manufactured by the manufacturing method of the present invention has the same long-term stability as the battery C having the conventional fuel electrode manufactured using the ruthenium-platinum catalyst, and the fuel electrode It shows that the battery B has much better long-term stability than the battery B having no ruthenium.

【0024】なお、運転終了後、これらの3種類の電池
を分解し、電極の状態を調べた結果によれば、電池Bの
燃料電極には腐食が見られたが、本発明による電池A、
およびルテニウム−白金触媒を用いて燃料電極を作製し
た電池Cの燃料電極にはほとんど腐食が見られなかっ
た。 <実施例2>実施例1に示した燃料電極Aおよび空気電
極と同様の燃料電極A、空気電極を用いて作製した電
池、すなわち電池Bに相当する電池において、温度を 5
0 ℃以上 60 ℃以下に保持し、3.8 wt%のルテニウムを
含む窒素で希釈した四酸化ルテニウムガスを、燃料電極
に備えられた燃料ガス通流路の下流側から上流側へと通
流させて、燃料電極の触媒Aに徐々に供給し、その後、
電極温度を 50 ℃以下に降温した後 110℃以上 170℃以
下に昇温し、次いで、電極内を窒素で置換した後、窒素
で希釈した水素を供給し、20時間以上保持する処理を行
って、燃料電極にルテニウムを添加した電池(電池D)
を作製した。本方法により作製された燃料電極では、ル
テニウムガスが燃料ガス通流路の下流側から供給される
ので、ルテニウムの添加量は燃料ガス通流路の下流側ほ
ど高く、上流側ほど低くなる。
After the operation was completed, these three types of batteries were disassembled and the state of the electrodes was examined. According to the result of the disassembly, the fuel electrode of the battery B was corroded.
In addition, almost no corrosion was observed in the fuel electrode of the battery C in which the fuel electrode was manufactured using the ruthenium-platinum catalyst. <Embodiment 2> In a battery prepared using the fuel electrode A and the air electrode similar to the fuel electrode A and the air electrode shown in the embodiment 1, that is, a battery corresponding to the battery B,
Ruthenium tetroxide gas maintained at 0 ° C or higher and 60 ° C or lower and diluted with nitrogen containing 3.8 wt% of ruthenium flows from the downstream side to the upstream side of the fuel gas passage provided in the fuel electrode. , Gradually supplied to the catalyst A of the fuel electrode,
After lowering the electrode temperature to 50 ° C or lower, the temperature is raised to 110 ° C or higher and 170 ° C or lower, and then the inside of the electrode is replaced with nitrogen. , Fuel cell with ruthenium added to fuel electrode (Battery D)
Was prepared. In the fuel electrode manufactured by this method, since the ruthenium gas is supplied from the downstream side of the fuel gas passage, the amount of added ruthenium increases toward the downstream side of the fuel gas passage and decreases toward the upstream side.

【0025】次に、白金 10 wt%をカーボンブラックに
担持した触媒Aを用いて、実施例1と同様の方法で触媒
/PTFE分散液(分散液A)を作製し、同様に、白金
10wt%、ルテニウム 1.3wt%をカーボンブラックに担
持した触媒、白金 10 wt%、ルテニウム 2.5wt%をカー
ボンブラックに担持した触媒, 白金 10 wt%、ルテニウ
ム 5wt%をカーボンブラックに担持した触媒, 白金 10
wt%、ルテニウム 10wt%をカーボンブラックに担持し
た触媒を用いて、実施例1と同様の方法により、それぞ
れ分散液B、分散液C、分散液D、分散液Eを作製し
た。なおこのとき、分散液A〜Eに用いた触媒には、等
量の白金を使用した。
Next, a catalyst / PTFE dispersion (dispersion A) was prepared in the same manner as in Example 1 using catalyst A in which 10% by weight of platinum was supported on carbon black.
10 wt%, ruthenium 1.3 wt% supported on carbon black, platinum 10 wt%, ruthenium 2.5 wt% supported on carbon black, platinum 10 wt%, ruthenium 5 wt% supported on carbon black, platinum 10
Dispersion B, Dispersion C, Dispersion D, and Dispersion E were prepared in the same manner as in Example 1 using a catalyst in which wt% and ruthenium 10 wt% were supported on carbon black. At this time, the same amount of platinum was used as the catalyst used for the dispersions A to E.

【0026】次に、燃料電極Aと同様に予めPTFEで
撥水処理を施した多孔性カーボン基材の上に、分散液A
〜分散液Eを、片側から順に同面積が塗布されるように
ブレード法で塗布し、乾燥した後、PTFEが溶融する
温度で焼成して燃料電極(燃料電極C)を作製した。図
4は燃料電極Cの作製に際して用いられた分散液の平面
分布を示す模式図である。このようにして作製した燃料
電極Cと、実施例1と同様の空気電極を用いて電池(電
池E)を作製した。この時、燃料電極Cの分散液Aを塗
布した側を燃料ガスの入口側とし、分散液Eを塗布した
側を燃料ガスの出口側として用いた。
Next, the dispersion liquid A is placed on a porous carbon substrate which has been subjected to a water-repellent treatment with PTFE in the same manner as the fuel electrode A.
-Dispersion E was applied by a blade method so that the same area was applied in order from one side, dried, and then fired at a temperature at which PTFE melted, to produce a fuel electrode (fuel electrode C). FIG. 4 is a schematic diagram showing the planar distribution of the dispersion used for producing the fuel electrode C. A battery (battery E) was fabricated using the fuel electrode C thus fabricated and the same air electrode as in Example 1. At this time, the side of the fuel electrode C coated with the dispersion A was used as the fuel gas inlet side, and the side coated with the dispersion E was used as the fuel gas outlet.

【0027】前述の図3に示した曲線D,Eは、上記の
電池Dおよび電池Eの出力特性の経時変化を示したもの
でる。図にみられるように、下流側よりルテニウムを供
給して燃料電極を作製した電池Dは、ルテニウムの割合
の異なる5種類の触媒を分布させた燃料電極を用いて作
製した電池Eと同様に特性の劣化が少なく、長期的に安
定であることがわかる。
The curves D and E shown in FIG. 3 indicate changes over time in the output characteristics of the batteries D and E. As shown in the figure, the battery D in which the fuel electrode was manufactured by supplying ruthenium from the downstream side had the same characteristics as the battery E in which the fuel electrode in which five types of catalysts having different ruthenium ratios were distributed was used. It can be seen that there is little deterioration and the material is stable for a long time.

【0028】また、運転後の電池Dを分解して電極の状
態を調べたが、腐食は極微量であった。 <実施例3>実施例1に示した電池Bと同様の構成より
なる電池、すなわち燃料電極の触媒にルテニウムを含ま
ない電池を、10個積層し、上下に冷却板を配して、積
層型の燃料電池(積層型電池Z)を2個作製した。図5
は、積層型電池Zの構成を模式的に示す断面図である。
本構成においては、積層された電池(1),(2),〜,(10)に
おける発生熱が両端に配した冷却板により冷却、除去さ
れることとなるので、図の左端に模式的に示したよう
に、中央部に配された電池(5),(6) の温度は、冷却板に
近接して配された電池(1),(10)の温度に比べて約 30 ℃
高い温度に保持されて使用されることとなる。
Further, the battery D after operation was disassembled and the state of the electrodes was examined. As a result, corrosion was extremely small. <Embodiment 3> A stack of 10 batteries having the same configuration as the battery B shown in Embodiment 1, that is, batteries not containing ruthenium in the catalyst of the fuel electrode, and cooling plates arranged above and below, were stacked. (Fuel cell Z) were manufactured. FIG.
FIG. 2 is a cross-sectional view schematically illustrating a configuration of a stacked battery Z.
In this configuration, the heat generated in the stacked batteries (1), (2), ..., (10) is cooled and removed by the cooling plates disposed at both ends, and thus is schematically illustrated at the left end of the drawing. As shown, the temperature of the batteries (5) and (6) arranged in the center is about 30 ° C lower than the temperature of the batteries (1) and (10) arranged close to the cooling plate.
It will be used while being kept at a high temperature.

【0029】次に、作製した2個の積層型電池Zのうち
一方の電池の運転を停止して、電池全体の温度を 70 ℃
以上 170℃以下に保持し、電池(1) 及び(10)の燃料電極
の触媒Aに 10 wt%のルテニウムを含む窒素で希釈した
四酸化ルテニウムガスを, 電池(2) および(9) の燃料電
極の触媒Aに 7wt%のルテニウムを含む窒素で希釈した
四酸化ルテニウムガスを, 電池(3) 及び(8) の燃料電極
の触媒Aに 4wt%のルテニウムを含む窒素で希釈した四
酸化ルテニウムガスを, 電池(4) および(7) の燃料電極
の触媒Aに 1wt%のルテニウムを含む窒素で希釈した四
酸化ルテニウムガスを, 電池(5) および(6) の燃料電極
には窒素のみを、それぞれ封入し、その後、電池全体の
温度を 50 ℃以下に下げ、さらに 110℃以上に昇温し、
次いで、全電極内を窒素で置換し、その後、窒素で希釈
した水素を供給し、20時間以上保持して、それぞれの燃
料電極にルテニウムを供給した積層型電池(積層型電池
X)を作製した。
Next, the operation of one of the two stacked batteries Z was stopped, and the temperature of the entire battery was reduced to 70 ° C.
The temperature was maintained at 170 ° C or lower, and ruthenium tetroxide gas diluted with nitrogen containing 10 wt% ruthenium was added to the catalyst A of the fuel electrode of the batteries (1) and (10), and the fuel for the batteries (2) and (9) Ruthenium tetroxide gas diluted with nitrogen containing 7 wt% ruthenium for the catalyst A of the electrode, and ruthenium tetroxide gas diluted with nitrogen containing 4 wt% ruthenium for the catalyst A of the fuel electrode of the batteries (3) and (8) And ruthenium tetroxide gas diluted with nitrogen containing 1 wt% ruthenium in the catalyst A of the fuel electrodes of the batteries (4) and (7), and only nitrogen in the fuel electrodes of the batteries (5) and (6). Each is sealed, then the temperature of the entire battery is reduced to 50 ° C or lower, and further raised to 110 ° C or higher.
Next, the inside of all the electrodes was replaced with nitrogen, and thereafter, hydrogen diluted with nitrogen was supplied and held for 20 hours or more, to produce a stacked battery (stacked battery X) in which ruthenium was supplied to each fuel electrode. .

【0030】次に、実施例1に示した電池Cと同様の構
成よりなる電池、すなわち燃料電極の触媒にルテニウム
を予め含有させて形成した電池を10個用いて、積層型
電池Zと同様の構成の積層型電池(積層型電池Y)を作
製した。積層型電池Yの全ての燃料電極のルテニウム量
は、積層型電池Xの電池(1) および(10)の燃料極のルテ
ニウム量とほぼ同等とした。
Next, a battery having the same structure as that of the battery C shown in Example 1, that is, 10 batteries formed by previously containing ruthenium in the catalyst of the fuel electrode was used, and a battery similar to the stacked battery Z was used. A laminated battery (laminated battery Y) having the above configuration was produced. The amount of ruthenium in all the fuel electrodes of the stacked battery Y was substantially equal to the amount of ruthenium in the fuel electrodes of the batteries (1) and (10) of the stacked battery X.

【0031】図6は、上記のごとく作製した積層型電池
X、積層型電池Y、積層型電池Zの出力特性の経時変化
を示す特性図で、図中の曲線Xが積層型電池Xの特性、
曲線Yが積層型電池Yの特性、曲線Zが積層型電池Zの
特性である。図に見られるように、燃料極にルテニウム
を持つ積層型電池Yおよび積層型電池Zは、ルテニウム
を持たない積層型電池Xと比較して特性の劣化が少な
く、長期的に安定であることがわかる。さらに、本発明
の製造方法に従って、電池を形成したのち、ルテニウム
を添加させる方法により、運転温度の低い電池の燃料電
極のルテニウム添加量を選択的に増加させて作製した積
層型電池Yは、ルテニウム−白金触媒を用いた燃料電極
を使用して形成した電池を積層した積層型電池Zと比較
して、ルテニウムの全使用量が少ないにも係わらず、ほ
ぼ同等の安定した特性を持つことがわかる。
FIG. 6 is a characteristic diagram showing the change over time in the output characteristics of the stacked battery X, the stacked battery Y, and the stacked battery Z manufactured as described above. The curve X in the figure indicates the characteristic of the stacked battery X. ,
A curve Y indicates the characteristics of the stacked battery Y, and a curve Z indicates the characteristics of the stacked battery Z. As can be seen from the figure, the stacked battery Y and the stacked battery Z having ruthenium at the fuel electrode show less deterioration in characteristics as compared to the stacked battery X having no ruthenium, and are stable for a long period of time. Recognize. Further, after the battery is formed according to the manufacturing method of the present invention, the stacked battery Y manufactured by selectively increasing the amount of ruthenium added to the fuel electrode of the battery having a low operating temperature by the method of adding ruthenium is a ruthenium. -Compared to the stack type battery Z in which the batteries formed using the fuel electrode using the platinum catalyst are stacked, it can be seen that they have almost the same stable characteristics even though the total amount of ruthenium used is small. .

【0032】なお、運転後、これらの積層型電池の電池
を分解して電極の状態を調べた結果によれば、積層型電
池Xでは、運転温度の低い電池に腐食が見られたが、積
層型電池YおよびZには、どの電池にも腐食は観察され
なかった。
After the operation, the batteries of these stacked batteries were disassembled and the state of the electrodes was examined. According to the results, in the stacked battery X, corrosion was observed in the battery having a low operating temperature. No corrosion was observed in any of the type batteries Y and Z.

【0033】[0033]

【発明の効果】上述のように、本発明によれば、 (1)請求項1〜4に記載のごとき方法により燃料電池
を製造することとしたので、燃料電極の触媒にルテニウ
ムが適切に、かつ比較的容易に添加され、一酸化炭素に
対し十分な耐性を備え長期にわたり安定して使用できる
燃料電池が得られることとなった。
As described above, according to the present invention, (1) Since a fuel cell is manufactured by the method as described in claims 1 to 4, ruthenium is appropriately used as a catalyst for a fuel electrode. In addition, a fuel cell which is added relatively easily, has sufficient resistance to carbon monoxide, and can be used stably for a long period of time can be obtained.

【0034】(2)また、請求項5、6に記載のごとき
方法により燃料電池を製造することとすれば、複数個の
単電池を用いて構成される積層型の燃料電池において、
各単電池の運転条件に合わせて適切に燃料電極の触媒に
ルテニウムを添加できるので、コストが低く抑えられ、
かつ電池の製造作業の作製作業の効率も向上する。さら
に、本方法を用いれば、運転開始後の電池においても、
一旦運転を停止させて所定の温度に保持すればルテニウ
ムの添加が可能であり、電池の寿命が一段と向上するこ
ととなる。
(2) In the case where the fuel cell is manufactured by the method as set forth in claims 5 and 6, in a stacked fuel cell using a plurality of unit cells,
Ruthenium can be appropriately added to the catalyst of the fuel electrode according to the operating conditions of each cell, so the cost can be kept low,
In addition, the efficiency of the battery manufacturing operation is improved. Furthermore, if this method is used, even in the battery after the start of operation,
Once the operation is stopped and maintained at a predetermined temperature, ruthenium can be added, and the life of the battery is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法により製造された実施例1の
電池Aの製作工程を示すフロー図
FIG. 1 is a flowchart showing a manufacturing process of a battery A of Example 1 manufactured by a manufacturing method of the present invention.

【図2】燃料ガスに含まれる一酸化炭素によって生じる
電池Aの特性の劣化を、従来の製造方法により製造され
た電池B、電池Cと対比して示す特性図
FIG. 2 is a characteristic diagram showing deterioration of characteristics of a battery A caused by carbon monoxide contained in a fuel gas in comparison with batteries B and C manufactured by a conventional manufacturing method.

【図3】電池Aの出力特性の経時変化を、電池B、電池
Cと対比して示す特性図
FIG. 3 is a characteristic diagram showing a change over time in output characteristics of a battery A in comparison with batteries B and C;

【図4】本発明の製造方法により製造された実施例2の
燃料電極Cにおける分散液の平面分布を示す模式図
FIG. 4 is a schematic diagram showing a planar distribution of a dispersion in a fuel electrode C of Example 2 manufactured by a manufacturing method of the present invention.

【図5】実施例3の積層型電池Xの構成を模式的に示す
断面図
FIG. 5 is a cross-sectional view schematically illustrating a configuration of a stacked battery X of Example 3.

【図6】本発明の製造方法により製造された実施例3の
積層型電池Yの出力特性の経時変化を、従来の製造方法
により製造された積層型電池X、積層型電池Zと対比し
て示す特性図
FIG. 6 shows the change over time in the output characteristics of the stacked battery Y of Example 3 manufactured by the manufacturing method of the present invention in comparison with the stacked batteries X and Z manufactured by the conventional manufacturing method. Characteristic diagram shown

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】白金を含有する触媒層を備えた燃料電極を
形成し、 該燃料電極を空気電極および電解質層と組み合わせて単
電池を形成し、 しかるのち、燃料電極へのルテニウムの添加操作を行う
ことにより燃料電極を作製することを特徴とする燃料電
池の製造方法。
1. A fuel electrode having a catalyst layer containing platinum is formed, and the fuel electrode is combined with an air electrode and an electrolyte layer to form a unit cell. Thereafter, the operation of adding ruthenium to the fuel electrode is performed. A method for producing a fuel cell, comprising: producing a fuel electrode by performing the method.
【請求項2】前記の単電池の燃料電極へのルテニウムの
添加操作を、 温度を70℃以上170 ℃以下に保持しつつ、燃料電極に四
酸化ルテニウムガスを供給し、 燃料電極の温度を50℃以下に降温し、 さらに、燃料電極の温度を110 ℃以上170 ℃以下に昇温
し、 その後、不活性ガスで希釈した水素を供給し、20時間
以上保持してルテニウムを還元させる方法により行うこ
とを特徴とする請求項1に記載の燃料電池の製造方法。
2. The operation of adding ruthenium to the fuel electrode of the unit cell comprises supplying ruthenium tetroxide gas to the fuel electrode while maintaining the temperature at 70 ° C. or higher and 170 ° C. or lower, and adjusting the temperature of the fuel electrode to 50 ° C. The temperature is lowered to 110 ° C or lower, and the temperature of the fuel electrode is further raised to 110 ° C or higher and 170 ° C or lower. Then, hydrogen diluted with an inert gas is supplied, and maintained for 20 hours or more to reduce ruthenium. The method for manufacturing a fuel cell according to claim 1, wherein:
【請求項3】燃料電極に供給する四酸化ルテニウムガス
を、燃料電極に封入して用いることを特徴とする請求項
2に記載の燃料電池の製造方法。
3. The method for producing a fuel cell according to claim 2, wherein ruthenium tetroxide gas supplied to the fuel electrode is sealed in the fuel electrode and used.
【請求項4】前記の単電池の燃料電極へのルテニウムの
添加操作を、 温度を50℃以上60℃未満に保持しつつ、燃料電極に供給
される燃料ガスの下流側から四酸化ルテニウムガスを徐
々に供給し、 燃料電極の温度を50℃以下に降温し、 さらに、燃料電極の温度を110 ℃以上170 ℃以下に昇温
し、 その後、不活性ガスで希釈した水素を供給し、20時間
以上保持してルテニウムを還元させる方法により行うこ
とを特徴とする請求項1に記載の燃料電池の製造方法。
4. An operation for adding ruthenium to the fuel electrode of the unit cell, wherein the ruthenium tetroxide gas is supplied from the downstream side of the fuel gas supplied to the fuel electrode while maintaining the temperature at 50 ° C. or higher and lower than 60 ° C. Slowly supply, lower the temperature of the fuel electrode to 50 ° C or lower, further raise the temperature of the fuel electrode to 110 ° C or higher and 170 ° C or lower, and then supply hydrogen diluted with an inert gas for 20 hours. 2. The method for producing a fuel cell according to claim 1, wherein the method is performed by a method of reducing ruthenium while maintaining the above conditions.
【請求項5】複数個の単電池を積層して構成される燃料
電池において、構成する単電池の燃料電極を、請求項
1、2、3または4に記載の燃料電池の製造方法により
作製することを特徴とする燃料電池の製造方法。
5. A fuel cell constituted by stacking a plurality of unit cells, wherein a fuel electrode of the constituent unit cell is produced by the fuel cell manufacturing method according to claim 1, 2, 3 or 4. A method for manufacturing a fuel cell, comprising:
【請求項6】請求項5に記載の燃料電池の製造方法にお
いて、添加するルテニウムの量を、運転温度の低い単電
池ほど多量とし、運転温度の高い単電池ほど少量として
燃料電極を作製することを特徴とする燃料電池の製造方
法。
6. The method for producing a fuel cell according to claim 5, wherein the amount of ruthenium to be added is made larger for a cell having a lower operating temperature and smaller for a cell having a higher operating temperature. A method for manufacturing a fuel cell, comprising:
JP8185675A 1996-07-16 1996-07-16 Manufacture of fuel cell Pending JPH1032009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185675A JPH1032009A (en) 1996-07-16 1996-07-16 Manufacture of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185675A JPH1032009A (en) 1996-07-16 1996-07-16 Manufacture of fuel cell

Publications (1)

Publication Number Publication Date
JPH1032009A true JPH1032009A (en) 1998-02-03

Family

ID=16174908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185675A Pending JPH1032009A (en) 1996-07-16 1996-07-16 Manufacture of fuel cell

Country Status (1)

Country Link
JP (1) JPH1032009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046279A1 (en) * 2005-10-19 2007-04-26 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell
JP2011151043A (en) * 1999-09-27 2011-08-04 Bdf Ip Holdings Ltd Method for improving cold starting capability of electrochemical fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151043A (en) * 1999-09-27 2011-08-04 Bdf Ip Holdings Ltd Method for improving cold starting capability of electrochemical fuel cell
WO2007046279A1 (en) * 2005-10-19 2007-04-26 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell

Similar Documents

Publication Publication Date Title
JP4994605B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
Xi et al. Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles
EP2857554A1 (en) Electrochemical reactor and method for production of fuel gas
KR101624641B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same
JP7325082B2 (en) Carbon dioxide reduction device and carbon dioxide reduction method
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2010184824A (en) Method for preparing pyrochlore type oxide, polymer electrolyte fuel cell, fuel cell system and method for producing electrode catalyst for fuel cell
US7955529B2 (en) Synthesis for catalysis of bifunctional perovskite compound
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
EP3312921A1 (en) Cell, fuel cell stack, fuel cell system and membrane-electrode joined body
US20160104899A1 (en) Non-carbon mixed-metal oxide electrocatalysts
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
Lee et al. Durability of Pt/graphitized carbon catalyst prepared by the nanocapsule method for the start/stop operating condition of polymer electrolyte fuel cells
KR20210001132A (en) Catalyst Complex For Fuel Cell And Method For Manufacturing The Same
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR100813515B1 (en) Proton conductor for fuel cell and fuel cell employing the same
JPH1032009A (en) Manufacture of fuel cell
JP2009117381A (en) Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same
CN114657579A (en) Binary alloy nanoparticle modified solid oxide electrolytic cell working electrode and preparation method and application thereof
JP2003217598A (en) Electrode material for fuel cell
WO2020059501A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
CN115548356B (en) Preparation method and application of perovskite type solid oxide battery electrode catalyst
CN117457922B (en) Preparation method of symmetrical solid oxide fuel cell
JPH0368452A (en) Production of platinum alloy catalyst
JPH08138683A (en) Manufacture of electrode for fuel cell