JPH0820141B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH0820141B2
JPH0820141B2 JP62038225A JP3822587A JPH0820141B2 JP H0820141 B2 JPH0820141 B2 JP H0820141B2 JP 62038225 A JP62038225 A JP 62038225A JP 3822587 A JP3822587 A JP 3822587A JP H0820141 B2 JPH0820141 B2 JP H0820141B2
Authority
JP
Japan
Prior art keywords
low temperature
heat exchanger
temperature regenerator
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62038225A
Other languages
Japanese (ja)
Other versions
JPS63204080A (en
Inventor
修蔵 高畠
邦彦 中島
昭範 船越
茂吉 黒沢
真一 閑納
貞寿 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Tokyo Gas Co Ltd
Kawasaki Jukogyo KK
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Kawasaki Jukogyo KK, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62038225A priority Critical patent/JPH0820141B2/en
Publication of JPS63204080A publication Critical patent/JPS63204080A/en
Publication of JPH0820141B2 publication Critical patent/JPH0820141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収冷凍機に係り、詳しくは、吸収器から低
温再生器へ稀吸収液を導入する系統に低温熱交換器およ
び熱回収器が設けられている吸収冷凍機に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to an absorption refrigerator, and more specifically, to a system for introducing a diluted absorption liquid from an absorber to a low temperature regenerator, a low temperature heat exchanger and a heat recovery device are provided. It relates to an absorption refrigerator provided.

〔従来技術とその問題点〕[Prior art and its problems]

第5図は従来の吸収冷凍機の系統を示すもので、充分
に気密にして高度の真空に保持された筒状胴を上下に二
分し、下部低圧室には蒸発器1および吸収器2が、上部
高圧室には凝縮器3および低温再生器4が内蔵され、い
ずれも所要の流体を管内に流通させる管群が配置されて
いる。5は高温再生器、6は吸収器2から低温再生器4
への稀液供給管路7に設けられた低温熱交換器、8は高
温熱交換器である。
FIG. 5 shows a system of a conventional absorption refrigerating machine, in which a tubular body that is sufficiently airtight and kept in a high vacuum is divided into upper and lower parts, and an evaporator 1 and an absorber 2 are provided in a lower low pressure chamber. A condenser 3 and a low-temperature regenerator 4 are built in the upper high-pressure chamber, and a tube group that allows a desired fluid to flow through the tubes is arranged in each of them. 5 is a high temperature regenerator, 6 is an absorber 2 to a low temperature regenerator 4
A low-temperature heat exchanger and a high-temperature heat exchanger 8 provided in the dilute liquid supply pipe 7 to the.

この冷凍機の作動状態を、冷媒に水、吸収液に臭化リ
チウム水溶液を使用する場合について、各部の温度や濃
度および圧力を示すと、第6図のようになる。図中の縦
軸は圧力、横軸は液温、α曲線は結晶限界である。は
低温熱交換器6の出口の稀吸収液の状態を示し、その温
度は73℃で濃度は58%である。低温再生器4内で冷媒が
蒸発し始める点はで、吸収液が濃縮されて、の点で
低温再生器4を出て高温吸収液ポンプ9により高温再生
器5へ送り出される。
FIG. 6 shows the operating conditions of this refrigerator when the water is used as the refrigerant and the aqueous solution of lithium bromide is used as the absorbing liquid. In the figure, the vertical axis is the pressure, the horizontal axis is the liquid temperature, and the α curve is the crystallization limit. Indicates the state of the diluted absorbent at the outlet of the low temperature heat exchanger 6, the temperature of which is 73 ° C. and the concentration is 58%. At the point where the refrigerant begins to evaporate in the low temperature regenerator 4, the absorbing liquid is concentrated, and at that point the low temperature regenerator 4 is discharged and sent to the high temperature regenerator 5 by the high temperature absorbing liquid pump 9.

吸収冷凍機の熱効率は蒸発器1における冷凍効果に対
して、外部から与える熱量すなわち高温再生器5での加
熱量が少ない程、熱効率が高くなる。低温再生器4での
加熱量が少なくてよい場合には、その加熱源である高温
再生器5での冷媒の蒸発量が少なくてよいことになるか
ら、低温熱交換器6で稀吸収液の温度を高めておくこと
は熱効率の点で効果がある。加えて、その低温熱交換器
6から吸収器2へ流入する濃吸収液の温度を下げること
にもなり、吸収液温度が低い程吸収能力が大きい性質が
あることから、吸収器2での吸収能力を増すことができ
る。したがって、従来の吸収冷凍機には、低温熱交換器
6を、図示した位置に設けることが行なわれている。同
様の考え方により、低温再生器4と高温再生器5の間に
も高温熱交換器8を設け、熱効率の改善が図られてい
る。
Regarding the thermal efficiency of the absorption refrigerator, the smaller the amount of heat given from the outside to the refrigerating effect in the evaporator 1, that is, the amount of heating in the high temperature regenerator 5, the higher the thermal efficiency. When the heating amount in the low temperature regenerator 4 is small, the evaporation amount of the refrigerant in the high temperature regenerator 5, which is the heating source, may be small. Raising the temperature is effective in terms of thermal efficiency. In addition, the temperature of the concentrated absorbent flowing from the low temperature heat exchanger 6 to the absorber 2 is also lowered, and the absorption capacity in the absorber 2 is large because the lower the absorbing liquid temperature, the larger the absorption capacity. You can increase your ability. Therefore, the conventional absorption refrigerator is provided with the low temperature heat exchanger 6 at the position shown. According to the same idea, a high temperature heat exchanger 8 is provided between the low temperature regenerator 4 and the high temperature regenerator 5 to improve the thermal efficiency.

以上の見地から、稀吸収液の状態を第6図における
の点をの点に近づけることは、熱効率を高める上で効
果の大きいことが判る。しかし、稀吸収液と濃吸収液の
流量を比較すると、濃吸収液は冷媒が蒸発した分だけ少
なくなっているので、の点をの点に完全に一致させ
ることは難しく、また、の点をの点に近づけると、
低温熱交換器の出口の濃吸収液の温度が下がり、吸収液
として臭化リチウム水溶液を使用する場合に吸収液は結
晶することがある。したがって、通常はの点をの点
より低い温度レベルにすることが多い。
From the above point of view, it can be understood that bringing the state of the dilute absorption liquid close to the point of in FIG. 6 is effective in increasing the thermal efficiency. However, when comparing the flow rates of the rare absorbent and the concentrated absorbent, it is difficult to match the point of to the point of completely because the concentrated absorbent is reduced by the amount of evaporated refrigerant. When approaching the point of
The temperature of the concentrated absorbing liquid at the outlet of the low temperature heat exchanger decreases, and when the lithium bromide aqueous solution is used as the absorbing liquid, the absorbing liquid may crystallize. Therefore, it is often the case that the point is at a lower temperature level than the point.

ところで、特公昭60−24903号公報には、第7図に示
すように、上述した低温熱交換器6の出口と低温発生器
4との間に熱回収器10を設けたものが提案されている。
これは、太陽熱で得られた温水や工場排熱から得られた
温水等の低温の熱源をその熱回収器10へ導くことによ
り、濃吸収液の低温熱交換器6の出口付近での結晶の心
配なく、低温熱交換器6を出た稀吸収液を昇温させるこ
とができるようにしたものである。このような構成で
は、熱回収器10に供給される熱源の有無に関係なく、低
温熱交換器6の温度条件は変わらない。低温熱交換器6
を出た稀吸収液11の温度は73℃であるので、熱回収器10
で利用できる熱源の温度は、73℃以上すなわち通常は80
℃〜90℃以上が必要となる。従って世の中に沢山有りほ
とんどそのまま利用されずに捨てられている40℃〜60℃
といったさらに低温の熱源を利用するには至らず、省エ
ネルギーの見地から、改善の余地が残されている。
By the way, Japanese Patent Publication No. 60-24903 proposes a heat recovery device 10 provided between the outlet of the low temperature heat exchanger 6 and the low temperature generator 4 as shown in FIG. There is.
This is because by introducing a low temperature heat source such as hot water obtained by solar heat or hot water obtained from factory exhaust heat to the heat recovery device 10, the crystal of the concentrated absorption liquid near the outlet of the low temperature heat exchanger 6 It is possible to raise the temperature of the rare absorption liquid leaving the low-temperature heat exchanger 6 without worry. With such a configuration, the temperature condition of the low temperature heat exchanger 6 does not change regardless of the presence or absence of the heat source supplied to the heat recovery device 10. Low temperature heat exchanger 6
Since the temperature of the diluted absorption liquid 11 that has exited is 73 ° C, the heat recovery device 10
The temperature of the heat source available in
℃ ~ 90 ℃ or more is required. Therefore, there are many in the world, 40 ℃ ~ 60 ℃, which is almost unused and discarded.
However, there is still room for improvement from the viewpoint of energy saving.

一方、特開昭57−182062号公報においては、第8図に
示すように、低温熱交換器6Aの入口と低温再生器4との
間に熱回収器10Aを設け、稀液供給管路7Aが低温熱交換
器6Aをバイパスするように構成したものが提案されてい
る。これは、高温再生器5Aにおいて使用された熱源を熱
回収器10Aに通し、稀吸収液11の低温度レベルまで熱回
収できるようにしたものである。しかし、この装置で
は、熱回収した分だけ稀吸収液の出口温度も上昇し、燃
焼排ガスや高圧蒸気といった比較的高温の熱源でなけれ
ば利用できない欠点があり、前述の例と同様低温の熱源
を利用するに至らない。
On the other hand, in Japanese Unexamined Patent Publication No. 57-182062, as shown in FIG. 8, a heat recovery unit 10A is provided between the inlet of the low temperature heat exchanger 6A and the low temperature regenerator 4, and the dilute liquid supply line 7A is provided. Has been proposed to bypass the low temperature heat exchanger 6A. This is one in which the heat source used in the high temperature regenerator 5A is passed through the heat recovery device 10A so that the heat can be recovered up to the low temperature level of the diluted absorption liquid 11. However, in this device, the outlet temperature of the rare absorption liquid rises by the amount of heat recovered, and there is a drawback that it can be used only with a relatively high-temperature heat source such as combustion exhaust gas or high-pressure steam. Can't use it.

〔発明の目的〕[Object of the Invention]

本発明は上述の問題に鑑みなされたもので、その目的
は、前記のような種類の吸収冷凍機に、比較的低温の熱
源でも有効に利用できる熱回収器を設けることにより、
濃吸収液の低温熱交換器の出口付近での結晶の心配をな
くし、かつ、低温再生器入口の稀吸収液を昇温させて、
熱効率のより一層の向上を図ることができる吸収冷凍機
を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide an absorption refrigerator of the type as described above with a heat recovery device that can be effectively used even with a relatively low-temperature heat source,
Eliminates the worry of crystals near the outlet of the low temperature heat exchanger of the concentrated absorbent, and raises the temperature of the rare absorbent at the inlet of the low temperature regenerator,
An object of the present invention is to provide an absorption refrigerating machine capable of further improving thermal efficiency.

〔発明の構成〕[Structure of Invention]

本発明の吸収冷凍機の特徴を、第1図を参照して説明
すると、以下の通りである。蒸発器1、吸収器2、凝縮
器3、低温再生器4、高温再生器5および熱交換器6,8
が配置接続され、吸収器2から低温再生器4へ稀吸収液
を導入する系統に低温熱交換器6が設けられた吸収冷凍
機にあって、低温熱交換器6に供給される前の稀吸収液
の一部が分流され、その分流された稀吸収液を熱源で加
熱濃縮し、発生する冷媒蒸気を低温再生器4に供給でき
るようにした熱回収器25を配置し、加熱あるいは濃縮さ
れた稀吸収液を低温再生器4へ送り込むようにしたこと
である。
The features of the absorption refrigerator according to the present invention will be described below with reference to FIG. Evaporator 1, absorber 2, condenser 3, low temperature regenerator 4, high temperature regenerator 5 and heat exchangers 6,8
In the absorption refrigerating machine in which the low temperature heat exchanger 6 is provided in the system for introducing the rare absorption liquid from the absorber 2 to the low temperature regenerator 4 before the low temperature heat exchanger 6 is supplied. A part of the absorption liquid is diverted, and the diluted absorption liquid that has been diverted is heated and concentrated by a heat source, and a heat recovery unit 25 is arranged so that the generated refrigerant vapor can be supplied to the low-temperature regenerator 4, and is heated or concentrated. That is, the rare absorbent is sent to the low temperature regenerator 4.

また、第2の発明にあっては、第3図に示すように、
上述の構成に加えて、その熱回収器25の稀液供給管路21
に流量調整弁41を設け、熱回収器25に供給される熱源の
供給信号またはその熱源の供給温度および制御する稀吸
収液の検出温度信号に基づいて流量調整弁41の開度が制
御されるようになっていることである。
In addition, in the second invention, as shown in FIG.
In addition to the configuration described above, the dilute liquid supply line 21 of the heat recovery device 25 is provided.
Is provided with a flow rate adjusting valve 41, and the opening degree of the flow rate adjusting valve 41 is controlled based on the supply signal of the heat source supplied to the heat recovery device 25 or the supply temperature of the heat source and the detected temperature signal of the rare absorbing liquid to be controlled. That's what it looks like.

〔実 施 例〕〔Example〕

以下、本発明をその実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on examples.

第1図は本発明の一実施例である二重効用吸収冷凍機
の系統を示すもので、下部低圧室には蒸発器1および吸
収器2が、上部高圧室には凝縮器3および低温再生器4
が内蔵され、いずれも所要の流体を管内に流通させる管
群が設置されている。5は高温再生器、6は吸収器2か
ら低温再生器4への稀液供給管路21に設けた低温熱交換
器、8は高温熱交換器、12は冷媒ポンプ、13は低温吸収
液循環ポンプ、14は高温吸収液ポンプ、15は冷媒液溜
め、16は稀吸収液溜めである。
FIG. 1 shows a system of a double-effect absorption refrigerator according to an embodiment of the present invention. An evaporator 1 and an absorber 2 are provided in a lower low pressure chamber, and a condenser 3 and a low temperature regeneration are provided in an upper high pressure chamber. Bowl 4
Is installed, and in each case, a tube group is installed to allow a required fluid to flow through the tube. 5 is a high temperature regenerator, 6 is a low temperature heat exchanger provided in the dilute liquid supply pipe 21 from the absorber 2 to the low temperature regenerator 4, 8 is a high temperature heat exchanger, 12 is a refrigerant pump, 13 is a low temperature absorption liquid circulation A pump, 14 is a high temperature absorbent pump, 15 is a refrigerant reservoir, and 16 is a rare absorbent reservoir.

本図において、蒸発器1で冷却作用を行なって蒸発し
た冷媒蒸気が吸収器2で吸収液に吸収され、吸収液は濃
度が低下して吸収力を失い下部の稀吸収液溜め16に溜め
られる。この稀薄な吸収液を低温吸収液ポンプ13で管路
22、低温熱交換器6、管路23、管路24や後述する熱回収
器25を経て低温再生器4に送り、高温再生器5で発生し
た冷媒蒸気により加熱されて稀吸収液の濃縮を行なう。
低温再生器4で稀吸収液を加熱して冷媒を蒸発分離する
と吸収液の濃度が上昇する一方、蒸発した冷媒は凝縮器
3で冷却水により凝縮される。濃度の上昇した吸収液は
高温吸収液ポンプ14により、管路17、高温熱交換器8、
管路18を経て高温再生器5に送られ、外部からの熱源に
より加熱され、冷媒が蒸発して吸収液は濃縮される。
In the figure, the refrigerant vapor that has been cooled by the evaporator 1 and evaporated is absorbed by the absorbing liquid in the absorber 2, and the absorbing liquid is reduced in concentration and loses its absorbing power, and is stored in the lower rare absorbing liquid reservoir 16. . This dilute absorption liquid is piped by the low temperature absorption liquid pump 13.
22, the low temperature heat exchanger 6, the pipe 23, the pipe 24 and the heat recovery device 25 described later, and sends it to the low temperature regenerator 4 and is heated by the refrigerant vapor generated in the high temperature regenerator 5 to concentrate the rare absorption liquid. To do.
When the low-temperature regenerator 4 heats the rare absorption liquid to evaporate and separate the refrigerant, the concentration of the absorption liquid increases, while the evaporated refrigerant is condensed by the cooling water in the condenser 3. The high-concentration absorption liquid pump 14 uses the high-concentration absorption liquid pump 14 for the absorption liquid whose concentration has increased.
It is sent to the high temperature regenerator 5 via the pipe line 18 and heated by a heat source from the outside, the refrigerant is evaporated and the absorption liquid is concentrated.

高温再生器5で蒸発した冷媒蒸気はは前述のように低
温再生器4で加熱に使用され、自らは凝縮して冷媒液と
なって凝縮器3に導かれ、冷却水で冷却されてさらに温
度が下がり、前述の冷媒液と共に管路19を経て蒸発器1
に戻り、そこで蒸発することによって冷却作用をする。
The refrigerant vapor evaporated in the high-temperature regenerator 5 is used for heating in the low-temperature regenerator 4 as described above, and is condensed into a refrigerant liquid and guided to the condenser 3, cooled by cooling water, and further cooled. And the evaporator 1 through the line 19 together with the above-mentioned refrigerant liquid.
And then cools by evaporating there.

一方、高温再生器5で濃縮された濃吸収液は、管路3
1、高温熱交換器8、管路32、低温熱交換器6、管路33
を経て散布装置から散布され、吸収器2に戻って吸収作
用を行なう。なお、蒸発器1の蒸発器管1a内には冷やさ
れる液体が流されており、蒸発器管出口部に設けた温度
検出器34の信号により高温再生器5の加熱量を調節し、
冷凍効果を必要量に調節することができるようになって
いる。
On the other hand, the concentrated absorbent concentrated in the high temperature regenerator 5 is
1, high temperature heat exchanger 8, pipeline 32, low temperature heat exchanger 6, pipeline 33
After that, it is sprayed from the spraying device and returned to the absorber 2 to perform the absorbing action. A liquid to be cooled flows in the evaporator tube 1a of the evaporator 1, and the heating amount of the high temperature regenerator 5 is adjusted by the signal of the temperature detector 34 provided at the outlet of the evaporator tube.
The freezing effect can be adjusted to the required amount.

吸収器2の吸収器管2a内には矢示のごとく冷却水35が
流され、吸収器2の管表面に散布される吸収液が低温な
ほど吸収能力が大きいので、吸収液を冷却させつつ蒸発
器1で発生した冷媒蒸気を吸収する。また、凝縮器3の
凝縮器管内にも冷却水が流れており、低温再生器4から
の冷媒蒸気や冷媒ドレーンを冷却する。ちなみに、吸収
冷凍器の吸収器2の下部は著しく低い圧力になるため不
凝縮性ガスが溜りやすく、吸収器2の下部より抽気装置
によって不凝縮性ガスを外部に排出することができるよ
うになっている。36はその排出用の抽気ポンプである。
Cooling water 35 is flowed in the absorber pipe 2a of the absorber 2 as shown by the arrow, and the lower the absorption liquid sprayed on the pipe surface of the absorber 2 is, the larger the absorption capacity is, so that the absorption liquid is cooled. The refrigerant vapor generated in the evaporator 1 is absorbed. Further, the cooling water also flows in the condenser pipe of the condenser 3 to cool the refrigerant vapor and the refrigerant drain from the low temperature regenerator 4. By the way, since the lower part of the absorber 2 of the absorption refrigerator has a remarkably low pressure, the non-condensable gas is likely to accumulate, and the non-condensable gas can be discharged to the outside from the lower part of the absorber 2 by the extraction device. ing. 36 is an extraction pump for the discharge.

このような吸収冷凍機には、前述した低温熱交換器6
に供給される前の稀吸収液の一部を分流する分岐部37が
設けられ、そこで分流された稀吸収液を熱源で加熱でき
るようにした熱回収器25が設置されている。そこで加熱
あるいは濃縮された稀吸収液は、低温再生器4へ送り込
まれるようになっている。その熱回収器25には工場やビ
ル内に沢山有りほとんどそのまま利用されずに捨てられ
ている40℃〜60℃といった低温の熱源が導かれる。一
方、低温熱交換器6にあっては加熱される稀吸収液量が
少なくなるので、加熱側の吸収液の温度降下は少なくて
済み、濃吸収液の低温熱交換器6の出口付近での結晶の
心配がなくなり、かつ、低温熱交換器6で稀吸収液を所
定温度に加熱することができる。
Such an absorption refrigerator has the low temperature heat exchanger 6 described above.
Is provided with a branching portion 37 for dividing a part of the rare absorbent before being supplied to the heat recovery unit 25, which is capable of heating the divided rare absorbent with a heat source. Therefore, the heated or concentrated rare absorption liquid is fed to the low temperature regenerator 4. A heat source at a low temperature of 40 ° C. to 60 ° C., which is abundant in many factories and buildings and is discarded almost without being used, is guided to the heat recovery device 25. On the other hand, in the low temperature heat exchanger 6, since the amount of the rare absorption liquid to be heated is small, the temperature drop of the absorption liquid on the heating side is small, and the concentration of the concentrated absorption liquid near the outlet of the low temperature heat exchanger 6 is small. There is no fear of crystals, and the low temperature heat exchanger 6 can heat the diluted absorption liquid to a predetermined temperature.

以上述べたような構成による吸収冷凍機の作動を、次
に説明する。
The operation of the absorption refrigerator having the above-described structure will be described below.

第1図において、低温熱交換器6の入口における管路
22での稀吸収液の温度は37℃であり、この一部が熱回収
器25へ分流され、そこで加熱あるいは濃縮された稀吸収
液は、低温熱交換器6で加熱された稀吸収液と一緒に低
温再生器4へ送り込まれる。熱回収器25では吸収された
稀吸収液がまず飽和温度まで加熱され、その後は冷媒が
蒸発して潜熱変化することにより低い温度レベルのまま
推移することから、40℃〜60℃といったかなり低温の熱
源によっても有効に加熱される。熱回収器25内で発生し
た冷媒蒸気は管路38を介して低温再生器4に導入され
る。一方、低温熱交換器6に供給された稀吸収液は高温
再生器5で濃縮された温度の高い液によって加熱され
る。低温熱交換器6に供給される稀吸収液量はその入口
で分流されていることから従来よりも少量であり、それ
を加熱するために濃吸収液温度が下りすぎることは回避
され、低温熱交換器6の出口での結晶は防止される。
In FIG. 1, a pipe line at the inlet of the low temperature heat exchanger 6
The temperature of the diluted absorbent at 22 is 37 ° C., and a part of this is diverted to the heat recovery unit 25, where the heated or concentrated rare absorbent is mixed with the diluted absorbent heated at the low temperature heat exchanger 6. It is sent to the low temperature regenerator 4 together. In the heat recovery device 25, the absorbed absorbed liquid is first heated to the saturation temperature, and then the refrigerant evaporates and changes the latent heat to maintain a low temperature level. It is also effectively heated by the heat source. The refrigerant vapor generated in the heat recovery unit 25 is introduced into the low temperature regenerator 4 via the pipe line 38. On the other hand, the rare absorption liquid supplied to the low temperature heat exchanger 6 is heated by the high temperature liquid concentrated in the high temperature regenerator 5. The amount of the rare absorbent supplied to the low temperature heat exchanger 6 is smaller than that of the conventional one because it is diverted at the inlet, and it is possible to avoid the temperature of the concentrated absorbent being too low to heat the low absorbent heat. Crystals at the outlet of the exchanger 6 are prevented.

第2図は異なる実施例を示す系統図で、熱回収器25
は、供給する稀吸収液の一次側に配置された低温回収器
25aと、二次側に配置された高温熱回収器25bとから構成
される。これは、高温熱回収器25bで利用された熱源
が、低温熱回収器25aに導かれることにより、稀吸収液
を加熱できるようになっている。すなわち、低温熱回収
器25aで稀吸収液を飽和温度〔第6図におけるの点〕
まで加熱させ、高温熱回収器25bで濃縮のみ行なわせ
る。したがって、それぞれの機能が分担させられ、各々
に適した伝熱性能が得られるように、効率のよい設計が
可能となる。さらに、実際の運転状態においてもこれら
二種類の熱回収器25a,25bで、多種多様の温度範囲や熱
容量に対応でき、より一層の省エネルギー運転が実現さ
れる。
FIG. 2 is a system diagram showing a different embodiment, in which the heat recovery unit 25
Is a low temperature recovery unit placed on the primary side of the rare absorbent to be supplied.
25a and a high temperature heat recovery device 25b arranged on the secondary side. This is because the heat source used in the high temperature heat recovery device 25b is guided to the low temperature heat recovery device 25a so that the rare absorption liquid can be heated. That is, the saturation temperature of the dilute absorption liquid in the low temperature heat recovery device 25a [point in Fig. 6]
It is heated up to and concentrated only in the high temperature heat recovery unit 25b. Therefore, efficient design is possible so that each function is shared and heat transfer performance suitable for each is obtained. Furthermore, even in an actual operating condition, these two types of heat recovery devices 25a and 25b can handle a wide variety of temperature ranges and heat capacities, and further energy-saving operation can be realized.

第3図は異なる発明の実施例で、上述の発明の構成に
加えて、その熱回収器25の稀液供給管路21のうちの管路
24に流量調整弁41が設けられ、熱回収器25に供給される
熱源の供給温度信号や制御する稀吸収液の検出温度信号
に基づいて、流量調整弁41の開度が制御されるようにな
っている。そのために、熱回収器25の熱源導入管42には
温度検出器43が、低温吸収液循環ポンプ13の出口部には
温度検出器44が設置されている。
FIG. 3 shows an embodiment of a different invention. In addition to the configuration of the invention described above, a pipe of the dilute liquid supply pipe 21 of the heat recovery device 25 is provided.
24 is provided with a flow rate adjusting valve 41, so that the opening degree of the flow rate adjusting valve 41 is controlled based on the supply temperature signal of the heat source supplied to the heat recovery device 25 and the detected temperature signal of the rare absorbing liquid to be controlled. Has become. Therefore, a temperature detector 43 is installed in the heat source introduction pipe 42 of the heat recovery device 25, and a temperature detector 44 is installed in the outlet of the low temperature absorbent circulating pump 13.

このような吸収冷凍機にあっては、熱回収器25に供給
される熱源の温度が稀吸収液の温度より低いときあるい
は熱源が供給されないとき、熱回収器25へ供給される稀
吸収液は低温熱交換器6をバイパスすることになり、そ
の分熱効率が下ることになる。そこで、稀吸収液の温度
と熱源の温度が検出され、流量調整弁41で稀吸収液循環
量をコントロールして、熱効率の低下を抑制することが
できる。なお、熱源の温度が十分に高いことが保障され
ているときは、温度検出器43,44によらず、別途設置の
熱源供給信号(ポンプの発停信号など)によって流量調
整弁41をコントロールするようにしておいてもよい。
In such an absorption refrigerator, when the temperature of the heat source supplied to the heat recovery device 25 is lower than the temperature of the rare absorption liquid or when the heat source is not supplied, the rare absorption liquid supplied to the heat recovery device 25 is Bypassing the low temperature heat exchanger 6, the heat efficiency is reduced accordingly. Therefore, the temperature of the rare absorbent and the temperature of the heat source are detected, and the circulation amount of the rare absorbent is controlled by the flow rate adjusting valve 41, so that the decrease in thermal efficiency can be suppressed. When it is guaranteed that the temperature of the heat source is sufficiently high, the flow rate adjusting valve 41 is controlled by a separately installed heat source supply signal (pump start / stop signal, etc.) regardless of the temperature detectors 43, 44. You may leave it like this.

第4図は異なる実施例で、前述した低温熱回収器25a
と高温熱回収器25bとからなる熱回収器25を備えた吸収
冷凍機に、流量調整弁41の開度制御を適用したものであ
る。これにおいても、熱回収器25に供給される熱源の温
度が稀吸収液の温度より低いときあるいは熱源が供給さ
れないとき、稀吸収液循環量をコントロールして、熱効
率の低下を抑制することができる。
FIG. 4 shows a different embodiment of the low temperature heat recovery device 25a described above.
The opening control of the flow rate adjusting valve 41 is applied to an absorption refrigerator having a heat recovery device 25 including a high temperature heat recovery device 25b. Also in this case, when the temperature of the heat source supplied to the heat recovery device 25 is lower than the temperature of the rare absorbent or when the heat source is not supplied, the circulation amount of the rare absorbent can be controlled to suppress a decrease in thermal efficiency. .

〔発明の効果〕〔The invention's effect〕

本発明は以上の実施例の詳細な説明から判るように、
低温熱交換器に供給される前の稀吸収液の一部が分流さ
れ、その分流された稀吸収液を熱源で加熱および濃縮で
きるようにした熱回収器を配置し、加熱あるいは濃縮さ
れた稀吸収液を再生器へ送り込むようにしたので、比較
的低温の熱源でも熱回収器で有効に利用できることにな
り、濃吸収液の低温熱交換器の出口付近での結晶の心配
をなくし、かつ、低温再生器入口の稀吸収液を昇温させ
て、熱効率のより一層の向上を図ることができる。
As will be understood from the detailed description of the above embodiments of the present invention,
A part of the rare absorbent before being supplied to the low temperature heat exchanger is diverted, and a heat recovery device is arranged to heat and concentrate the diverted rare absorbent with a heat source. Since the absorbing liquid is sent to the regenerator, it can be effectively used in the heat recovery device even with a relatively low-temperature heat source, and there is no fear of crystallization of the concentrated absorbing liquid near the outlet of the low-temperature heat exchanger, and By raising the temperature of the rare absorption liquid at the low temperature regenerator inlet, it is possible to further improve the thermal efficiency.

また、第2の発明にあっては、上述の構成に加えて、
熱回収器の稀液供給管路に流量調整弁を設け、熱源の供
給温度信号などにより流量調整弁の開度を制御できるよ
うにしたので、熱回収器に供給される熱源の温度が稀吸
収液の温度より低いときなどにおける熱効率の低下が抑
制され、著しい省エネルギー運転が実現される。
In addition, in the second invention, in addition to the above configuration,
Since the flow rate adjustment valve is installed in the rare liquid supply line of the heat recovery device and the opening of the flow rate adjustment valve can be controlled by the supply temperature signal of the heat source, etc., the temperature of the heat source supplied to the heat recovery device is rarely absorbed. A decrease in thermal efficiency when the temperature is lower than the liquid temperature is suppressed, and a remarkable energy-saving operation is realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す二重効用吸収冷凍機の
系統図、第2図は異なる実施例を示す系統図、第3図は
異なる発明の一実施例を示す系統図、第4図はその異な
る実施例を示す系統図、第5図は従来の二重効用吸収冷
凍機の系統図、第6図は冷凍機の作動における各部の温
度、濃度および圧力を示す特性曲線図、第7図および第
8図は最近提案されている二重効用吸収冷凍機の系統図
である。 1……蒸発器、2……吸収器、4……低温再生器、5…
…高温再生器、6……低温熱交換器、8……高温熱交換
器、21……稀液供給管路、25……熱回収器、37……分岐
部、41……流量調整弁。
FIG. 1 is a system diagram of a double-effect absorption refrigerator showing an embodiment of the present invention, FIG. 2 is a system diagram showing a different embodiment, and FIG. 3 is a system diagram showing an embodiment of a different invention. FIG. 4 is a system diagram showing a different embodiment thereof, FIG. 5 is a system diagram of a conventional double-effect absorption refrigerator, and FIG. 6 is a characteristic curve diagram showing temperature, concentration and pressure of each part during operation of the refrigerator. 7 and 8 are system diagrams of a recently proposed double-effect absorption refrigerator. 1 ... Evaporator, 2 ... Absorber, 4 ... Low temperature regenerator, 5 ...
… High temperature regenerator, 6 …… Low temperature heat exchanger, 8 …… High temperature heat exchanger, 21 …… Diluted liquid supply line, 25 …… Heat recovery unit, 37 …… Branch section, 41 …… Flow control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高畠 修蔵 滋賀県大津市国分1丁目13−44 (72)発明者 中島 邦彦 滋賀県大津市大江3丁目1番16−705号 (72)発明者 船越 昭範 滋賀県大津市田上関津町827−119 (72)発明者 黒沢 茂吉 東京都豊島区要町2丁目26番地 (72)発明者 閑納 真一 大阪府羽曳野市高鷲4丁目9−4−303 (72)発明者 竹本 貞寿 愛知県名古屋市千種区豊年町11番8号 (56)参考文献 特開 昭60−80060(JP,A) 特公 昭60−24903(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuzo Takahata 1-13-44, Kokubu, Otsu City, Shiga Prefecture (72) Inventor Kunihiko Nakajima 3-1-1-16, Oe, Otsu City, Shiga Prefecture (72) Inventor Funakoshi 827-119 (72) Inventor, Shigeyoshi Kurosawa, Ogashi-shi, Shiga Prefecture, Shiga Prefecture 2-26, Kanamemachi, Toshima-ku, Tokyo (72) Inventor, Shinichi Kanno, 4-chome Takahashi, 4-chome, Habikino-shi, Osaka (72) ) Inventor Sadaju Takemoto 11-8 Toyonen-cho, Chikusa-ku, Nagoya-shi, Aichi (56) References JP 60-80060 (JP, A) JP 60-24903 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蒸発器、吸収器、凝縮器、低温再生器、高
温再生器および熱交換器が配置接続され、前記吸収器か
ら低温再生器へ稀吸収液を導入する系統に低温熱交換器
が設けられた吸収冷凍機において、 前記低温熱交換器に供給される前の稀吸収液の一部が分
流され、その分流された稀吸収液を熱源で加熱濃縮し、
発生する冷媒蒸気を低温再生器に供給できるようにした
熱回収器を配置し、加熱あるいは濃縮された稀吸収液を
前記低温再生器へ送り込むようにしたことを特徴とする
吸収冷凍機。
1. A low-temperature heat exchanger in a system in which an evaporator, an absorber, a condenser, a low-temperature regenerator, a high-temperature regenerator and a heat exchanger are arranged and connected, and a diluted absorption liquid is introduced from the absorber to the low-temperature regenerator. In the absorption refrigerator provided with, a part of the rare absorbent before being supplied to the low temperature heat exchanger is diverted, and the diverted rare absorbent is heated and concentrated by a heat source,
An absorption refrigerator in which a heat recovery device that can supply the generated refrigerant vapor to a low temperature regenerator is arranged and a heated or concentrated rare absorption liquid is fed to the low temperature regenerator.
【請求項2】蒸発器、吸収器、凝縮器、低温再生器、高
温再生器および熱交換器が配置接続され、前記吸収器か
ら低温再生器へ稀吸収液を導入する系統に低温熱交換器
が設けられた吸収冷凍機において、 前記低温熱交換器に供給される前の稀吸収液の一部が分
流され、その分流された稀吸収液を熱源で加熱濃縮し、
発生する冷媒蒸気を低温再生器に供給できるようにした
熱回収器を配置し、その熱回収器の稀液供給管路に流量
調整弁を設け、熱回収器に供給される熱源の供給信号ま
たはその熱源の供給温度および制御する稀吸収液の検出
温度信号に基づいて前記流量調整弁の開度が制御され、
加熱あるいは農縮された稀吸収液を前記低温再生器へ送
り込むようにしたことを特徴とする吸収冷凍機。
2. A low temperature heat exchanger in a system in which an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator and a heat exchanger are arranged and connected, and a diluted absorption liquid is introduced from the absorber to the low temperature regenerator. In the absorption refrigerator provided with, a part of the rare absorbent before being supplied to the low temperature heat exchanger is diverted, and the diverted rare absorbent is heated and concentrated by a heat source,
A heat recovery device that allows the generated refrigerant vapor to be supplied to the low temperature regenerator is arranged, and a flow rate adjustment valve is installed in the diluted liquid supply line of the heat recovery device to supply the heat source supply signal or the heat recovery device. The opening degree of the flow rate adjusting valve is controlled based on the supply temperature of the heat source and the detected temperature signal of the rare absorbing liquid to be controlled,
An absorption refrigerator in which a heated or agriculturally contracted rare absorbent is fed to the low temperature regenerator.
JP62038225A 1987-02-20 1987-02-20 Absorption refrigerator Expired - Lifetime JPH0820141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038225A JPH0820141B2 (en) 1987-02-20 1987-02-20 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038225A JPH0820141B2 (en) 1987-02-20 1987-02-20 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS63204080A JPS63204080A (en) 1988-08-23
JPH0820141B2 true JPH0820141B2 (en) 1996-03-04

Family

ID=12519364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038225A Expired - Lifetime JPH0820141B2 (en) 1987-02-20 1987-02-20 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0820141B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253886B2 (en) * 2008-05-28 2013-07-31 荏原冷熱システム株式会社 Absorption refrigerator
JP5522651B2 (en) * 2009-06-02 2014-06-18 川重冷熱工業株式会社 Absorption chiller / heater using ultra low temperature waste heat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080060A (en) * 1983-10-06 1985-05-07 三洋電機株式会社 Heat recovering device for absorption type cold and hot medium gaining machine

Also Published As

Publication number Publication date
JPS63204080A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
JP2004257705A (en) Concentration device using absorption heat pump
KR20020035770A (en) Absorbed refrigerator
JP3223122B2 (en) Method of stopping operation of absorption refrigeration system
JP2012202589A (en) Absorption heat pump apparatus
JPH0820141B2 (en) Absorption refrigerator
JP3444203B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP2002061983A (en) Absorption refrigerating machine
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JPS6024903B2 (en) Multiple effect absorption refrigerator
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2895974B2 (en) Absorption refrigerator
JP3213020B2 (en) Absorption refrigerator
JPH0429339Y2 (en)
JP2003287315A (en) Absorption refrigerating machine
JPS6138787B2 (en)
JPS6113888Y2 (en)
WO1997031229A1 (en) Absorption refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPH0350373Y2 (en)
JPH08313108A (en) Absorbing type refrigerating machine using exhaust heat of engine
JPH0694962B2 (en) Absorption air conditioner
JPH06137706A (en) Control method for absorption type cooling and hot water equipment
JPH0198865A (en) Absorption refrigerator