JPH08198672A - Piezoelectric material - Google Patents

Piezoelectric material

Info

Publication number
JPH08198672A
JPH08198672A JP7006008A JP600895A JPH08198672A JP H08198672 A JPH08198672 A JP H08198672A JP 7006008 A JP7006008 A JP 7006008A JP 600895 A JP600895 A JP 600895A JP H08198672 A JPH08198672 A JP H08198672A
Authority
JP
Japan
Prior art keywords
piezoelectric material
amount
piezoelectric
displacement performance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7006008A
Other languages
Japanese (ja)
Inventor
Takao Tani
孝夫 谷
Kazumasa Takatori
一雅 鷹取
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7006008A priority Critical patent/JPH08198672A/en
Publication of JPH08198672A publication Critical patent/JPH08198672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To provide a piezoelectric material having satisfactory displacement performance under high compressive stress and excellent also in temp. stability. CONSTITUTION: This piezoelectric material is represented by the general formula (Pb1-3 X/2- Y/2 LaX) [(ZrZTi1- Z)1- YNbY]O3 [where 0.015<=X<=0.035, 0.025<=Y<=0.045, 0.53<=Z<=0.65 and (X+Y)<=0.060]. Since La and Nb have been substd. in a well- balanced state in such a range of the ratio of Zr to Ti as to ensure relatively satisfactory displacement performance, this piezoelectric material has satisfactory displacement performance under high compressive stress and is excellent also in temp. stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用の圧電アクチ
ュエータ等の圧電素子に利用することができる圧電材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric material that can be used for piezoelectric elements such as piezoelectric actuators for automobiles.

【0002】[0002]

【従来の技術】圧電素子に用いられる圧電材料として、
PZT系酸化物よりなるセラミックス(PbTiO3
PbZrO3 系固溶体)が知られている。このPZT系
セラミックスは優れた圧電特性を示し、電気機械変換素
子として、圧電着火素子、圧電ブザー、フィルタ、圧電
アクチュエータなどとして広く用いられている。
2. Description of the Related Art As a piezoelectric material used for a piezoelectric element,
Ceramics made of PZT-based oxide (PbTiO 3
PbZrO 3 based solid solution) is known. The PZT ceramics exhibit excellent piezoelectric characteristics and are widely used as electromechanical conversion elements such as piezoelectric ignition elements, piezoelectric buzzers, filters, and piezoelectric actuators.

【0003】このPZT系セラミックスを例えば圧電ア
クチュエータとして利用する場合、圧電特性が良好なこ
と、すなわち圧電定数(d31等)が大きいことが望まし
い。この圧電定数は圧電セラミックスを構成する金属元
素の種類とその組成割合により大きく変動することがわ
かってきている。そして、PZT系酸化物よりなる圧電
材料における圧電特性の改善には、La、Nb、Sb等
の添加が有効であることが以前より知られている。
When this PZT ceramics is used as a piezoelectric actuator, for example, it is desirable that the piezoelectric characteristics are good, that is, the piezoelectric constant (d 31 etc.) is large. It has been known that this piezoelectric constant greatly varies depending on the types of metal elements constituting the piezoelectric ceramics and their composition ratios. It has been known for a long time that the addition of La, Nb, Sb or the like is effective for improving the piezoelectric characteristics of a piezoelectric material made of a PZT-based oxide.

【0004】例えば、特開平5−845号公報にはPb
の一部をLaで置換するとともにNbを含むPZT系酸
化物よりなる圧電材料が開示されている。そして、この
ような組成とすれば、得られる圧電素子の圧電定数及び
誘電率が向上することを教示している。
For example, Japanese Patent Laid-Open No. 5-845 discloses Pb.
There is disclosed a piezoelectric material made of a PZT-based oxide that partially substitutes La with La and contains Nb. Then, it teaches that such a composition improves the piezoelectric constant and the dielectric constant of the obtained piezoelectric element.

【0005】[0005]

【発明が解決しようとする課題】ところで、圧電素子を
自動車用油圧切替弁等の圧電アクチュエータに適用する
場合、高圧縮応力下での変位性能と広い温度範囲での安
定性が特に重要となる。前者は油圧切替弁等では高圧縮
応力下で変位する必要があるためであり、後者は自動車
用部品に求められる使用温度範囲(−30〜150℃)
で駆動電圧の温度変化が大きいと駆動側の制御が困難に
なるためである。
When the piezoelectric element is applied to a piezoelectric actuator such as a hydraulic switching valve for automobiles, the displacement performance under high compressive stress and the stability in a wide temperature range are particularly important. The former is because it is necessary to displace the hydraulic switching valve under high compressive stress, and the latter is the operating temperature range required for automobile parts (-30 to 150 ° C).
This is because control of the drive side becomes difficult if the temperature change of the drive voltage is large.

【0006】しかし、特開平5−845号公報の実施例
に開示された圧電材料では、Zr/Ti比、La置換
量、Nb置換量のいずれかが最適化されていないため、
高圧縮応力下での変位性能と温度安定性の一方を満足す
ることはあっても、両特性の両立は困難であった。本発
明は上記実情に鑑みてなされたものであり、高圧縮応力
下での変位性能が良好で、かつ、温度安定性にも優れた
圧電材料を提供することを解決すべき技術課題とするも
のである。
However, in the piezoelectric material disclosed in the embodiment of Japanese Patent Application Laid-Open No. 5-845, any one of the Zr / Ti ratio, the La substitution amount, and the Nb substitution amount is not optimized.
Even if one of the displacement performance and the temperature stability under high compressive stress is satisfied, it is difficult to satisfy both characteristics. The present invention has been made in view of the above circumstances, and it is a technical problem to be solved to provide a piezoelectric material having good displacement performance under high compressive stress and excellent in temperature stability. Is.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の圧電材料は、一般式:
The piezoelectric material of the present invention for solving the above-mentioned problems has a general formula:

【0008】[0008]

【化2】 Embedded image

【0009】で示される圧電材料であり、式中のX、
Y、Zの値が、0.015≦X≦0.035、 0.025≦Y≦0.045、 0.53≦Z≦0.56、 (X+Y)≦0.060 であることを特徴とするものである。
Is a piezoelectric material represented by
The values of Y and Z are 0.015 ≦ X ≦ 0.035, 0.025 ≦ Y ≦ 0.045, 0.53 ≦ Z ≦ 0.56, and (X + Y) ≦ 0.060. To do.

【0010】本発明の圧電材料は、好ましい態様におい
て、上記式中のX、Yの値が、 0.020≦X≦0.030、 0.030≦Y≦0.040 (X+Y)≦0.060 である。
In a preferred embodiment of the piezoelectric material of the present invention, the values of X and Y in the above formula are 0.020≤X≤0.030, 0.030≤Y≤0.040 (X + Y) ≤0. It is 060.

【0011】本発明の圧電材料の作製方法は特に限定さ
れないが、通常の固相反応法で作製することができる。
すなわち、高純度の酸化物あるいは炭酸塩粉末を秤量、
混合、仮焼、粉砕し、成形後、成形体を焼成すればよ
い。但し、組成変動を抑制するために、圧電材料と同組
成のパッド材に成形体を完全に埋め込んだ状態で焼成す
ることが望ましい。これは、焼成する成形体の組成がパ
ッド材と異なると、両者間の物質移動が起こる可能性が
あり、仕込み組成通りの焼結体を得にくいためである。
また、パッド材に成形体を完全に埋め込むことにより、
Pbの蒸発も抑制することができる。また、焼成温度は
1000〜1300℃とすることが望ましく、1150
〜1250℃とすることが特に望ましい。焼成温度が1
000℃より低いと緻密な焼結体を得にくく、1300
℃より高いとPb蒸発が激しくなり、組成変動し易くな
るためである。
The method for producing the piezoelectric material of the present invention is not particularly limited, but it can be produced by an ordinary solid phase reaction method.
That is, weigh high-purity oxide or carbonate powder,
After mixing, calcination, crushing, and molding, the molded body may be fired. However, in order to suppress the composition fluctuation, it is desirable to fire the molded body completely embedded in a pad material having the same composition as the piezoelectric material. This is because if the composition of the molded body to be fired is different from that of the pad material, mass transfer between them may occur, and it is difficult to obtain a sintered body having the composition as charged.
Also, by completely embedding the molded body in the pad material,
The evaporation of Pb can also be suppressed. The firing temperature is preferably 1000 to 1300 ° C., and 1150
It is particularly desirable to set the temperature to ˜1250 ° C. Firing temperature is 1
If it is lower than 000 ° C, it is difficult to obtain a dense sintered body,
This is because if the temperature is higher than 0 ° C., the Pb vaporization will become more vigorous and the composition will easily change.

【0012】[0012]

【作用】La、Nbはいずれも典型的なドナー(サイト
本来の価数よりも高価数のイオン)であるが、PZTの
特性に及ぼす効果は若干異なる。Laは特に変位性能向
上に寄与し、Nbは変位性能向上の効果という点ではL
aより小さいが温度安定性向上の効果が大きい。すなわ
ち、Laのみの置換では温度安定性向上の効果が小さ
く、Nbのみの置換では変位性能向上の効果が小さくな
る。したがって、両特性を両立するためには一方のみの
置換では不十分であり、La及びNbをバランス良く置
換する必要がある。これらの特性向上効果は5mol%
程度の置換量までは置換量の増加と共に大きくなるた
め、置換量は多い方が望ましい。
Although La and Nb are both typical donors (ions having a higher number of valences than the original valence of the site), their effects on the characteristics of PZT are slightly different. La particularly contributes to the improvement of the displacement performance, and Nb is L in terms of the effect of improving the displacement performance.
Although smaller than a, the effect of improving temperature stability is large. That is, the effect of improving the temperature stability is small with the replacement of only La, and the effect of improving the displacement performance is small with the replacement of only Nb. Therefore, in order to achieve both properties, substitution of only one is not sufficient, and it is necessary to substitute La and Nb in a well-balanced manner. The effect of improving these characteristics is 5 mol%
It is preferable that the substitution amount is large because the substitution amount increases up to a certain degree as the substitution amount increases.

【0013】種々の検討の結果、前述の高圧縮応力下
での変位性能及び−30〜150℃の温度範囲での温
度安定性を満足させるためには、 0.015≦X、0.025≦Y …(1) のLa、Nb置換が必要であることが明らかとなった。
X<0.015では特に変位性能向上の効果が不十分で
あり、Y<0.025では特に温度安定性向上の効果が
不十分である。
As a result of various studies, in order to satisfy the above-mentioned displacement performance under high compressive stress and temperature stability in the temperature range of -30 to 150 ° C., 0.015 ≦ X, 0.025 ≦ It became clear that Y ... (1) needs to be replaced with La and Nb.
When X <0.015, the effect of improving the displacement performance is particularly insufficient, and when Y <0.025, the effect of improving the temperature stability is particularly insufficient.

【0014】一方、La、Nb等のドナーを置換する
と、電気的中性を保つためにPb欠陥が発生する。L
a、Nbを置換した本発明の圧電材料では、Laあるい
はNbの1mol%置換当たり0.5mol%のPb欠
陥が発生するが、このPb欠陥が3mol%を越えると
結晶構造を維持できなくなり第2相が析出する。第2相
はドナー元素を含むパイクロア相(La2 Zr2 7
はPb2 Nb2 7 )であり、この第2相の析出により
PZT中のドナー量を減少させ結晶構造を安定化させて
いる。但し、この第2相は変位性能低下の原因となるた
め、Laの置換量とNbの置換量の総和は6mol%以
下にする必要がある。すなわち、 (X+Y)≦0.06 …(2) を満たす必要がある。したがって、上記(1)、(2)
より、X、Yの置換量の上限は下記(3)のように限定
される。
On the other hand, when a donor such as La or Nb is replaced, a Pb defect occurs in order to maintain electrical neutrality. L
In the piezoelectric material of the present invention in which a and Nb are substituted, 0.5 mol% of Pb defects are generated per 1 mol% of La or Nb, but if the Pb defects exceed 3 mol%, the crystal structure cannot be maintained. The phase precipitates. The second phase is a pyrochlore phase (La 2 Zr 2 O 7 or Pb 2 Nb 2 O 7 ) containing a donor element, and the precipitation of this second phase reduces the donor amount in PZT and stabilizes the crystal structure. There is. However, since this second phase causes a decrease in displacement performance, the sum of the La substitution amount and the Nb substitution amount must be 6 mol% or less. That is, it is necessary to satisfy (X + Y) ≦ 0.06 (2). Therefore, the above (1) and (2)
Therefore, the upper limits of the substitution amounts of X and Y are limited as in (3) below.

【0015】 X≦0.035、Y≦0.045 …(3) なお、前述の高圧縮応力下での変位性能及び−30
〜150℃の温度範囲での温度安定性を満足させるため
には、上記(1)、(2)、(3)の範囲のLa置換及
びNb置換で十分であるが、置換量の更なる増加により
性能は更に増加する。これは、前述のように5mol%
程度の置換量までは、置換量の増加と共に特性向上が大
きくなるためである。特に、La,Nb各々の置換量を
バランス良く増加させた下記(4)の領域では、変位性
能及び温度安定性の両方の特性向上の効果が著しい。
X ≦ 0.035, Y ≦ 0.045 (3) Incidentally, the displacement performance under the high compressive stress and −30 described above.
In order to satisfy the temperature stability in the temperature range of 150 ° C to 150 ° C, La substitution and Nb substitution in the above ranges (1), (2) and (3) are sufficient, but the substitution amount is further increased. Will further increase performance. This is 5 mol% as described above.
This is because up to a certain substitution amount, the characteristics are improved as the substitution amount increases. In particular, in the following region (4) in which the substitution amounts of La and Nb are increased in a well-balanced manner, the effect of improving both the displacement performance and the temperature stability is remarkable.

【0016】 0.020≦X、0.030≦Y …(4) この場合も上記(2)より、置換量の上限は下記(5)
のように限定される。 X≦0.030、Y≦0.040 …(5) 次に、Zの値に関しては、以下のように考えられる。す
なわち、PZTの圧電性能が正方晶−菱面体晶相境界
(MPB)付近で最大になることは知られているが、大
振幅電界下の変位性能に関しても同様の傾向を示すこと
が明らかとなった。本発明の圧電材料におけるMPB
は、Z=0.55〜0.56付近であり、変位性能はそ
の近傍のZ=0.53〜0.58で十分な値となる。一
方、温度安定性はZr量の増加と共に悪くなり、Zの値
が0.56以下でないと十分な温度安定性を示さない。
したがって、変位性能及び温度安定性の両特性を満足す
るためには、Zの値は下記(6)のように限定される。
0.020 ≦ X, 0.030 ≦ Y (4) Also in this case, from the above (2), the upper limit of the substitution amount is the following (5).
Limited as X ≦ 0.030, Y ≦ 0.040 (5) Next, the value of Z is considered as follows. That is, it is known that the piezoelectric performance of PZT is maximized in the vicinity of the tetragonal-rhombohedral phase boundary (MPB), but it is clear that the displacement performance under a large amplitude electric field also shows the same tendency. It was MPB in the piezoelectric material of the present invention
Is near Z = 0.55 to 0.56, and the displacement performance is a sufficient value at around Z = 0.53 to 0.58. On the other hand, the temperature stability becomes worse as the amount of Zr increases, and sufficient temperature stability is not exhibited unless the value of Z is 0.56 or less.
Therefore, in order to satisfy both characteristics of displacement performance and temperature stability, the value of Z is limited as in (6) below.

【0017】 0.53≦Z≦0.56 …(6) Zの値が、Z<0.53では変位性能が不十分であり、
Z>0.56では温度安定性が悪くなり過ぎる。上記組
成を有する本発明の圧電材料は、高圧縮応力下での変位
性能が良好で、かつ温度安定性も良好である。この理由
は、以下のように推測することができる。すなわち、L
aとPbはドナーという点では同じであるが、サイト本
来のイオンとのイオン半径や最外殻電子配置のマッチン
グの点では全く異なる。LaはPbよりもイオン半径が
1割以上小さく、かつ、最外殻電子配置もPbとは異な
る。これに対して、NbはZr、Tiの中間的なイオン
半径を有し、かつ、最外殻電子配置もZr、Tiと同じ
希ガス構造である。このような違いにより、Laが変位
性能向上の効果に寄与し、一方Nbが温度安定性向上の
効果に寄与するという結果になったものと考えられる。
そして、これらの効果が異なる2つのドナーをA、B両
サイトへバランス良く置換することにより、原因は明ら
かではないが、それぞれの効果を相殺することなく発現
し、変位性能及び温度安定性の両立を実現できたと推定
される。
0.53 ≦ Z ≦ 0.56 (6) When the value of Z is Z <0.53, the displacement performance is insufficient,
When Z> 0.56, the temperature stability becomes too poor. The piezoelectric material of the present invention having the above composition has good displacement performance under high compressive stress and good temperature stability. The reason for this can be inferred as follows. That is, L
Although a and Pb are the same in that they are donors, they are completely different in terms of matching the ionic radius with the original ions of the site and the outermost shell electron configuration. La has an ionic radius smaller than Pb by 10% or more, and the outermost shell electron configuration is also different from Pb. On the other hand, Nb has an intermediate ionic radius between Zr and Ti, and has the same outermost shell electron configuration as the rare gas structure similar to Zr and Ti. It is considered that such a difference results in that La contributes to the effect of improving the displacement performance, while Nb contributes to the effect of improving the temperature stability.
Then, by replacing two donors having different effects with both A and B sites in a well-balanced manner, the cause is not clear, but the effects are expressed without canceling each other, and both displacement performance and temperature stability are compatible. It is estimated that

【0018】[0018]

【実施例】以下、試験例により本発明を具体的に説明す
る。 (試験例1)原料粉末として、PbO、La2 3 、Z
rO2 、TiO2 、Nb2 5 を準備した。そして、組
成式:
EXAMPLES The present invention will be specifically described below with reference to test examples. (Test Example 1) As raw material powder, PbO, La 2 O 3 , Z
rO 2 , TiO 2 , and Nb 2 O 5 were prepared. And the composition formula:

【0019】[0019]

【化3】 Embedded image

【0020】において、X=0.030一定とし、Yを
0.020、0.025、0.030、0.035と変
化させ、かつ、Zを0.52、0.53、0.54、
0.55、0.56、0.57と変化させて原料粉末を
所定量ずつ秤量し、十分に乾式混合し、15種類の混合
粉末を得た。得られた各混合粉末を700〜900℃で
1〜10時間仮焼し、仮焼粉末を得た。得られた各仮焼
粉末をボールミル(ZrO2 ボール、溶媒エタノール)
で8〜72時間湿式粉砕した。この粉末を乾燥、解砕し
て、15種類の試料粉末とした。
In, X is kept constant at 0.030, Y is changed to 0.020, 0.025, 0.030, 0.035, and Z is set to 0.52, 0.53, 0.54,
The raw material powders were weighed in predetermined amounts while being changed to 0.55, 0.56, and 0.57, and sufficiently dry-mixed to obtain 15 kinds of mixed powders. The obtained mixed powders were calcined at 700 to 900 ° C. for 1 to 10 hours to obtain calcined powders. Each calcined powder obtained was ball milled (ZrO 2 balls, solvent ethanol).
It was wet-ground for 8 to 72 hours. This powder was dried and crushed to obtain 15 kinds of sample powder.

【0021】各々の試料粉末を一軸プレス(39MP
a)で予備成形した後、294MPaの圧力でCIP成
形し、直径:約15mm、厚さ:約2mmの円板形状の
ペレットを得た。このペレットをMgO製のサヤを用い
て、1000〜1300℃で2〜4時間焼成した。焼成
はペレットを同一組成のパッド材に完全に埋め込んだ状
態で行った。
Each sample powder was uniaxially pressed (39MP
After preforming in a), CIP molding was performed at a pressure of 294 MPa to obtain disc-shaped pellets having a diameter of about 15 mm and a thickness of about 2 mm. The pellets were fired at 1000 to 1300 ° C. for 2 to 4 hours using a sheath made of MgO. The firing was performed with the pellets completely embedded in a pad material having the same composition.

【0022】焼成ペレットの両面を研磨した後、両面に
イオンコータでAu電極を施した。その後、試料を80
〜150℃の絶縁油中で分極処理(1〜5kV/mmの
電界を5〜60分印加)し、測定用試料とした。得られ
た測定用試料について、ベクトルインピーダンスアナラ
イザ(HP 4194A)と、恒温恒湿槽(タバイエス
ペック PL−1F)とを組み合わせたシステムを用
い、−30〜150℃における各試料の誘電率
(εT 33)を測定した。そして、下記式(7)より誘電
率の温度変化率(以下、温度変化率と略す)を計算し
た。なお、この試験で用いた試料のキュリー温度(T
c)は全般的に200℃以上と高く、150℃程度まで
の温度範囲では電気機械結合係数(Kp)や弾性コンプ
ライアンスはあまり変化しないため、誘電率(ε)の温
度変化率の大きさが変位の温度安定性の目安となる。そ
して、温度変化率の大きさが200%以下であれば、十
分な温度安定性をもつとみなすことができる。
After polishing both sides of the fired pellet, Au electrodes were applied to both sides with an ion coater. Then sample 80
Polarization treatment (application of an electric field of 1 to 5 kV / mm for 5 to 60 minutes) was performed in insulating oil at ˜150 ° C. to obtain a measurement sample. With respect to the obtained measurement sample, a system combining a vector impedance analyzer (HP 4194A) and a constant temperature and constant humidity chamber (Tabay Espec PL-1F) was used, and the dielectric constant (ε T of each sample at −30 to 150 ° C. 33 ) was measured. Then, the temperature change rate of the dielectric constant (hereinafter, abbreviated as temperature change rate) was calculated from the following formula (7). The Curie temperature of the sample used in this test (T
c) is generally as high as 200 ° C or higher, and since the electromechanical coupling coefficient (Kp) and elastic compliance do not change much in the temperature range up to about 150 ° C, the magnitude of the temperature change rate of the dielectric constant (ε) changes. It is a measure of the temperature stability of. If the rate of temperature change is 200% or less, it can be considered that the temperature stability is sufficient.

【0023】 温度変化率(%)={(εmax −εmin )/εmin }×100 …(7) (但し、εmax :−30〜150℃でのεの最大値、ε
min :−30〜150℃でのεの最小値) また、得られた測定用試料について、高圧縮応力下でペ
レット単体の変位量(1μm以下)を精度良く測定可能
な微小変位測定装置を用いて、変位性能評価を行った。
これは、測定条件を常温、大気中、圧縮応力:20MP
aとし、−0.4〜+1.2kV/mmの電界を印加し
た際の電界誘起歪量を評価することにより行った。そし
て、この電界誘起歪量が0.05%以上であれば、十分
な変位性能をもつとみなすことができる。
Temperature change rate (%) = {(ε max −ε min ) / ε min } × 100 (7) (where ε max is the maximum value of ε at −30 to 150 ° C., ε
min : minimum value of ε at −30 to 150 ° C.) Further, for the obtained measurement sample, a small displacement measuring device capable of accurately measuring the displacement amount (1 μm or less) of the pellet alone under high compressive stress is used. Then, the displacement performance was evaluated.
The measurement conditions are room temperature, atmospheric pressure, compressive stress: 20MP.
It was performed by evaluating the amount of electric field induced strain when an electric field of −0.4 to +1.2 kV / mm was applied as a. If the electric field induced strain amount is 0.05% or more, it can be considered that the displacement performance is sufficient.

【0024】図1に、電界誘起歪量(図上部)、温度変
化率(図下部)をZ(Z量)に対して示した結果を示
す。 (試験例2) 組成式:
FIG. 1 shows the results showing the amount of electric field induced strain (upper part of the figure) and the rate of temperature change (lower part of the figure) with respect to Z (Z amount). (Test Example 2) Composition formula:

【0025】[0025]

【化4】 [Chemical 4]

【0026】において、X=0.020一定とし、Yを
0.020、0.025、0.030、0.040、
0.045と変化させ、かつ、Zを0.52、0.5
3、0.54、0.55、0.56、0.57と変化さ
せて原料粉末を所定量ずつ秤量し、十分に乾式混合し、
21種類の混合粉末を得た。得られたそれぞれの混合粉
末から上記試験例1と同様にして21種類の測定用試料
を得て、上記試験例1と同様の評価を行った。図2に、
電界誘起歪量(図上部)、温度変化率(図下部)をZ
(Z量)に対して示した結果を示す。
In the above, X = 0.020 is constant, and Y is 0.020, 0.025, 0.030, 0.040,
Change to 0.045, and set Z to 0.52, 0.5
3, 0.54, 0.55, 0.56, 0.57 while changing the raw material powder by a predetermined amount, and sufficiently dry-mixed,
21 kinds of mixed powders were obtained. 21 kinds of measurement samples were obtained from each of the obtained mixed powders in the same manner as in Test Example 1, and the same evaluation as in Test Example 1 was performed. In Figure 2,
The electric field induced strain amount (upper part of the figure) and temperature change rate (lower part of the figure) are Z
The result shown with respect to (Z amount) is shown.

【0027】図1及び図2より、X、Y及びZの値が、
本発明の範囲内にある試料では、電界誘起歪量が0.0
5%以上、温度変化率が200%以下の両方の特性を満
足しているのに対し、X、Y又はZの値が本発明の範囲
外にある試料では、電界誘起歪量、温度変化率のいずれ
か、あるいは両方の特性を満足していなかった。 (試験例3) 組成式:
From FIGS. 1 and 2, the values of X, Y and Z are
In the sample within the range of the present invention, the electric field induced strain amount is 0.0
Both of the characteristics of 5% or more and the temperature change rate of 200% or less are satisfied, whereas in the sample in which the value of X, Y or Z is outside the range of the present invention, the amount of electric field induced strain and the temperature change rate. Either or both properties were not satisfied. (Test Example 3) Compositional formula:

【0028】[0028]

【化5】 Embedded image

【0029】において、0.010≦X≦0.040、
0.020≦Y≦0.045、0.52≦Z≦0.57
となるように、所定量秤量し、十分に乾式混合した。得
られたそれぞれの混合粉末から上記試験例1と同様にし
て測定用試料を得て、上記試験例1と同様の評価を行っ
た。その結果を表1に示す。
Where 0.010 ≦ X ≦ 0.040,
0.020 ≦ Y ≦ 0.045, 0.52 ≦ Z ≦ 0.57
A predetermined amount was weighed and sufficiently dry mixed. A measurement sample was obtained from each of the obtained mixed powders in the same manner as in Test Example 1, and the same evaluation as in Test Example 1 was performed. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】表1より、X、Y及びZの値が、本発明の
範囲内にある試料では、最低でも0.050%以上の電
界誘起歪量を維持し、かつ誘電率(ε)の温度変化率も
最大191%と小さかった。これに対し、X、Y又はZ
の値が本発明の範囲外にある試料では、電界誘起歪量が
0.047%以下と小さいか、あるいは誘電率(ε)の
温度変化率が200%以上と大きく、変位性能と温度安
定性を両立できていなかった。
From Table 1, in the samples having the values of X, Y and Z within the range of the present invention, the electric field induced strain amount of at least 0.050% or more was maintained, and the temperature of the dielectric constant (ε) was maintained. The change rate was also small at a maximum of 191%. On the other hand, X, Y or Z
In a sample having a value of is outside the range of the present invention, the amount of electric field induced strain is as small as 0.047% or less, or the rate of temperature change of the dielectric constant (ε) is as large as 200% or more, and the displacement performance and the temperature stability are stable. I was not able to achieve both.

【0032】(補足説明)前述した特開平5−845号
公報には、Pbの一部をLaで置換するとともにNbを
含むPZT系酸化物よりなる圧電材料が開示されてお
り、このものでは、Pbの一部をLaで置換したチタン
酸ジルコン酸鉛の一般式が Pb1-X LaX (Ti1-Y ZrY 1-X/4 3 …(8) (但し、0<X<0.1、0.5<Y<0.7)なる組
成物を主体とし、Nb25 を酸化物組成重量比率で、
0〜3wt%(但し、0は含まない)だけ添加すること
を特許請求の範囲としている。この特開平5−845号
公報に開示された発明は、ドナー置換で発生する欠陥を
Zr、Ti欠陥と考え、Bサイト量を減らしている点が
本発明と異なる。すなわち、特開平5−845号公報で
示された考えが正しければ、本発明は化学量論組成から
数mol%Pb不足のPZTを特許請求の範囲としてお
り、逆に本発明で示した考えが正しければ特開平5−8
45号公報で示された発明はPb過剰のPZTを特許請
求の範囲としていることになる。いずれにせよ、本発明
と特開平5−845号公報で示された発明とでは、特許
請求の範囲で示される組成範囲は異なることになる。
(Supplementary Explanation) The above-mentioned Japanese Patent Laid-Open No. 5-845 discloses a piezoelectric material made of a PZT-based oxide containing Nb while substituting a part of Pb with La. The general formula of lead zirconate titanate obtained by substituting a part of Pb with La is Pb 1-X La X (Ti 1-Y Zr Y ) 1-X / 4 O 3 (8) (where 0 <X < 0.1, 0.5 <Y <0.7) as the main component, and Nb 2 O 5 in the oxide composition weight ratio,
It is claimed that only 0 to 3 wt% (however, 0 is not included) is added. The invention disclosed in Japanese Unexamined Patent Publication No. 5-845 is different from the present invention in that the defects generated by the donor substitution are considered as Zr and Ti defects and the B site amount is reduced. That is, if the idea shown in Japanese Patent Laid-Open No. 5-845 is correct, the present invention claims PZT lacking several mol% Pb from the stoichiometric composition, and conversely the idea shown in the present invention. If correct, JP-A-5-8
The invention disclosed in Japanese Patent No. 45 claims PZT in excess of Pb. In any case, the composition range shown in the claims is different between the present invention and the invention disclosed in Japanese Patent Laid-Open No. 845/845.

【0033】次に、蒸発やパッド材からの吸収等により
Pbの過不足は無視できる場合について考える。特開平
5−845号公報に示された実施例のうち、試料No.
3(上記式(8)において、X=0.97、Y=0.4
5であり、Nb2 5 の添加量が1.0wt%のもの)
以外の試料はLa置換量あるいはZr/Ti比が本発明
の特許請求の範囲で示すものと異なっている。試料N
o.3に関しても、La置換量、及びZr/Ti比が本
発明の特許請求の範囲で示す範囲内であるが、Nb置換
量が本発明の特許請求の範囲で示す範囲外である。特開
平5−845号公報では、Nbを化学量論組成に対して
添加している点、添加量が酸化物の重量%換算である点
から、単純な比較はできないが、本発明で示した考え方
で計算を行うと、2.38mol%のNb置換がNb2
5 :1wt%を添加した場合に相当し、特開平5−8
45号公報におけるNb置換量は2.5mol%以上の
Nb置換量とした本発明の特許請求の範囲よりも小さい
こととなる。
Next, consider a case where the excess or deficiency of Pb can be ignored due to evaporation or absorption from the pad material. Among the examples shown in Japanese Patent Laid-Open No. 5-845, the sample No.
3 (in the above formula (8), X = 0.97, Y = 0.4
5 and the amount of Nb 2 O 5 added is 1.0 wt%)
Samples other than the above have different La substitution amounts or Zr / Ti ratios from those shown in the claims of the present invention. Sample N
o. Regarding 3, also, the La substitution amount and the Zr / Ti ratio are within the ranges shown in the claims of the present invention, but the Nb substitution amounts are outside the ranges shown in the claims of the present invention. In Japanese Unexamined Patent Publication (Kokai) No. 5-845, a simple comparison cannot be made because Nb is added to the stoichiometric composition and the addition amount is in terms of oxide weight%, but it is shown in the present invention. When calculation is performed based on the concept, Nb substitution of 2.38 mol% is Nb 2
This corresponds to the case where O 5 : 1 wt% is added.
The Nb substitution amount in Japanese Patent Laid-Open No. 45-45 is smaller than the claims of the present invention in which the Nb substitution amount is 2.5 mol% or more.

【0034】なお、特開平5−845号公報に示された
実施例の試料No.3の組成に最も近い比較例は、本実
施例で示した試料No.29(比較例)と考えられる
が、このものはNb置換量が少ないためにやはり温度安
定性が十分ではなく、変位性能及び温度安定性を両立し
ないことがわかる。
The sample No. of the example disclosed in Japanese Patent Laid-Open No. 5-845 was used. The comparative example closest to the composition of No. 3 is the sample No. 3 shown in this example. Although it is considered to be No. 29 (Comparative Example), it is understood that this one also has insufficient temperature stability due to the small amount of Nb substitution, and the displacement performance and the temperature stability are not compatible.

【0035】[0035]

【発明の効果】以上詳述したように、本発明の圧電材料
は、変位性能が比較的良好なZr/Ti比の範囲におい
て、La及びNbをバランス良く置換することにより、
高圧縮応力下での変位性能が良好で、かつ、温度安定性
にも優れ、両特性を両立することが可能である。したが
って、本発明の圧電材料は、広温度域で使用される自動
車用アクチュエータ等に用いられる圧電素子として、好
適に利用することが可能となる。
As described above in detail, in the piezoelectric material of the present invention, La and Nb are replaced in a well-balanced manner in the range of the Zr / Ti ratio where the displacement performance is relatively good.
The displacement performance under high compressive stress is good, and the temperature stability is excellent, and both properties can be compatible. Therefore, the piezoelectric material of the present invention can be suitably used as a piezoelectric element used for an actuator for automobiles used in a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】 X=0.030の際のY、Zによる電界誘起
歪量、温度変化率の変化の様子を示すグラフである。
FIG. 1 is a graph showing changes in the amount of electric field induced strain and the rate of temperature change due to Y and Z when X = 0.030.

【図2】 X=0.020の際のY、Zによる電界誘起
歪量、温度変化率の変化の様子を示すグラフである。
FIG. 2 is a graph showing changes in the amount of electric field induced strain and the rate of temperature change due to Y and Z when X = 0.020.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式: 【化1】 で示される圧電材料であり、 式中のX、Y、Zの値が、0.015≦X≦0.03
5、 0.025≦Y≦0.045、 0.53≦Z≦0.56、 (X+Y)≦0.060 であることを特徴とする圧電材料。
(1) A general formula: In the formula, the values of X, Y, and Z are 0.015 ≦ X ≦ 0.03.
5, 0.025 ≦ Y ≦ 0.045, 0.53 ≦ Z ≦ 0.56, (X + Y) ≦ 0.060.
【請求項2】式中のX、Yの値が、0.020≦X≦
0.030、 0.030≦Y≦0.040 (X+Y)≦0.060 であることを特徴とする請求項1記載の圧電材料。
2. The value of X and Y in the formula is 0.020 ≦ X ≦
The piezoelectric material according to claim 1, wherein 0.030 and 0.030 ≦ Y ≦ 0.040 (X + Y) ≦ 0.060.
JP7006008A 1995-01-18 1995-01-18 Piezoelectric material Pending JPH08198672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006008A JPH08198672A (en) 1995-01-18 1995-01-18 Piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006008A JPH08198672A (en) 1995-01-18 1995-01-18 Piezoelectric material

Publications (1)

Publication Number Publication Date
JPH08198672A true JPH08198672A (en) 1996-08-06

Family

ID=11626705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006008A Pending JPH08198672A (en) 1995-01-18 1995-01-18 Piezoelectric material

Country Status (1)

Country Link
JP (1) JPH08198672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2006120611A (en) * 2004-08-25 2006-05-11 Ngk Insulators Ltd Electron emitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2006120611A (en) * 2004-08-25 2006-05-11 Ngk Insulators Ltd Electron emitter

Similar Documents

Publication Publication Date Title
JP4929522B2 (en) Piezoelectric ceramic composition
US6004474A (en) Piezoelectric ceramic composition
US5188992A (en) Piezoelectric ceramic composition for actuators
JP3295871B2 (en) Piezoelectric ceramic composition
KR101091192B1 (en) Composition and fabrication method of lead-free piezoelectric ceramics for low temperature firing
JPH08198672A (en) Piezoelectric material
US3640866A (en) Piezoelectric ceramic compositions
JP2820000B2 (en) Piezoelectric material composition for actuator
JPH0516380B2 (en)
JP3761355B2 (en) Piezoelectric ceramic composition
JPH03104179A (en) Piezoelectric ceramic composition for actuator
JPH0873267A (en) Piezoelectric material
JPH08217541A (en) Piezoelectric ceramic composition
JPS6358777B2 (en)
JPH07257924A (en) Piezoelectric material
JP3117625B2 (en) Electric field induced strain material
JPH09202661A (en) Piezoelectric porcelain composition
JPH0438710B2 (en)
JP2001089232A (en) Porcelain composition
JP2000143339A (en) Piezoelectric substance porcelain composition
JP3554397B2 (en) Piezoelectric material
JP2016179931A (en) Piezoelectric ceramic and piezoelectric element prepared therewith
JPH0489354A (en) Piezoelectric porcelain composition
JP3259321B2 (en) Piezoelectric ceramic composition for actuator
KR100586952B1 (en) High Power Piezoelectric Ceramic Composition and Device