JPH08196056A - Dynamic pressure bearing and manufacture thereof - Google Patents

Dynamic pressure bearing and manufacture thereof

Info

Publication number
JPH08196056A
JPH08196056A JP2094495A JP2094495A JPH08196056A JP H08196056 A JPH08196056 A JP H08196056A JP 2094495 A JP2094495 A JP 2094495A JP 2094495 A JP2094495 A JP 2094495A JP H08196056 A JPH08196056 A JP H08196056A
Authority
JP
Japan
Prior art keywords
dynamic pressure
groove
manufacturing
shaft
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094495A
Other languages
Japanese (ja)
Inventor
Hironori Kurosawa
博徳 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP2094495A priority Critical patent/JPH08196056A/en
Publication of JPH08196056A publication Critical patent/JPH08196056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE: To form a dynamic pressure plane and a dynamic pressure generation groove efficiently at a predetermined accuracy. CONSTITUTION: A shaft body 21 and a shaft fitting body 31 constituting a dynamic pressure plane are made of aluminum or an alloy thereof excellent in machinability. Both the dynamic pressure planes 21, 31 and a dynamic pressure generating groove 25 are formed by cutting using a same cutting machine without requiring any mounting/demounting. With such method, both the dynamic pressure planes 21, 31 and the dynamic pressure generating groove 25 can be formed well without decrease of the machining accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体の動圧を利用した
動圧軸受及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing utilizing the dynamic pressure of fluid and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ポリゴンミラー、磁気ディスク、
光ディスク等の各種回転板を回転駆動させる動圧軸受モ
ータの提案が種々行われているが、例えば図1に示され
たような空気動圧軸受を有するモータがある。その基本
構造を説明すると、まずこの図1には、ポリゴンミラー
を回転駆動するための空気動圧軸受型のアウタロータ型
モータの一例が表されている。この空気動圧軸受モータ
は、フレーム1側に組み付けられた固定部材としてのス
テータ組2と、このステータ組2に対して、図示上側か
ら嵌め込むようにして組み付けられた回転部材としての
ロータ組3とから構成されており、このうちステータ組
2は、上記フレーム1の略中心位置に立設された固定軸
21を有しているとともに、その固定軸21の外周面か
ら半径方向に一定の距離を隔てて円筒状に取り囲む軸受
ホルダー22を有している。上記軸受ホルダー22の外
周にはステータコア23が嵌着されており、ステータコ
ア23の突極部には駆動コイル24が巻回されている。
2. Description of the Related Art In recent years, polygon mirrors, magnetic disks,
Various proposals have been made for a dynamic pressure bearing motor that rotationally drives various rotary plates such as an optical disk. For example, there is a motor having an air dynamic pressure bearing as shown in FIG. The basic structure will be described. First, FIG. 1 shows an example of an air dynamic bearing type outer rotor type motor for rotationally driving a polygon mirror. This air dynamic bearing motor includes a stator set 2 as a fixed member assembled on the frame 1 side, and a rotor set 3 as a rotating member assembled so as to be fitted into the stator set 2 from the upper side in the drawing. Of these, the stator set 2 has a fixed shaft 21 which is erected at a substantially central position of the frame 1, and is separated from an outer peripheral surface of the fixed shaft 21 by a constant distance in the radial direction. It has a bearing holder 22 surrounding it in a cylindrical shape. A stator core 23 is fitted around the outer circumference of the bearing holder 22, and a drive coil 24 is wound around the salient pole portion of the stator core 23.

【0003】また上記固定軸21の外周面には、ヘリン
グボーン型の動圧発生用溝25が軸方向に2ブロックに
分けられて環状に凹設されており、当該動圧発生用溝2
5,25が設けられた固定軸21の外側には、前記ロー
タ組3の円筒胴部31が回転可能に装着されている。そ
して上記固定軸21の外周面と、ロータ組3の円筒胴部
31の内周面との間に、空気動圧が発生させられてラジ
アル軸受が形成されるように構成されている。また上記
固定軸21には、当該固定軸21の軸端部(図示上端
部)から空気供給孔26が軸方向に延在しており、当該
空気供給孔26は、前記2ブロックの動圧発生用溝2
5,25の間部分において固定軸21の外側に向かって
開口している。
On the outer peripheral surface of the fixed shaft 21, a herringbone type dynamic pressure generating groove 25 is axially divided into two blocks and is annularly recessed, and the dynamic pressure generating groove 2 is provided.
The cylindrical body 31 of the rotor set 3 is rotatably mounted on the outer side of the fixed shaft 21 on which the rotors 5, 25 are provided. Further, a dynamic pressure is generated between the outer peripheral surface of the fixed shaft 21 and the inner peripheral surface of the cylindrical body portion 31 of the rotor set 3 to form a radial bearing. Further, an air supply hole 26 extends in the axial direction from the shaft end portion (upper end portion in the drawing) of the fixed shaft 21, and the air supply hole 26 generates the dynamic pressure of the two blocks. Groove 2
The portion between 5 and 25 is open toward the outside of the fixed shaft 21.

【0004】さらに上記固定軸21の軸端部(図示上端
部)は、外周部分が軸方向に所定量突出しており、その
突出部分の内周壁に、スラスト浮上用の固定側マグネッ
ト27が環状に装着されている。一方上記ロータ組3に
おける円筒胴部31の基部側(図示上端部側)には、そ
の中心部分に、所定の空気流動抵抗を有する細孔状のエ
アオリフィス32がダンパー手段として軸方向に貫通形
成されており、このエアオリフィス32の通気抵抗によ
るダンパー作用によって、ロータ組3に対する軸方向の
衝撃が緩和されるようになっている。またロータ組3の
内部における空気は、前記空気供給孔26によって動圧
発生用溝25,25の間部分に送給され、動圧発生用溝
25,25のポンピング作用によって軸方向外側図示上
下方向に流動させられ外部側に排出されるようになって
いる。
Further, the shaft end portion (upper end portion in the drawing) of the fixed shaft 21 has an outer peripheral portion protruding in the axial direction by a predetermined amount, and a fixed side magnet 27 for thrust levitation is annularly formed on the inner peripheral wall of the protruding portion. It is installed. On the other hand, on the base side (upper end side in the figure) of the cylindrical body portion 31 of the rotor set 3, a fine air orifice 32 having a predetermined air flow resistance is axially formed as a damper means at the center portion thereof. Due to the damper action by the ventilation resistance of the air orifice 32, the axial impact on the rotor set 3 is alleviated. Further, the air inside the rotor set 3 is fed to the portion between the dynamic pressure generating grooves 25, 25 by the air supply hole 26, and the pumping action of the dynamic pressure generating grooves 25, 25 causes the air pressure in the axially outer direction in the vertical direction in the figure. And is discharged to the outside.

【0005】さらにまた上記エアオリフィス32の周囲
には、スラスト浮上用の回転側マグネット33が環状に
装着されている。この回転側マグネット33は、上述し
た固定軸21側の固定側マグネット27と相互に磁気的
吸引力を生じるように、軸方向(図示上下方向)に着磁
されており、両者の吸引作用によってロータ組3がスラ
スト方向に所定量浮上した状態に保持されるように構成
されている。
Around the air orifice 32, a rotary magnet 33 for thrust levitation is annularly mounted. The rotating-side magnet 33 is magnetized in the axial direction (the vertical direction in the drawing) so as to mutually generate a magnetic attractive force with the fixed-side magnet 27 on the fixed shaft 21 side. The set 3 is configured to be held in a state of being floated by a predetermined amount in the thrust direction.

【0006】一方、上記ロータ組3の円筒胴部31の基
部側(図示上端部側)外周には、回転板としての平面六
角形状のポリゴンミラー34が回転板を構成するように
嵌着されている。このポリゴンミラー34は、円筒胴部
31から半径方向外方に向かって延出する保持部38上
に軸方向に載置されており、クランプ手段である押えバ
ネ39によって固着されている。
On the other hand, a flat surface hexagonal polygon mirror 34 as a rotary plate is fitted to the outer periphery of the cylindrical body 31 of the rotor set 3 on the base side (upper end side in the figure) so as to form the rotary plate. There is. The polygon mirror 34 is axially mounted on a holding portion 38 extending outward from the cylindrical body 31 in the radial direction, and is fixed by a holding spring 39 serving as a clamping means.

【0007】また上記保持部38からは、半径方向外方
に向かってロータフランジ部35が延出している。この
ロータフランジ部35は、前記円筒胴部31及び保持部
38と一体に形成された円盤状部材からなり、前記駆動
コイル24とポリゴンミラー34との間部分に、これら
両部材24,34から軸方向に空間を隔てて対面するよ
うに配置されている。すなわちこのロータフランジ部3
5は、前記駆動コイル24が配置されたロータ内空間
と、ポリゴンミラー34が配置されたロータ外空間とを
仕切るように配置されている。
A rotor flange portion 35 extends outward from the holding portion 38 in the radial direction. The rotor flange portion 35 is composed of a disk-shaped member integrally formed with the cylindrical body portion 31 and the holding portion 38. The rotor flange portion 35 is provided between the drive coil 24 and the polygon mirror 34 at a portion between the two members 24, 34. It is arranged to face each other with a space in between. That is, this rotor flange portion 3
5 is arranged so as to partition the rotor inner space in which the drive coil 24 is arranged and the rotor outer space in which the polygon mirror 34 is arranged.

【0008】さらに上記ロータフランジ部35の外周部
から軸方向(図示下方向)に向かって突出する環状の取
付板36の内周壁面に、磁性材からなるバックヨークを
介して駆動マグネット37が環状に装着されている。上
記駆動マグネット37は、前述したステータコア23の
外周面に対して半径方向に対向するように配置されてい
る。
Further, a drive magnet 37 is annularly formed on the inner peripheral wall surface of an annular mounting plate 36 projecting from the outer peripheral portion of the rotor flange portion 35 in the axial direction (downward in the drawing) via a back yoke made of a magnetic material. Is attached to. The drive magnet 37 is arranged so as to face the outer peripheral surface of the stator core 23 described above in the radial direction.

【0009】なお図1では、保持部38、円筒胴部3
1、ロータフランジ部35及び取付部36が一体に形成
されているが、それぞれが別体に形成される場合もあ
る。
In FIG. 1, the holding portion 38 and the cylindrical body portion 3 are shown.
1, the rotor flange portion 35 and the mounting portion 36 are integrally formed, but they may be formed separately.

【0010】[0010]

【発明が解決しようとする課題】ところが動圧発生溝の
溝加工を転造で行う場合には、溝深さを所定の精度で得
るために、転造前における精度を仕上げ加工の精度と同
程度に行わねばならず、一方エッチングを行う場合に
は、マスキング等の工程を要するために工程数が多くな
り、いずれにしても手間がかかり生産性が悪いという問
題がある。
However, when the dynamic pressure generating groove is machined by rolling, the precision before rolling is equal to the precision of finishing in order to obtain the groove depth with a predetermined precision. On the other hand, when etching is performed, on the other hand, the number of steps is increased because a step such as masking is required when etching is performed, and in any case, there is a problem in that it is troublesome and productivity is poor.

【0011】そこで本発明は、動圧面及び動圧発生溝を
所定の精度で効率的に加工するすることができるように
した動圧軸受及びその製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a dynamic pressure bearing and a method for manufacturing the dynamic pressure bearing, which are capable of efficiently processing a dynamic pressure surface and a dynamic pressure generating groove with a predetermined accuracy.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
本発明にかかる動圧軸受は、軸体と軸嵌合体とを動圧に
より相対回転可能に支承するものであって、上記軸体及
び軸嵌合体の半径方向における両対向面に動圧面がそれ
ぞれ構成され、当該両動圧面の少なくとも一方側に動圧
発生溝が形成された動圧軸受において、上記動圧面を構
成する軸体及び軸嵌合体が、アルミニウム若しくはその
合金から形成されているとともに、上記動圧面及び動圧
発生溝が、切削加工により形成され、かつ所定の表面処
理が施された構成になされている。
In order to achieve the above object, a dynamic pressure bearing according to the present invention supports a shaft body and a shaft fitting body so as to be relatively rotatable by a dynamic pressure. In a dynamic pressure bearing in which dynamic pressure surfaces are respectively formed on both opposing surfaces in the radial direction of the shaft fitting, and a dynamic pressure generating groove is formed on at least one side of the both dynamic pressure surfaces, a shaft body and a shaft forming the dynamic pressure surface. The fitting body is made of aluminum or its alloy, and the dynamic pressure surface and the dynamic pressure generating groove are formed by cutting and subjected to a predetermined surface treatment.

【0013】また本発明にかかる動圧軸受の製造方法
は、所定の加工機に軸体を保持する工程と、軸体に、所
定の深さ幅及び長さにわたって動圧発生溝を切削加工す
る動圧溝切削工程と、軸体の外周面を切削加工して動圧
面とする動圧面切削工程と、を備えた構成になされてい
る。
Further, in the method of manufacturing the dynamic pressure bearing according to the present invention, the step of holding the shaft body in a predetermined processing machine and the cutting process of the dynamic pressure generation groove in the shaft body over a predetermined depth width and length. It is configured to include a dynamic pressure groove cutting step and a dynamic pressure surface cutting step of cutting the outer peripheral surface of the shaft body to form a dynamic pressure surface.

【0014】[0014]

【作用】このように本発明においては、動圧面を構成す
る軸体及び軸嵌合体が、被切削性に優れたアルミニウム
若しくはその合金から形成され、かつ動圧面及び動圧発
生溝の双方が切削加工がより形成されるため、従来のよ
うな面倒な転造やエッチングによることなく、動圧面及
び動圧発生溝の双方が、加工精度を落とすことなく良好
に形成可能となるとともに、同一の切削加工機で着脱な
しで形成可能となる。
As described above, according to the present invention, the shaft body and the shaft-fitting body forming the dynamic pressure surface are formed of aluminum or its alloy having excellent machinability, and both the dynamic pressure surface and the dynamic pressure generation groove are cut. Since the machining is more formed, both the dynamic pressure surface and the dynamic pressure generation groove can be favorably formed without degrading the processing precision, which is required by the same cutting as in the conventional case, and the same cutting can be performed. It can be formed on a processing machine without attachment and detachment.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。本発明の一実施例を表した図1におけるモ
ータの全体構造は、従来技術の欄で既に説明したので詳
細な説明を省略することとし、以下、本発明の要部を説
明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. The overall structure of the motor in FIG. 1, which represents an embodiment of the present invention, has already been described in the section of the prior art, so a detailed description thereof will be omitted, and the main part of the present invention will be described below.

【0016】前述したように、本発明にかかる動圧軸受
においては、ステータ組2の固定軸21(軸体)とロー
タ組3の円筒胴部31(軸嵌合受体)の半径方向におけ
る両対向面が、動圧面20,30としてそれぞれ構成さ
れているとともに、それら両動圧面20,30の一方
側、具体的には軸体としての固定軸21の外周面側に、
動圧発生溝25が形成されている。そして本発明におい
ては、ステータ組2及びロータ組3がアルミニウム若し
くはその合金から形成されており、従って動圧面20,
30をそれぞれ構成する固定軸21(軸体)及び円筒胴
部31(軸嵌合受体)も、アルミニウム若しくはその合
金から形成されている。
As described above, in the dynamic pressure bearing according to the present invention, both the fixed shaft 21 (shaft body) of the stator set 2 and the cylindrical body 31 (shaft fitting receiver) of the rotor set 3 in the radial direction. The facing surfaces are configured as the dynamic pressure surfaces 20 and 30, respectively, and on one side of the dynamic pressure surfaces 20 and 30, specifically, on the outer peripheral surface side of the fixed shaft 21 as the shaft body,
A dynamic pressure generating groove 25 is formed. In the present invention, the stator set 2 and the rotor set 3 are made of aluminum or its alloy, and therefore the dynamic pressure surface 20,
The fixed shaft 21 (shaft body) and the cylindrical body portion 31 (shaft fitting receiver) that respectively constitute 30 are also formed of aluminum or its alloy.

【0017】また動圧面20,30を構成する固定軸2
1の外周面及び円筒胴部31の内周面は、切削加工によ
り形成されているとともに、当該両動圧面21,31に
形成された動圧発生溝25も、切削加工により形成され
ている。そしてこれら両動圧面20,30及び動圧発生
溝25の表面には所定の表面処理が施されている。この
ときの表面処理としては、膜厚数十ミクロン前後の樹脂
コーティングまたは膜厚数ミクロン前後のニッケルメッ
キ等からなる金属メッキが採用される。
Further, the fixed shaft 2 which constitutes the dynamic pressure surfaces 20 and 30.
The outer peripheral surface of No. 1 and the inner peripheral surface of the cylindrical body portion 31 are formed by cutting, and the dynamic pressure generating grooves 25 formed on both the dynamic pressure surfaces 21 and 31 are also formed by cutting. The surfaces of the dynamic pressure surfaces 20 and 30 and the dynamic pressure generating groove 25 are subjected to a predetermined surface treatment. As the surface treatment at this time, resin coating with a film thickness of about several tens of microns or metal plating such as nickel plating with a film thickness of about several microns is adopted.

【0018】このような本実施例においては、動圧面2
0,30を構成する軸体としての固定軸21及び軸嵌合
体としての円筒胴部31が、被切削性に優れたアルミニ
ウム若しくはその合金から形成され、かつ動圧面20,
30及び動圧発生溝25の双方が、切削加工により形成
されているため、従来のような面倒な転造やエッチング
によることなく、動圧面20,30及び動圧発生溝25
の双方が、加工精度を落とすことなく良好に、しかも同
一の切削加工機で着脱なしで形成可能となっている。
In this embodiment, the dynamic pressure surface 2
The fixed shaft 21 as the shaft body and the cylindrical body 31 as the shaft fitting body that form the 0, 30 are formed of aluminum or its alloy having excellent machinability, and the dynamic pressure surface 20,
Since both 30 and the dynamic pressure generating groove 25 are formed by cutting, the dynamic pressure surfaces 20, 30 and the dynamic pressure generating groove 25 can be processed without complicated rolling or etching as in the conventional case.
Both of them can be formed satisfactorily without degrading the processing accuracy, and can be formed by the same cutting machine without attachment and detachment.

【0019】また上記動圧面21,31及び動圧発生溝
25が形成された軸体としての固定軸21の一端には、
切削加工用の保持部28が設けられている。この保持部
28は、固定軸21の外径よりも大径に形成されてい
る。そして固定軸21を切削加工する場合には、後述す
る動圧溝切削工程及び動圧面切削工程を実行する前に、
旋盤等の切削加工機に対してまず上記保持部28がチャ
ックにより保持される。このように固定軸21の一端に
保持部28を設けて被加工体である固定軸21の保持部
28を一度チャッキングすれば、動圧溝切削工程、動圧
面切削工程を連続して実行することができる。
Further, at one end of the fixed shaft 21 as a shaft body on which the dynamic pressure surfaces 21 and 31 and the dynamic pressure generating groove 25 are formed,
A holding portion 28 for cutting is provided. The holding portion 28 has a diameter larger than the outer diameter of the fixed shaft 21. When the fixed shaft 21 is cut, before performing a dynamic pressure groove cutting process and a dynamic pressure surface cutting process described later,
First, the holder 28 is held by a chuck with respect to a cutting machine such as a lathe. In this way, if the holding portion 28 is provided at one end of the fixed shaft 21 and the holding portion 28 of the fixed shaft 21 that is the workpiece is chucked once, the dynamic pressure groove cutting process and the dynamic pressure surface cutting process are continuously executed. be able to.

【0020】次に、動圧溝切削工程あるいは動圧面切削
工程が実行されるが、これらの各切削工程は、いずれか
一方を先に実行し他方を後に実行するようにしても良い
し、両切削工程を略同時に実行しても良い。動圧溝切削
工程においては、軸体としての固定軸21に、所定の深
さ幅及び長さにわたって動圧発生溝25が切削加工され
る。また動圧面切削工程においては、軸体としての固定
軸21の外周面が切削加工されて動圧面に形成される。
Next, the dynamic pressure groove cutting step or the dynamic pressure surface cutting step is executed. Either one of these cutting steps may be executed first and the other may be executed later. You may perform a cutting process substantially simultaneously. In the dynamic pressure groove cutting step, the dynamic pressure generating groove 25 is cut on the fixed shaft 21 as a shaft over a predetermined depth width and length. Further, in the dynamic pressure surface cutting step, the outer peripheral surface of the fixed shaft 21 as the shaft body is cut to form a dynamic pressure surface.

【0021】さらに上記動圧発生溝25及び動圧面2
1,31には、樹脂コーティングまたはニッケルメッキ
等の金属メッキによって表面処理が施される。樹脂コー
ティングの場合には、動圧発生溝25及び動圧面21,
31の形成前に表面処理が行われ、ニッケルメッキ等の
金属メッキの場合には、動圧発生溝25及び動圧面2
1,31が形成された後に表面処理が行われる。
Further, the dynamic pressure generating groove 25 and the dynamic pressure surface 2 are provided.
The surface treatment is applied to 1, 31 by resin coating or metal plating such as nickel plating. In the case of resin coating, the dynamic pressure generating groove 25 and the dynamic pressure surface 21,
When the surface treatment is performed before forming 31 and metal plating such as nickel plating is performed, the dynamic pressure generating groove 25 and the dynamic pressure surface 2 are formed.
Surface treatment is performed after forming 1, 31.

【0022】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変形可能であるというのはいうまでもない。例えば
動圧発生溝は、本実施例のように軸側に成形するものに
限定されるものではなく、軸嵌合体側や軸側及び軸嵌合
体側の双方に形成することも可能である。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the dynamic pressure generating groove is not limited to the one formed on the shaft side as in the present embodiment, but may be formed on the shaft fitting body side or both the shaft side and the shaft fitting body side.

【0023】さらにまた本発明は、空気動圧以外のオイ
ル等の各種流体を用いる動圧軸受や、軸回転型の動圧軸
受、さらにはポリゴンミラー以外の磁気ディスク、光デ
ィスク等の各種回転板を回転駆動するための動圧軸受、
さらにはモータ以外の装置に用いられる動圧軸受に対し
ても同様に適用することができる。
Furthermore, the present invention provides a dynamic pressure bearing using various fluids other than air dynamic pressure such as oil, a shaft rotary type dynamic pressure bearing, and various rotary plates such as magnetic disks and optical disks other than polygon mirrors. Dynamic pressure bearings for rotary drive,
Further, it can be similarly applied to a dynamic pressure bearing used in a device other than a motor.

【0024】[0024]

【発明の効果】以上述べたように本発明にかかる動圧軸
受は、動圧面を構成する軸体及び軸嵌合体を、被切削性
に優れたアルミニウム若しくはその合金から形成すると
ともに、動圧面及び動圧発生溝の双方を切削加工により
形成することによって、従来のような面倒な転造やエッ
チングによることなく、動圧面及び動圧発生溝の双方
を、加工精度を落とすことなく良好に形成可能とし、し
かも同一の切削加工機で着脱なしで形成可能としたもの
であるから、動圧面及び動圧発生溝を所定の精度でかつ
効率的に形成することができ、加工時間を短縮して生産
性を向上させることができる。
As described above, in the dynamic pressure bearing according to the present invention, the shaft body and the shaft fitting body forming the dynamic pressure surface are formed of aluminum or its alloy excellent in machinability, and the dynamic pressure surface and By forming both dynamic pressure generation grooves by cutting, both dynamic pressure surfaces and dynamic pressure generation grooves can be formed well without sacrificing conventional rolling and etching, without sacrificing processing accuracy. In addition, since it can be formed with the same cutting machine without attachment / detachment, the dynamic pressure surface and the dynamic pressure generation groove can be formed with a predetermined accuracy and efficiency, and the production time is shortened. It is possible to improve the sex.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した空気動圧軸受モータの一例を
表した半横断面図である。
FIG. 1 is a semi-transverse sectional view showing an example of an air dynamic bearing motor to which the present invention is applied.

【符号の説明】[Explanation of symbols]

20,30 動圧面 21 固定軸(軸体) 31 円筒胴部(軸嵌合体) 25 動圧発生溝 28 保持部 34 ポリゴンミラー 20, 30 Dynamic pressure surface 21 Fixed shaft (shaft body) 31 Cylindrical body part (shaft fitting body) 25 Dynamic pressure generation groove 28 Holding part 34 Polygon mirror

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 軸体と軸嵌合体とを動圧により相対回転
可能に支承するものであって、 上記軸体及び軸嵌合体の半径方向における両対向面が、
動圧面にそれぞれなされ、当該両動圧面の少なくとも一
方側に、動圧発生溝が形成された動圧軸受において、 上記動圧面を構成する軸体及び軸嵌合体が、アルミニウ
ム若しくはその合金から形成されているとともに、 上記動圧面及び動圧発生溝が、切削加工により形成さ
れ、かつ所定の表面処理が施されていることを特徴とす
る動圧軸受。
1. A shaft body and a shaft fitting body are rotatably supported by a dynamic pressure, and both facing surfaces of the shaft body and the shaft fitting body in a radial direction are:
In a dynamic pressure bearing which is formed on each of the dynamic pressure surfaces and has a dynamic pressure generation groove formed on at least one side of both dynamic pressure surfaces, the shaft body and the shaft fitting body forming the dynamic pressure surface are formed of aluminum or an alloy thereof. In addition, the dynamic pressure bearing and the dynamic pressure generating groove are formed by cutting and are subjected to a predetermined surface treatment.
【請求項2】 請求項1記載の動圧軸受において、 動圧発生溝が、軸体側に設けられていることを特徴とす
る動圧軸受。
2. The dynamic pressure bearing according to claim 1, wherein the dynamic pressure generation groove is provided on the shaft body side.
【請求項3】 請求項1記載の動圧軸受において、 動圧面又は動圧発生溝が形成された部材には、切削加工
用の保持部が設けられていることを特徴とする動圧軸
受。
3. The dynamic pressure bearing according to claim 1, wherein the member having the dynamic pressure surface or the dynamic pressure generating groove is provided with a holding portion for cutting.
【請求項4】 請求項1記載の動圧軸受において、 表面処理は、樹脂コーティング及び金属メッキ若しくは
そのいずれか一方により行われていることを特徴とする
動圧軸受。
4. The hydrodynamic bearing according to claim 1, wherein the surface treatment is performed by resin coating and / or metal plating.
【請求項5】 請求項1記載の動圧軸受を製造する動圧
軸受の製造方法において、 所定の加工機に軸体を保持する工程と、 軸体に、所定の深さ、幅及び長さにわたって動圧発生溝
を軸体に切削加工する動圧溝切削工程と、 軸体の外周面を切削加工して動圧面とする動圧面切削工
程と、を備えていることを特徴とする動圧軸受の製造方
法。
5. A method of manufacturing a dynamic pressure bearing according to claim 1, wherein the step of holding the shaft body in a predetermined processing machine, and the predetermined depth, width and length of the shaft body. A dynamic pressure groove cutting step of cutting a dynamic pressure generating groove over the shaft body, and a dynamic pressure surface cutting step of cutting the outer peripheral surface of the shaft body into a dynamic pressure surface. Bearing manufacturing method.
【請求項6】 請求項5記載の動圧軸受の製造方法にお
いて、 動圧発生溝及び動圧面を形成した後に、所定の表面処理
を施す表面処理工程を備えていることを特徴とする動圧
軸受の製造方法。
6. The method for manufacturing a dynamic pressure bearing according to claim 5, further comprising a surface treatment step of performing a predetermined surface treatment after forming the dynamic pressure generation groove and the dynamic pressure surface. Bearing manufacturing method.
【請求項7】 請求項5記載の動圧軸受の製造方法にお
いて、 動圧発生溝及び動圧面加工前に、所定の表面処理を施す
表面処理工程を備えていることを特徴とする動圧軸受の
製造方法。
7. The dynamic pressure bearing manufacturing method according to claim 5, further comprising a surface treatment step of applying a predetermined surface treatment before the dynamic pressure generation groove and the dynamic pressure surface are machined. Manufacturing method.
【請求項8】 請求項5記載の動圧軸受の製造方法にお
いて、 動圧溝切削工程及び動圧面切削工程のいずれか一方を先
に、他方を後に実行することを特徴とする動圧軸受の製
造方法。
8. The method of manufacturing a dynamic pressure bearing according to claim 5, wherein one of the dynamic pressure groove cutting step and the dynamic pressure surface cutting step is performed first, and the other is performed later. Production method.
【請求項9】 請求項5記載の動圧軸受の製造方法にお
いて、 動圧溝切削工程及び動圧面切削工程を略同時に実行する
ことを特徴とする動圧軸受の製造方法。
9. The method for manufacturing a dynamic pressure bearing according to claim 5, wherein the dynamic pressure groove cutting step and the dynamic pressure surface cutting step are performed substantially at the same time.
【請求項10】 請求項5記載の動圧軸受の製造方法に
おいて、 動圧溝切削工程及び動圧面切削工程を実行する前に、軸
体の保持部を形成することを特徴とする動圧軸受の製造
方法。
10. The method of manufacturing a dynamic pressure bearing according to claim 5, wherein the holding portion of the shaft body is formed before the dynamic pressure groove cutting step and the dynamic pressure surface cutting step are performed. Manufacturing method.
JP2094495A 1995-01-14 1995-01-14 Dynamic pressure bearing and manufacture thereof Pending JPH08196056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094495A JPH08196056A (en) 1995-01-14 1995-01-14 Dynamic pressure bearing and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094495A JPH08196056A (en) 1995-01-14 1995-01-14 Dynamic pressure bearing and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08196056A true JPH08196056A (en) 1996-07-30

Family

ID=12041320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094495A Pending JPH08196056A (en) 1995-01-14 1995-01-14 Dynamic pressure bearing and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08196056A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018604A2 (en) * 1999-01-06 2000-07-12 Kabushiki Kaisha Sankyo Seiki Seisakusho Dynamic pressure bearing motor
CN101957497A (en) * 2009-07-14 2011-01-26 柯尼卡美能达商用科技株式会社 Light-deflection apparatus
US8104963B2 (en) 2006-01-19 2012-01-31 Ntn Corporation Shaft member for fluid dynamic bearing device
JP2013164624A (en) * 2013-05-15 2013-08-22 Konica Minolta Inc Light deflector
US9003664B2 (en) 2004-09-08 2015-04-14 Ntn Corporation Method for producing shaft member for hydrodynamic bearing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018604A2 (en) * 1999-01-06 2000-07-12 Kabushiki Kaisha Sankyo Seiki Seisakusho Dynamic pressure bearing motor
US6215217B1 (en) 1999-01-06 2001-04-10 Kabushiki Kaisha Sankyo Seiki Seisakusho Dynamic pressure bearing motor
EP1018604A3 (en) * 1999-01-06 2002-01-23 Kabushiki Kaisha Sankyo Seiki Seisakusho Dynamic pressure bearing motor
US9003664B2 (en) 2004-09-08 2015-04-14 Ntn Corporation Method for producing shaft member for hydrodynamic bearing apparatus
US8104963B2 (en) 2006-01-19 2012-01-31 Ntn Corporation Shaft member for fluid dynamic bearing device
US8366322B2 (en) 2006-01-19 2013-02-05 Ntn Corporation Shaft member for fluid dynamic bearing device
CN101957497A (en) * 2009-07-14 2011-01-26 柯尼卡美能达商用科技株式会社 Light-deflection apparatus
US8531749B2 (en) 2009-07-14 2013-09-10 Konica Minolta Business Technologies, Inc. Light deflection apparatus
JP2013164624A (en) * 2013-05-15 2013-08-22 Konica Minolta Inc Light deflector

Similar Documents

Publication Publication Date Title
JPH02179238A (en) Bearing holder construction of motor
US6554476B2 (en) Dynamic pressure bearing device and method of manufacturing the same
US6614139B2 (en) Motor having a dynamic pressure bearing apparatus and a manufacturing method thereof
US6427330B1 (en) Method for forming a lubricant coating on a hydrodynamic bearing apparatus by electrode positioning
JPH08196056A (en) Dynamic pressure bearing and manufacture thereof
JPH08221896A (en) Spindle unit
US5924798A (en) Hydrodynamic bearing apparatus and method for manufacturing thereof
JP2001003930A (en) Manufacture of thrust bearing for spindle motor
JPH11113215A (en) Motor equipped with dynamic pressure bearing and rotator equipment using the motor as driving source
JPH08196055A (en) Dynamic pressure bearing motor
EP0905865B1 (en) Method of assembling magnetic disk driving motor
JP3688908B2 (en) Spindle motor hub machining method
JP3877115B2 (en) Spindle motor
JP2001086702A (en) Spindle motor
JP2003247536A (en) Dynamic pressure bearing and motor
JP2001183599A (en) Method for manufacturing rotary polygon mirror
JP2558186Y2 (en) Magnetic disk drive
US6584674B1 (en) Method of processing rotor
JP2002242944A (en) Bearing holder and fixig method of bearing
JPH07336970A (en) Motor for laser beam scanner
JPH084753A (en) Dynamic pressure bearing and its manufacture
JPH06148552A (en) Dynamic pressure bearing motor
JP2003028148A (en) Information recording and reproducing device and method of manufacturing the same
JPH10205528A (en) Dynamic pressure bearing and manufacture thereof
JP2000117503A (en) Hub machining method for spindle motor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010404