JPH0818882B2 - Method for manufacturing conductive substrate - Google Patents

Method for manufacturing conductive substrate

Info

Publication number
JPH0818882B2
JPH0818882B2 JP62319853A JP31985387A JPH0818882B2 JP H0818882 B2 JPH0818882 B2 JP H0818882B2 JP 62319853 A JP62319853 A JP 62319853A JP 31985387 A JP31985387 A JP 31985387A JP H0818882 B2 JPH0818882 B2 JP H0818882B2
Authority
JP
Japan
Prior art keywords
base material
resin
weight
parts
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319853A
Other languages
Japanese (ja)
Other versions
JPH01160867A (en
Inventor
裕明 福井
輝之男 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62319853A priority Critical patent/JPH0818882B2/en
Publication of JPH01160867A publication Critical patent/JPH01160867A/en
Publication of JPH0818882B2 publication Critical patent/JPH0818882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、たとえばリン酸型燃料電池の電極として
使用するのに適した導電性基材を製造する方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a conductive substrate suitable for use as an electrode of a phosphoric acid fuel cell, for example.

(従来の技術) リン酸型燃料電池の電極等に使用される導電性基材に
は、導電性が高いこと、機械的強度が高いこと、気孔率
が高くて気体透過性に優れていること、耐蝕性に優れて
いることなど、いろいろな特性が要求されている。しか
して、そのような基材は、従来、たとえば特公昭53−18
603号公報等に記載されているように、炭素短繊維と、
ポリビニルアルコール等の有機質バインダを含む抄造媒
体との混合物を抄造してシート状中間基材を得た後、そ
の中間基材に、加熱すると炭素化する、たとえば、いわ
ゆる自己硬化型のフェノール樹脂を含浸し、さらにフェ
ノール樹脂を含浸した上記中間基材を加熱してフェノー
ル樹脂を炭素化し、炭素短繊維同士をフェノール樹脂の
炭素化物で結着することによって製造するのが普通であ
る。ところが、このような方法によって製造した基材
は、導電性の面で未だ十分であるとはいえないのが現状
である。
(Prior Art) A conductive base material used for electrodes of a phosphoric acid fuel cell has high conductivity, high mechanical strength, high porosity and excellent gas permeability. Various characteristics are required such as excellent corrosion resistance. Thus, such a substrate has hitherto been used, for example, in Japanese Patent Publication No.
As described in Japanese Patent No. 603, etc., a short carbon fiber,
After a mixture with a paper-making medium containing an organic binder such as polyvinyl alcohol is formed into a sheet-like intermediate base material, the intermediate base material is carbonized when heated, for example, a so-called self-curing phenol resin is impregnated. Then, the intermediate substrate impregnated with the phenol resin is further heated to carbonize the phenol resin, and the carbon short fibers are usually bound to each other by a carbonized product of the phenol resin to produce the resin. However, at present, the base material produced by such a method is still not sufficient in terms of conductivity.

十分な導電性が得られない理由は必ずしも明らかでな
いが、加熱工程で、炭素短繊維同士を結着している有機
質バインダが飛散し、一方、フェノール樹脂は自己硬化
型で流れにくいためにバインダが飛散してできた隙間に
十分に入り込まず、炭素短繊維と、それらを結合する、
フェノール樹脂の炭素化物との間に隙間が残るためでは
ないかと推定される。
The reason why sufficient conductivity is not obtained is not always clear, but in the heating step, the organic binder binding the short carbon fibers to each other scatters, while the phenol resin is self-curing and difficult to flow, so the binder Do not fully enter the gap created by scattering and bond them with short carbon fibers,
It is presumed that this may be because a gap remains between the phenolic resin and the carbonized product.

一方、特開昭58−68881号公報には、上述した方法に
おいて、混合物を、抄造によらず、モールディング成形
して中間基材とする方法が記載されている。しかしなが
ら、モールディング成形によるためには、炭素短繊維と
して、たとえば1mm以下といった極めて短いものを使用
する必要があり、そのため機械的強度が大きく低下して
扱いにくいという問題がある。
On the other hand, Japanese Patent Application Laid-Open No. 58-68881 describes a method in which the mixture is molded into an intermediate base material, not by papermaking, in the above-mentioned method. However, in order to carry out molding molding, it is necessary to use extremely short carbon fibers, for example, 1 mm or less, which causes a problem that mechanical strength is greatly reduced and it is difficult to handle.

(発明が解決しようとする問題点) この発明の目的は、上記従来の方法の上述した問題点
を解決し、導電性がより高く、しかも機械的強度に優れ
た導電性基材を製造する方法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems of the conventional method and to produce a conductive base material having higher conductivity and excellent mechanical strength. To provide.

(問題点を解決するための手段) 上述した目的を達成するために、この発明は、抄造に
より、炭素短繊維が有機質バインダによって互いに結着
されているシート状または板状の中間基材を得る工程
と、前記中間基材にレゾール型フェノール樹脂とノボラ
ック型フェノール樹脂との混合樹脂を溶液で含浸する工
程と、前記混合樹脂が含浸された前記中間基材を加熱し
て前記混合樹脂を炭素化する工程とを含む導電性基材の
製造方法を提供する。
(Means for Solving Problems) In order to achieve the above-mentioned object, the present invention obtains a sheet-shaped or plate-shaped intermediate base material in which short carbon fibers are bound to each other by an organic binder by papermaking. A step of impregnating the intermediate resin with a solution of a mixed resin of a resole-type phenol resin and a novolac-type phenol resin into the intermediate base material; and heating the intermediate base material impregnated with the mixed resin to carbonize the mixed resin. And a method of manufacturing a conductive base material.

この発明を詳細に説明するに、この発明においては、
まず、炭素短繊維と、有機質バインダを含む抄造媒体と
の混合物を調製する。
To explain the present invention in detail, in the present invention,
First, a mixture of short carbon fibers and a papermaking medium containing an organic binder is prepared.

上記炭素短繊維は、ポリアクリロニトリル系炭素繊
維、ピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊
維、好ましくは機械的強度が比較的高いポリアクリロニ
トリル系炭素繊維の連続繊維束を、3〜20mm程度に切断
し、解繊するなどして得る。単繊維径は、4〜20μm程
度であるのが好ましい。なお、繊維束には集束剤が付与
されていることがあるが、それが後述する抄造工程にお
ける短繊維の分散性を阻害する可能性がある場合には、
切断前に除去しておくのが好ましい。切断時における操
作性の向上等のため、集束剤の使用が不可欠な場合に
は、水か、または後述する抄造工程で使用する溶媒に可
溶なものを用いるのが好ましい。たとえば、溶媒が水の
場合にはポリビニルアルコール、ポリエチレングリコー
ル、でんぷん等を使用するのが好ましい。
The carbon short fibers are carbon fibers such as polyacrylonitrile-based carbon fibers, pitch-based carbon fibers and rayon-based carbon fibers, preferably continuous fiber bundles of polyacrylonitrile-based carbon fibers having relatively high mechanical strength of about 3 to 20 mm. Obtain by cutting into pieces and defibration. The single fiber diameter is preferably about 4 to 20 μm. The fiber bundle may be provided with a sizing agent, but if it may impair the dispersibility of the short fibers in the papermaking step described below,
It is preferable to remove it before cutting. When the use of a sizing agent is indispensable in order to improve the operability at the time of cutting, it is preferable to use water or a solvent soluble in the solvent used in the papermaking step described later. For example, when the solvent is water, it is preferable to use polyvinyl alcohol, polyethylene glycol, starch or the like.

有機質バインダとしては、ポリビニルアルコール、ヒ
ドロキシエチルセルロース、ポリエチレンオキシド、ポ
リアクリルアミド、ポリエステル等を使用することがで
きる。しかして、これらのバインダを、水、メタノー
ル、エーテル等の溶媒で希釈して抄造媒体とする。バイ
ンダの量は、1〜30重量%程度でよい。
As the organic binder, polyvinyl alcohol, hydroxyethyl cellulose, polyethylene oxide, polyacrylamide, polyester and the like can be used. Then, these binders are diluted with a solvent such as water, methanol or ether to prepare a papermaking medium. The amount of the binder may be about 1 to 30% by weight.

炭素短繊維と抄造媒体との混合割合は、抄造媒体の種
類等にもよるが、短繊維が0.01〜0.1重量%程度になる
ようにするのが好ましい。
The mixing ratio of the short carbon fibers and the paper-making medium depends on the kind of the paper-making medium and the like, but it is preferable that the short-fiber is about 0.01 to 0.1% by weight.

この発明においては、次に、上記混合物をよく撹拌し
た後、織物や金網上等に抄造する。これにより、炭素短
繊維は実質的に二次元平面内においてランダムな方向に
分散せしめられ、かつバインダで互いに結着されて、自
己形態保持性を有するようになる。抄造後は、通常、加
熱乾燥して溶媒を除去する。かくして、シート状または
板状の中間基材を得る。なお、この状態におけるバイン
ダの付着量は、好ましくは5〜30重量%、より好ましく
は5〜20%重量%である。
In the present invention, next, the mixture is thoroughly stirred and then formed into a fabric or a wire mesh. As a result, the short carbon fibers are dispersed in random directions in a substantially two-dimensional plane, and are bound to each other by the binder to have self-shape retention. After the papermaking, the solvent is usually removed by heating and drying. Thus, a sheet-shaped or plate-shaped intermediate base material is obtained. The amount of the binder attached in this state is preferably 5 to 30% by weight, more preferably 5 to 20% by weight.

中間基材は、上記以外の方法によっても得ることがで
きる。たとえば、上記炭素短繊維をそれが0.01〜0.1重
量%になるように水中に分散させ、必要に応じて、界面
活性剤や、アクリル酸ソーダ、グリコール酸ソーダ等の
増粘剤を添加、混合した後上記と同様に抄造し、さらに
上記溶媒で希釈した上記バインダを含浸または噴霧する
ことによって得ることができる。また、たとえば特公昭
62−1040号公報に記載されているような、ポリビニルピ
ロリドン等の有機質バインダを付着または被覆してなる
炭素短繊維を、それが1〜10重量%になるように水中に
分散させ、上記と同様に抄造することによっても得るこ
とができる。
The intermediate base material can be obtained by a method other than the above. For example, the above short carbon fibers are dispersed in water so that the content thereof is 0.01 to 0.1% by weight, and if necessary, a surfactant and a thickener such as sodium acrylate and sodium glycolate are added and mixed. After that, it can be obtained by papermaking in the same manner as above and further impregnating or spraying the binder diluted with the solvent. Also, for example,
As described in JP 62-1040 A, short carbon fibers formed by adhering or coating an organic binder such as polyvinylpyrrolidone are dispersed in water so that it becomes 1 to 10% by weight, and the same as above. It can also be obtained by papermaking.

さて、この発明においては、次に、上記中間基材に、
レゾール型フェノール樹脂と、ノボラック型フェノール
樹脂との混合樹脂を含浸する。
Now, in the present invention, next, in the above-mentioned intermediate substrate,
A mixed resin of a resol type phenol resin and a novolac type phenol resin is impregnated.

周知のように、レゾール型フェノール樹脂は、加熱す
ると硬化する、いわゆる自己硬化型フェノール樹脂であ
る。これに対して、ノボラック型フェノール樹脂は、い
わゆる非自己硬化型であって、硬化に硬化剤を必要とす
るフェノール樹脂である。この発明においては、そのよ
うな、いわゆる自己硬化型であるレゾール型フェノール
樹脂と、いわゆる非自己硬化型であるノボラック型フェ
ノール樹脂とを混合して使用する。
As is well known, the resol type phenolic resin is a so-called self-curing type phenolic resin which cures when heated. On the other hand, the novolac type phenolic resin is a so-called non-self-curing type phenolic resin which requires a curing agent for curing. In the present invention, such a so-called self-curing type resol type phenolic resin and a so-called non-self-curing type novolac type phenolic resin are mixed and used.

ノボラック型フェノール樹脂は、基材の導電性を大き
く向上させる。それは、ノボラック型フェノール樹脂
は、上述したように非自己硬化型で加熱しても硬化せ
ず、流動性があるために、炭素短繊維同士を結着してい
たバインダが後の加熱工程で飛散し、それによって炭素
短繊維の周りに隙間ができてもその隙間によく入り込
み、隙間を埋めるように作用するからであると推定され
る。そのためには、ノボラック型フェノール樹脂は、レ
ゾール型フェノール樹脂100重量部に対して10〜500重量
部混合するのが好ましい。10重量%未満では、十分に大
きな導電性向上効果が得られないことがある。また、50
0重量部を越えるほど大量に使用すると、後の加熱工程
においても混合樹脂が十分に堅くならず、粘着性をもつ
ようになって、他部材等と接着するなどして扱いにくく
なる。より好ましいのは、レゾール型フェノール樹脂10
0重量部に対して、ノボラック型フェノール樹脂を50〜3
00重量部混合することである。
The novolac type phenolic resin greatly improves the conductivity of the base material. As described above, the novolac type phenolic resin is non-self-curing type and does not cure even when heated and has fluidity. Therefore, the binder binding the short carbon fibers scatters in the subsequent heating step. It is presumed that, because of this, even if a gap is formed around the short carbon fiber, it will often enter the gap and act to fill the gap. For that purpose, the novolac type phenol resin is preferably mixed in an amount of 10 to 500 parts by weight with respect to 100 parts by weight of the resol type phenol resin. If it is less than 10% by weight, a sufficiently large conductivity improving effect may not be obtained. Also, 50
If it is used in a large amount so as to exceed 0 part by weight, the mixed resin will not be sufficiently hard even in the subsequent heating step and will become tacky, making it difficult to handle by adhering to other members. More preferred is a resol type phenolic resin 10
50 parts by weight of novolac-type phenol resin to 3 parts by weight
It is to mix with 00 parts by weight.

混合樹脂の中間基材への含浸は、水、メタノール、テ
トラヒドロフラン等の溶媒で溶かした混合樹脂に中間基
材を浸漬したり、上記の混合樹脂溶液を中間基材に吹き
付けるなどして行う。含浸量は、中間基材における炭素
短繊維100重量部に対して80〜500重量部程度であるのが
好ましい。より好ましい含浸量は、炭素短繊維100重量
部に対して100〜350重量部である。
Impregnation of the mixed resin into the intermediate base material is performed by immersing the intermediate base material in a mixed resin dissolved in a solvent such as water, methanol or tetrahydrofuran, or by spraying the mixed resin solution onto the intermediate base material. The impregnation amount is preferably about 80 to 500 parts by weight with respect to 100 parts by weight of the carbon short fibers in the intermediate base material. A more preferable impregnation amount is 100 to 350 parts by weight with respect to 100 parts by weight of carbon short fibers.

この発明においては、次に、混合樹脂が含浸された中
間基材を、120〜200℃の温度下に2〜50Kg/cm2の圧力で
5〜60分ほどホットプレスして成形する。もっとも、こ
の工程は必須のものではない。これにより、混合樹脂中
のレゾール型フェノール樹脂が硬化する。このとき、必
要であれば、複数枚の、混合樹脂が含浸された中間基材
を重ね合わせてホットプレスし、必要な厚みが得られる
ようにしてもよい。
In this invention, the intermediate base material impregnated with the mixed resin is then hot-pressed at a temperature of 120 to 200 ° C. and a pressure of 2 to 50 Kg / cm 2 for about 5 to 60 minutes to be molded. However, this step is not essential. As a result, the resol type phenol resin in the mixed resin is cured. At this time, if necessary, a plurality of intermediate base materials impregnated with the mixed resin may be overlapped and hot pressed to obtain a required thickness.

この発明においては、次に、ホットプレス成形後の中
間基材を、窒素ガスやアルゴンガスなどの不活性ガス雰
囲気中か、真空雰囲気中にて1300〜3000℃に加熱し、混
合樹脂、つまりレゾール型フェノール樹脂とノボラック
型フェノール樹脂とを炭素化する。このとき、炭素短繊
維同士を結着していた有機質バインダが熱分解して飛散
するが、その飛散によってできた隙間にノボラック型フ
ェノール樹脂が入り込むものと考えられる。かくして、
炭素短繊維同士が混合樹脂の炭素化物で互いに結着され
た、シート状や板状の多孔性導電性基材が得られる。こ
の導電性基材は、見かけ密度が0.35〜0.7g/cm3程度、気
孔率が60〜80%程度、平均気孔径が20〜80μm、好まし
くは25〜60μm程度のものである。なお、導電性基材
は、加工することができる。たとえば、一面に互いに平
行する溝を加工して、リン酸型燃料電池のリブ付電極と
することができる。
In this invention, next, the intermediate substrate after hot press molding is heated to 1300 to 3000 ° C. in an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum atmosphere, and mixed resin, that is, resole. Type phenolic resin and novolac type phenolic resin are carbonized. At this time, the organic binder binding the short carbon fibers to each other is thermally decomposed and scattered, and it is considered that the novolac type phenol resin enters into the gap created by the scattering. Thus,
It is possible to obtain a sheet-like or plate-like porous conductive substrate in which short carbon fibers are bound to each other by a carbonized product of a mixed resin. This conductive base material has an apparent density of about 0.35 to 0.7 g / cm 3 , a porosity of about 60 to 80%, and an average pore diameter of 20 to 80 μm, preferably about 25 to 60 μm. The conductive base material can be processed. For example, grooves parallel to each other can be formed on one surface to form ribbed electrodes for a phosphoric acid fuel cell.

(実施例1) 東レ株式会社製ポリアクリロニトリル系炭素繊維“ト
レカ"T300(平均短繊維径:7μm、単繊維数:6000本)を
長さ12mmに切断し、よく解繊した後、それが0.04重量%
になるように水中に分散させ、金網上に抄造し、さらに
それをポリビニルアルコールの10重量%水溶液に浸漬
し、引き上げて乾燥し、炭素短繊維100重量部に対して
バインダであるポリビニルアルコールが約30重量%付着
したシート状中間基材を得た。
(Example 1) Polyacrylonitrile-based carbon fiber "Torayca" T300 (average short fiber diameter: 7 μm, single fiber number: 6000) manufactured by Toray Industries, Inc. was cut into a length of 12 mm and well defibrated. weight%
It is dispersed in water so that it becomes, papermaking on a wire mesh, further immersing it in a 10 wt% aqueous solution of polyvinyl alcohol, pulling it up and drying it, about 100 parts by weight of carbon short fiber, polyvinyl alcohol as a binder is about A sheet-shaped intermediate base material having 30% by weight attached was obtained.

次に、上記中間基材を、レゾール型フェノール樹脂10
0重量部に対して同重量部のノボラック型フェノール樹
脂を含む混合樹脂の10重量%メタノール溶液に浸漬し、
引き上げて炭素短繊維100重量部に対して混合樹脂を約1
55重量部付着させ、さらに90℃で3分間加熱して乾燥し
た後、2枚重ねて170℃の温度下に5Kg/cm2の圧力を15分
間加えてレゾール型フェノール樹脂を硬化させた。
Next, the above-mentioned intermediate base material is resol type phenol resin 10
Immersed in a 10 wt% methanol solution of a mixed resin containing the same parts by weight of novolak type phenolic resin with respect to 0 parts by weight,
About 100 parts by weight of carbon short fiber is pulled up and mixed resin is about 1
After 55 parts by weight were adhered and further dried by heating at 90 ° C. for 3 minutes, two sheets were piled up and a pressure of 5 kg / cm 2 was applied for 15 minutes at a temperature of 170 ° C. to cure the resol type phenol resin.

次に、混合樹脂が堅くなった中間基材を、窒素ガス雰
囲気中にて1600℃で30分間加熱して混合樹脂を炭素化
し、厚みが0.35mmの導電性基材を得た。
Next, the intermediate base material having the hardened mixed resin was heated at 1600 ° C. for 30 minutes in a nitrogen gas atmosphere to carbonize the mixed resin, and a conductive base material having a thickness of 0.35 mm was obtained.

上記導電性基材は、見かけ密度が0.45g/cm3、気孔率
が約73%、平均気孔径が約40μmであり、また、導電率
が12.5S/cm、曲げ強度が約250Kg/cm2であった。なお、
導電率は、測定面積を7.23cm2とし、1Aの電流を流した
ときの電圧降下から計算で求めた。
The conductive base material has an apparent density of 0.45 g / cm 3 , a porosity of about 73%, an average pore diameter of about 40 μm, a conductivity of 12.5 S / cm, and a bending strength of about 250 Kg / cm 2. Met. In addition,
The conductivity was calculated from the voltage drop when a current of 1 A was applied with a measurement area of 7.23 cm 2 .

(実施例2) 混合樹脂として、レゾール型フェノール樹脂100重量
部に対してノボラック型フェノール樹脂33重量部を混合
してなる樹脂を使用したほかは実施例1と同様にして、
導電性基材を得た。
(Example 2) The same procedure as in Example 1 was repeated except that a resin obtained by mixing 33 parts by weight of the novolac type phenol resin with 100 parts by weight of the resol type phenol resin was used as the mixed resin.
A conductive base material was obtained.

上記基材は、見かけ密度が0.45g/cm3、気孔率が約74
%、平均気孔径が約40μmであり、また、導電率が7.7S
/cm、曲げ強度が約210Kg/cm2であった。
The above base material has an apparent density of 0.45 g / cm 3 and a porosity of about 74.
%, The average pore diameter is about 40 μm, and the conductivity is 7.7S.
/ cm, and the bending strength was about 210 Kg / cm 2 .

(実施例3) 混合樹脂として、レゾール型フェノール樹脂100重量
部に対してノボラック型フェノール樹脂50重量部を混合
してなる樹脂を使用したほかは実施例1と同様にして、
導電性基材を得た。
(Example 3) The same procedure as in Example 1 was repeated except that a resin obtained by mixing 50 parts by weight of the novolac type phenolic resin with 100 parts by weight of the resol type phenolic resin was used as the mixed resin.
A conductive base material was obtained.

上記基材は、見かけ密度が0.45g/cm3、気孔率が約74
%、平均気孔径が約40μmであり、また、導電率が8.3S
/cm、曲げ強度が約200Kg/cm2であった。
The above base material has an apparent density of 0.45 g / cm 3 and a porosity of about 74.
%, The average pore diameter is about 40 μm, and the conductivity is 8.3S.
/ cm, and the bending strength was about 200 kg / cm 2 .

(実施例4) 混合樹脂として、レゾール型フェノール樹脂100重量
部に対してノボラック型フェノール樹脂200重量部を混
合してなる樹脂を使用したほかは実施例1と同様にし
て、導電性基材を得た。
(Example 4) A conductive base material was prepared in the same manner as in Example 1 except that a resin obtained by mixing 200 parts by weight of a novolac type phenolic resin with 100 parts by weight of a resol type phenolic resin was used as the mixed resin. Obtained.

上記基材は、見かけ密度が0.44g/cm3、気孔率が約74
%、平均気孔径が約40μmであり、また、導電率が14.3
S/cm、曲げ強度が約250Kg/cm2であった。
The above base material has an apparent density of 0.44 g / cm 3 and a porosity of about 74.
%, The average pore diameter is about 40 μm, and the conductivity is 14.3
The S / cm and bending strength were about 250 kg / cm 2 .

(実施例5) 混合樹脂として、レゾール型フェノール樹脂100重量
部に対してノボラック型フェノール樹脂300重量部を混
合してなる樹脂を使用したほかは実施例1と同様にし
て、導電性基材を得た。
(Example 5) A conductive base material was prepared in the same manner as in Example 1 except that a resin obtained by mixing 300 parts by weight of a novolac type phenolic resin with 100 parts by weight of a resol type phenolic resin was used as the mixed resin. Obtained.

上記基材は、見かけ密度が0.43g/cm3、気孔率が約75
%、平均気孔径が約40μmであり、また、導電率が14.5
S/cm、曲げ強度が約270Kg/cm2であった。
The above base material has an apparent density of 0.43 g / cm 3 and a porosity of about 75.
%, The average pore diameter is about 40 μm, and the conductivity is 14.5.
The S / cm and bending strength were about 270 Kg / cm 2 .

(比較例) 混合樹脂に代えて、レゾール型フェノール樹脂のみを
使用したほかは実施例1と同様にして、導電性基材を得
た。
(Comparative Example) A conductive base material was obtained in the same manner as in Example 1 except that only the resol-type phenol resin was used instead of the mixed resin.

上記基材は、見かけ密度が0.46g/cm3、気孔率が約73
%、平均気孔径が約40μmであり、また、導電率が6.7S
/cm、曲げ強度が約220Kg/cm2であった。
The above base material has an apparent density of 0.46 g / cm 3 and a porosity of about 73.
%, The average pore diameter is about 40 μm, and the conductivity is 6.7S.
/ cm, and the bending strength was about 220 Kg / cm 2 .

(発明の効果) この発明は、中間基材に含浸され、加熱によって炭素
化する樹脂として、いわゆる自己硬化型のレゾール型フ
ェノール樹脂と、硬化剤が存在しなければ硬化しない、
いわゆる非自己硬化型のノボラック型フェノール樹脂と
の混合樹脂を使用するから、実施例にも示したように、
レゾール型フェノール樹脂のみを使用する場合にくらべ
て、基材の導電性が大きく向上する。これは、ノボラッ
ク型フェノール樹脂は、上述したように非自己硬化型で
加熱しても硬化せず、流動性があるために、炭素短繊維
同士を結着していた有機質バインダが加熱工程で飛散
し、それによって炭素短繊維の周りに隙間ができても、
その隙間によく入り込み、隙間を埋めるように作用する
からであると推定される。また、この発明は、抄造によ
り、炭素短繊維が有機質バインダによって互いに結着さ
れているシート状または板状の中間基材を得るものであ
り、上述した、特開昭58−68881号公報に記載された従
来の方法のようにモールディング成形するものではない
から、炭素短繊維として比較的長いものを使用すること
ができ、基材の機械的強度も大きく向上する。
(Effect of the Invention) The present invention is a resin which is impregnated into an intermediate substrate and carbonizes by heating, that is, a so-called self-curing resol-type phenol resin and a curing agent which does not cure unless a curing agent exists
Since a mixed resin with a so-called non-self-curing type novolac type phenolic resin is used, as shown in the examples,
The conductivity of the base material is greatly improved as compared with the case where only the resol type phenol resin is used. This is because the novolac type phenolic resin is non-self-curing type and does not harden even when heated as described above, and has fluidity, so that the organic binder that binds the short carbon fibers scatters during the heating process. However, even if it creates a gap around the short carbon fiber,
It is presumed that this is because it often enters the gap and acts so as to fill the gap. Further, the present invention is to obtain a sheet-shaped or plate-shaped intermediate base material in which short carbon fibers are bound to each other by an organic binder by papermaking, and described in JP-A-58-68881. Since it is not a molding method like the conventional method described above, a relatively long carbon short fiber can be used, and the mechanical strength of the base material is greatly improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】抄造により、炭素短繊維が有機質バインダ
によって互いに結着されているシート状または板状の中
間基材を得る工程と、前記中間基材にレゾール型フェノ
ール樹脂とノボラック型フェノール樹脂との混合樹脂を
溶液で含浸する工程と、前記混合樹脂が含浸された前記
中間基材を加熱して前記混合樹脂を炭素化する工程とを
含む導電性基材の製造方法。
1. A step of obtaining a sheet-shaped or plate-shaped intermediate base material in which short carbon fibers are bound to each other by an organic binder by papermaking, and a resole-type phenol resin and a novolac-type phenol resin are added to the intermediate base material. 5. A method for producing a conductive base material, comprising the steps of: impregnating the mixed resin with a solution; and heating the intermediate base material impregnated with the mixed resin to carbonize the mixed resin.
JP62319853A 1987-12-16 1987-12-16 Method for manufacturing conductive substrate Expired - Lifetime JPH0818882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319853A JPH0818882B2 (en) 1987-12-16 1987-12-16 Method for manufacturing conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319853A JPH0818882B2 (en) 1987-12-16 1987-12-16 Method for manufacturing conductive substrate

Publications (2)

Publication Number Publication Date
JPH01160867A JPH01160867A (en) 1989-06-23
JPH0818882B2 true JPH0818882B2 (en) 1996-02-28

Family

ID=18114959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319853A Expired - Lifetime JPH0818882B2 (en) 1987-12-16 1987-12-16 Method for manufacturing conductive substrate

Country Status (1)

Country Link
JP (1) JPH0818882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
US8955013B2 (en) 1996-06-14 2015-02-10 Rovi Guides, Inc. Television schedule system and method of operation for multiple program occurrences
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules
US9374560B2 (en) 2005-12-29 2016-06-21 Rovi Guides, Inc. Systems and methods for managing a status change of a multimedia asset in multimedia delivery systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1831500A (en) * 1998-12-15 2000-07-03 Electric Fuel Limited An air electrode providing high current density for metal-air batteries
US6656239B1 (en) * 2002-02-05 2003-12-02 Touchstone Research Lab. Blended pitch/coal based carbon foams
JP4591128B2 (en) * 2004-03-17 2010-12-01 東レ株式会社 Method for producing porous carbon plate
JP5484777B2 (en) * 2009-04-24 2014-05-07 三菱レイヨン株式会社 Porous electrode substrate and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138361A (en) * 1985-12-12 1987-06-22 株式会社神戸製鋼所 Manufacture of high density formed body from carbon material
JPS6360155A (en) * 1986-08-28 1988-03-16 株式会社神戸製鋼所 Manufacture of carbon/carbon composite material from nonwoven cloth as raw material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955013B2 (en) 1996-06-14 2015-02-10 Rovi Guides, Inc. Television schedule system and method of operation for multiple program occurrences
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9055318B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Client-server based interactive guide with server storage
US9055319B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Interactive guide with recording
US9118948B2 (en) 1998-07-14 2015-08-25 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9154843B2 (en) 1998-07-14 2015-10-06 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9226006B2 (en) 1998-07-14 2015-12-29 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9232254B2 (en) 1998-07-14 2016-01-05 Rovi Guides, Inc. Client-server based interactive television guide with server recording
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
US9374560B2 (en) 2005-12-29 2016-06-21 Rovi Guides, Inc. Systems and methods for managing a status change of a multimedia asset in multimedia delivery systems
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules

Also Published As

Publication number Publication date
JPH01160867A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
KR100425889B1 (en) Porous Carbon Electrode Substrate
DE3247799C2 (en) Fuel cell electrode substrate and method for making the same
CA1303123C (en) Electrode substrate for fuel cell and process for producing the same
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
CN101803074B (en) High thermal conductivity electrode substrate
WO2002031841A2 (en) Conductive nonwoven
US9397350B2 (en) Carbon fiber web including polymer nanofibers
JPH0818882B2 (en) Method for manufacturing conductive substrate
JP2002124266A (en) Fuel cell diffusion layer, its manufacturing method, and manufacturing device
EP1108259B1 (en) Electrically conductive layer material
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
CN1318697C (en) Carbon fibre paper and its mfg. method
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JPS63222080A (en) Manufacture of carbon fiber porous body
JP6172131B2 (en) Porous carbon electrode substrate
JPH0578182A (en) Production of porous carbon formed product and electrode material
JP6497179B2 (en) Gas diffusion layer and gas diffusion layer roll
JPH0157467B2 (en)
JP5939543B2 (en) Method for producing porous carbon material
JPS59187623A (en) Preparation of carbon fiber molded sheet
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH0414464B2 (en)
JP2004079406A (en) Method for manufacturing gas diffusion electrode, and fuel cell
JPH052625B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term