JPH0414464B2 - - Google Patents

Info

Publication number
JPH0414464B2
JPH0414464B2 JP58166684A JP16668483A JPH0414464B2 JP H0414464 B2 JPH0414464 B2 JP H0414464B2 JP 58166684 A JP58166684 A JP 58166684A JP 16668483 A JP16668483 A JP 16668483A JP H0414464 B2 JPH0414464 B2 JP H0414464B2
Authority
JP
Japan
Prior art keywords
mat
phenolic resin
carbon fibers
electrode plate
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58166684A
Other languages
Japanese (ja)
Other versions
JPS6059660A (en
Inventor
Kenji Enomoto
Toshiaki Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58166684A priority Critical patent/JPS6059660A/en
Publication of JPS6059660A publication Critical patent/JPS6059660A/en
Publication of JPH0414464B2 publication Critical patent/JPH0414464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池用多孔質電極板の製造方法に
係り、特に炭素繊維を主材料とし、平板部とその
片面にガス流路を構成する複数の突条部を一体成
形してなる燃料電池用多孔質電極板の製造方法に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a porous electrode plate for a fuel cell, and in particular, the present invention relates to a method for manufacturing a porous electrode plate for a fuel cell, and in particular, the present invention relates to a method for producing a porous electrode plate for a fuel cell, and in particular, a porous electrode plate made of carbon fiber as a main material and having a flat plate portion and a plurality of porous electrode plates forming gas flow channels on one side thereof. The present invention relates to a method of manufacturing a porous electrode plate for a fuel cell, which is formed by integrally molding a protrusion.

〔発明の背景〕[Background of the invention]

従来、燃料電池用多孔質電極板は第1図に示す
ように炭素材料を主材料1とし、これにフエノー
ル樹脂などのバインダー2を混入し、ヒートプレ
スなどによりバインダー2を硬化結着させて、平
板部3と、その片面にガス流路4を形成する複数
の突条部5を一体成形した後、これを高温で炭化
焼成した製造されている。この場合、前記主材料
1に炭素粉、炭素粒などを使用すると、主材料自
身の強度が低いため、多孔質電極板の全体の強度
が低くなり脆くなることから破損など使用上問題
が多い。そこで、強度を向上させるため、最近で
は主材料として炭素繊維材料を使用することが多
い。
Conventionally, porous electrode plates for fuel cells have been produced by using a carbon material as the main material 1, mixing a binder 2 such as a phenolic resin into this, and hardening and binding the binder 2 by heat pressing or the like, as shown in FIG. It is manufactured by integrally molding a flat plate part 3 and a plurality of protrusions 5 forming gas passages 4 on one side thereof, and then carbonizing and firing the same at a high temperature. In this case, if carbon powder, carbon grains, etc. are used as the main material 1, the strength of the main material itself is low, so the overall strength of the porous electrode plate decreases and becomes brittle, resulting in many problems in use such as breakage. Therefore, in order to improve the strength, recently carbon fiber materials are often used as the main material.

この炭素繊維を用いた電極板の製造方法を第2
図および第3図によつて説明する。まず第2図に
おいて、フイルター7を有する容器内に炭素繊維
を適当に分散させた分散水溶液6を入れ、そして
この溶液をフイルター7を介して濾過し、フイル
ター上7に炭素繊維のマツト8を形成する。
The second method of manufacturing an electrode plate using this carbon fiber
This will be explained with reference to the figures and FIG. First, in FIG. 2, a dispersion aqueous solution 6 in which carbon fibers are appropriately dispersed is placed in a container having a filter 7, and this solution is filtered through the filter 7 to form a matte 8 of carbon fibers on the filter 7. do.

次にフイルター7上に形成されたマツト8を加
熱し、水分を蒸発させる。これで乾燥マツトがで
きる。この乾燥マツトに、バインダーとして、例
えばフエノール樹脂を溶剤に溶かした溶液を均一
に浸漬させる。そしてその後、このマツトをヒー
トプレスにより加圧、加熱してバインダーを硬化
させる。次いでマツトの片面にガス流路を構成さ
せるために切削作業を行い、さらに不活性気体中
あるいは真空中において高温で加熱して充分に炭
化し、多孔質電極板とする。これらの工程をブロ
ツク図で表わすと第3図のようになる。
Next, the mat 8 formed on the filter 7 is heated to evaporate water. This will make dried mattu. This dried mat is uniformly immersed in a solution of a binder, such as a phenol resin dissolved in a solvent. Then, the mat is pressed and heated using a heat press to harden the binder. Next, a cutting operation is performed to form a gas flow path on one side of the mat, and the mat is further heated at a high temperature in an inert gas or vacuum to be sufficiently carbonized to form a porous electrode plate. A block diagram of these steps is shown in FIG.

このような従来の製造方法であると、前述した
ようにバインダーを溶解するために有機溶剤を用
いることから有機溶剤の揮発等による作業環境の
問題があり、又この他第4図に示すように炭素繊
維10間の隙間9がバインダー3の溶液にて埋め
られてしまうことがあるため電極板としてのガス
拡散性が低下する嫌いがある。尚ガス拡散性の低
下を防止するためにバインダー溶液を少なくする
と電極板としての必要な強度が得られない。
With such conventional manufacturing methods, as mentioned above, organic solvents are used to dissolve the binder, which causes problems in the working environment due to volatilization of the organic solvents, as well as other problems as shown in Figure 4. Since the gaps 9 between the carbon fibers 10 may be filled with the solution of the binder 3, the gas diffusivity of the electrode plate tends to deteriorate. Note that if the binder solution is reduced in order to prevent a decrease in gas diffusivity, the strength required as an electrode plate cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、製作を複雑化することなくガ
ス拡散性及び機械的強度に優れた燃料電池用多孔
質電極板の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a porous electrode plate for a fuel cell that has excellent gas diffusivity and mechanical strength without complicating the manufacturing process.

〔発明の概要〕[Summary of the invention]

すなわち本発明は、炭素繊維を水溶液中に混
合,撹拌し、スラリーを形成する工程、このスラ
リーにフエノール樹脂の粉末を混合し、撹拌する
工程、このスラリーを濾過し、炭素繊維とフエノ
ール樹脂の混合マツトを形成する工程、この混合
マツトを加熱、乾燥させる工程、この乾燥したマ
ツトに圧力を加えつつマツト中のフエノール樹脂
を硬化させる工程、このマツトの少なくとも片面
に、ガス流路溝を切削加工する工程、このマツト
を加熱し、マツト中のフエノール樹脂を炭化する
工程よりなすようになし所期の目的を達成するよ
うになしたものである。
That is, the present invention includes a step of mixing carbon fibers in an aqueous solution and stirring to form a slurry, a step of mixing phenolic resin powder with this slurry and stirring, and a step of filtering this slurry and mixing the carbon fiber and phenolic resin. A process of forming a pine, a process of heating and drying the mixed pine, a process of hardening the phenolic resin in the pine while applying pressure to the dried pine, and a process of cutting gas flow grooves on at least one side of the pine. The desired purpose is achieved by heating the mat and carbonizing the phenolic resin in the mat.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の製造方法の一例を示す工程図
である。
FIG. 5 is a process diagram showing an example of the manufacturing method of the present invention.

まず材料分散工程において、例えば長さ0.5〜
10mm、太さ10〜30μの炭素繊維をCMC(カルボキ
シメチルセルロース)分散剤0.1〜5%の水溶液
中に1〜3%混合、撹拌し、スラリーとする。こ
のスラリーに常温のフレーク状のフエノール樹脂
の粉末を5〜50%の範囲で混合、更に撹拌する。
次に濾過工程において、スラリーを100〜200メツ
シユの金網を介して濾過し、金網上に炭素繊維と
フエノール樹脂の混合マツトを形成させる。この
マツトを乾燥工程において、100℃〜130℃で加熱
し、残つている水分を蒸発して乾燥したマツトを
得る。
First, in the material dispersion process, for example, the length is 0.5~
Carbon fibers with a diameter of 10 mm and a thickness of 10 to 30 μ are mixed in an aqueous solution of 1 to 3% of a CMC (carboxymethylcellulose) dispersant of 0.1 to 5%, and stirred to form a slurry. This slurry is mixed with flaky phenolic resin powder at room temperature in a range of 5 to 50%, and further stirred.
Next, in the filtration step, the slurry is filtered through a wire mesh of 100 to 200 meshes to form a mixed mat of carbon fiber and phenolic resin on the wire mesh. In the drying process, this mat is heated at 100°C to 130°C to evaporate remaining moisture and obtain a dry mat.

ヒートプレス工程において、150〜200℃の温度
で5〜20Kg/cm2の圧力を加えて1〜3hr放置し、
マツト中のフエノール樹脂を熱硬化させて強度を
向上させて所定厚の炭素板を得る。
In the heat press process, a pressure of 5 to 20 kg/cm 2 is applied at a temperature of 150 to 200°C and left for 1 to 3 hours.
The phenolic resin in the mat is thermosetted to improve its strength and obtain a carbon plate of a predetermined thickness.

この後、特に図示していない電極板のガス流路
を構成するように前記炭素板に機械による切削加
工を行い、続いてN2ガス中で500℃以上の温度で
加熱して硬化したフエノール樹脂を炭化する。
After that, the carbon plate was mechanically cut to form a gas flow path for the electrode plate (not shown), and then the phenol resin was cured by heating at a temperature of 500°C or higher in N2 gas. carbonize.

本実施例であると、材料分散工程において、や
がてバインダーの役をするフエノール樹脂の粉末
がスラリー中に均等に分散され、特に第6図に示
すように主として炭素繊維10の交叉点付近に結
着されているので、すなわちバインドが交叉点付
近で行なわれるので強度を繊維しつつ炭素繊維1
0間に充分な間隙9が形成される。したがつてガ
ス拡散を阻害することがない。勿論本実施例にお
いては、従来濾過後に行つていたバインダー処理
工程を省略でき工程数が減少する。
In this embodiment, in the material dispersion process, the phenolic resin powder, which acts as a binder, is evenly dispersed in the slurry and is mainly bound near the intersection points of the carbon fibers 10 as shown in FIG. In other words, since the binding is performed near the intersection point, the strength of the carbon fiber 1 is increased.
A sufficient gap 9 is formed between 0 and 0. Therefore, gas diffusion is not inhibited. Of course, in this embodiment, the binder treatment step that was conventionally performed after filtration can be omitted, reducing the number of steps.

第7図は本発明のもう一つの製造方法の実施例
を示し、バインダー処理工程において炭素繊維に
ノボラツク型フエノール樹脂を混合結着させる。
次いで樹脂が結着された状態の炭素繊維を水溶液
中に分散させる。次いで濾過工程,乾燥工程、ヒ
ートプレス工程および炭化処理工程を経て所定の
電極板が形成される。
FIG. 7 shows an embodiment of another manufacturing method of the present invention, in which a novolac type phenolic resin is mixed and bound to carbon fibers in the binder treatment step.
Next, the carbon fibers bound with resin are dispersed in an aqueous solution. Next, a predetermined electrode plate is formed through a filtration process, a drying process, a heat press process, and a carbonization process.

本実施例では濾過工程において炭素繊維分散用
水溶液のみを通過させ、炭素繊維の通過を阻止す
るだけでよい。したがつてフイルターの目を粗く
することができ、濾過速度を速くできるので電極
板の製造時間を短くすることができる。また樹脂
等のバインダーは炭素繊維に結着され、水溶液中
には溶解ないし分散しない状態で使用できるので
炭素繊維に必要なバインダー量のみを効率的に用
いることができる。
In this embodiment, in the filtration step, it is sufficient to allow only the aqueous solution for dispersing carbon fibers to pass through and to prevent the carbon fibers from passing through. Therefore, the mesh of the filter can be made coarser, and the filtration speed can be increased, so that the manufacturing time of the electrode plate can be shortened. Further, since the binder such as a resin is bound to the carbon fibers and can be used without being dissolved or dispersed in the aqueous solution, only the amount of binder required for the carbon fibers can be used efficiently.

実施例 1 繊維長2mm、太さ11μの炭素繊維を使用し、
CMCの1%分散溶液に混合し、炭素繊維分が2
重量%のスラリーとした。次にスラリーにノボラ
ツクフエノール樹脂粉末40重量%を加え200メツ
シユの金網を使い濾過成形し、200℃,10Kg/cm2
の条件でヒートプレスした後、800℃で炭化した。
得られた電極板のガス拡散のバラツキは5%以下
であつた。
Example 1 Using carbon fiber with a fiber length of 2 mm and a thickness of 11μ,
Mixed with 1% dispersion solution of CMC, carbon fiber content is 2
It was made into a slurry of % by weight. Next, 40% by weight of novolac phenol resin powder was added to the slurry, filtered and molded using a 200-mesh wire mesh at 200℃, 10Kg/cm 2
After heat pressing under the following conditions, carbonization was performed at 800℃.
The variation in gas diffusion of the obtained electrode plate was 5% or less.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように本発明によれば、フエ
ノール樹脂の粉末が炭素繊維の交叉点付近に結着
され、すなわち炭素繊維のバインドが繊維の交叉
点近傍だけで行なわれるので、炭素繊維間に充分
な間隙が形成され、したがつてガス拡散性が良好
で機械的強度に優れたこの種電極板を得ることが
できる。
As explained above, according to the present invention, the phenolic resin powder is bound near the intersection points of carbon fibers, that is, the carbon fibers are bound only near the intersection points of the fibers, so that there is sufficient space between the carbon fibers. Therefore, it is possible to obtain an electrode plate of this type which has good gas diffusion properties and excellent mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多孔質電極板の断面図、第2図は濾過
成形法の原理を示す説明図、第3図は従来の多孔
質電極基板製造工程を示す工程図、第4図は従来
の電極基板の内部構造の一部を示す拡大図、第5
図は本発明による電極基板製造工程の一例を示す
工程図、第6図は本発明による方法で製造した電
極基板の内部構造の一部を示す拡大図、第7図は
本発明による電極板製造工程の他の例を示す工程
図である。 2……バインダー、3……平板部、4……ガス
流路、5……突条部、5……分散水溶液、7……
フイルター、8……マツト、9……繊維間の隙
間、10……炭素繊維。
Figure 1 is a cross-sectional view of the porous electrode plate, Figure 2 is an explanatory diagram showing the principle of the filtration molding method, Figure 3 is a process diagram showing the conventional porous electrode substrate manufacturing process, and Figure 4 is the conventional electrode Enlarged view showing part of the internal structure of the board, No. 5
The figure is a process diagram showing an example of the electrode substrate manufacturing process according to the present invention, FIG. 6 is an enlarged view showing a part of the internal structure of the electrode substrate manufactured by the method according to the present invention, and FIG. 7 is a process diagram showing an example of the electrode substrate manufacturing process according to the present invention. It is a process diagram which shows another example of a process. 2...Binder, 3...Flat plate part, 4...Gas flow path, 5...Protrusion part, 5...Dispersed aqueous solution, 7...
Filter, 8... mat, 9... gap between fibers, 10... carbon fiber.

Claims (1)

【特許請求の範囲】 1 炭素繊維を水溶液中に混合、撹拌し、スラリ
ーを形成する工程、 このスラリーにフエノール樹脂の粉末を混合
し、撹拌する工程、 このスラリーを濾過し、炭素繊維とフエノール
樹脂の混合マツトを形成する工程、 この混合マツトを加熱、乾燥させる工程、 この乾燥したマツトに圧力を加えつつマツト中
のフエノール樹脂を硬化させる工程、 このマツトの少なくとも片面に、ガス流路溝を
切削加工する工程、 このマツトを加熱し、マツト中のフエノール樹
脂を炭化する工程、 よりなる燃料電池用多孔質電極板の製造方法。 2 炭素繊維にノボラツク型フエノール樹脂を混
合結着させる工程、 この樹脂が結着された炭素繊維を、水溶液中に
分散させる工程、 この溶液を濾過し、炭素繊維とフエノール樹脂
の混合マツトを形成する工程、 この混合マツトを加熱、乾燥させる工程、 この乾燥したマツトに圧力を加えつつマツト中
のフエノール樹脂を硬化させる工程、 このマツトの少なくとも片面に、ガス流路溝を
切削加工する工程、 このマツトを加熱し、マツト中のフエノール樹
脂を炭化する工程、 よりなる燃料電池用多孔質電極板の製造方法。
[Claims] 1. A step of mixing and stirring carbon fibers in an aqueous solution to form a slurry. A step of mixing phenolic resin powder with this slurry and stirring it. A step of filtering this slurry and dissolving the carbon fibers and phenolic resin. A process of heating and drying this mixed mat; A process of hardening the phenolic resin in the mat while applying pressure to the dried mat; Cutting gas flow grooves on at least one side of the mat. A method for manufacturing a porous electrode plate for a fuel cell, comprising: a processing step; a step of heating the mat to carbonize the phenolic resin in the mat. 2. A step of mixing and binding a novolak type phenolic resin to carbon fibers. A step of dispersing the carbon fibers bound with this resin in an aqueous solution. Filtering this solution to form a mixed mat of carbon fibers and phenolic resin. a step of heating and drying this mixed mat; a step of hardening the phenolic resin in the mat while applying pressure to the dried mat; a step of cutting gas flow grooves on at least one side of the mat; A method for producing a porous electrode plate for a fuel cell, comprising the steps of heating and carbonizing the phenolic resin in the mat.
JP58166684A 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell Granted JPS6059660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166684A JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166684A JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Publications (2)

Publication Number Publication Date
JPS6059660A JPS6059660A (en) 1985-04-06
JPH0414464B2 true JPH0414464B2 (en) 1992-03-12

Family

ID=15835814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166684A Granted JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Country Status (1)

Country Link
JP (1) JPS6059660A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129068A (en) * 1988-11-10 1990-05-17 Nippon Steel Chem Co Ltd Production of carbon-fiber reinforced carbon material
JP4358700B2 (en) 2004-07-28 2009-11-04 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Disk device and manufacturing method thereof
US9023556B2 (en) * 2006-03-17 2015-05-05 GM Global Technology Operations LLC Method of preparing gas diffusion media for a fuel cell
CA2825663C (en) * 2011-01-27 2023-03-21 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
CN115162053B (en) * 2022-07-26 2023-08-29 陕西煤业化工技术研究院有限责任公司 High-conductivity carbon fiber paper and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441295A (en) * 1977-08-15 1979-04-02 United Technologies Corp Method of fabricating porous carbon sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441295A (en) * 1977-08-15 1979-04-02 United Technologies Corp Method of fabricating porous carbon sheet

Also Published As

Publication number Publication date
JPS6059660A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
US4434206A (en) Shaped articles of porous carbon fibers
CN101611509B (en) Electrode substrate for electrochemical cell from carbon and cross-linkable resin fibers
JPS60122711A (en) Manufacture of porous carbon board
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH0414464B2 (en)
JPS63222080A (en) Manufacture of carbon fiber porous body
JPH01160867A (en) Production of electrically conductive material
JPH0258369B2 (en)
JPS61236665A (en) Manufacture of porous carbon sheet
JPS648091B2 (en)
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPH0129891B2 (en)
JPS61236664A (en) Manufacture of porous carbon sheet
JP3739819B2 (en) Method for producing porous carbon material
JPS5935011A (en) Molded article of porous carbon and its preparation
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH0360478A (en) Production of porous carbon sheet
JPH01253164A (en) Fuel cell board resistant against corrosion and its manufacture
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH052625B2 (en)
JPH06218827A (en) Fiber reinforced substrate and manufacture thereof
JP3131911B2 (en) Method for producing thick porous carbon material
JPH07115970B2 (en) Method for manufacturing porous carbon material
JPS62160661A (en) Production of thin carbon plate for fuel cell separator