JPH08185848A - Battery separator, its manufacture and alkaline secondary battery - Google Patents

Battery separator, its manufacture and alkaline secondary battery

Info

Publication number
JPH08185848A
JPH08185848A JP6337689A JP33768994A JPH08185848A JP H08185848 A JPH08185848 A JP H08185848A JP 6337689 A JP6337689 A JP 6337689A JP 33768994 A JP33768994 A JP 33768994A JP H08185848 A JPH08185848 A JP H08185848A
Authority
JP
Japan
Prior art keywords
short fibers
fibers
heat
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6337689A
Other languages
Japanese (ja)
Other versions
JP3775814B2 (en
Inventor
Masaru Kamisaka
優 上坂
Yoshiyuki Tadokoro
義幸 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP33768994A priority Critical patent/JP3775814B2/en
Priority to TW084114080A priority patent/TW308742B/zh
Publication of JPH08185848A publication Critical patent/JPH08185848A/en
Application granted granted Critical
Publication of JP3775814B2 publication Critical patent/JP3775814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE: To provide a battery separator with high mechanical strength and high electrolyte retention factor, manufacturing method for the separator, and an alkaline secondary battery excellent in cycle characteristic, using this separator. CONSTITUTION: In a wet process nonwoven fabric in which at least one kind of thermoplastic short fibers and heat bonding short fibers are three-dimensionally entangled each other by water stream, part or whole of the heat bonding short fibers is melted to bond fibers, 0.05-0.5wt.% nonionic surface active agent based on the total weight of the nonwoven fabric is attached on the surface of the fibers. A battery separator obtained has a speed of liquid absorption of 40mm or more and an electrolyte retention factor of 85% or more, and it is preferably manufactured in such a way that water stream is struck against a mixed sheet comprising at least one kind of thermoplastic short fibers and heat bonding short fibers, produced in a paper machine process to three-dimensionally entangle these fibers, part or whole of the heat bonding short fibers is melted by heat treatment to obtain a nonwoven fabric, then 0.05-0.5wt.% nonionic surface active agent based on the total weight of the nonwoven fabric is attached on the surface of the nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池用セパレーターとそ
の製造方法並びに上記セパレーターを組み込んだアルカ
リ蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator, a method for producing the same, and an alkaline storage battery incorporating the separator.

【0002】[0002]

【従来の技術】電池用セパレーターの役割としては正極
と負極の分離、短絡防止、電解液の保持、又、二次電池
においては電極反応により生じるガスの通過などが挙げ
られる。特に充放電サイクルの進行に伴いセパレーター
内の電解液が電極板に吸い寄せられ、電池の寿命低下が
起こることから、電解液の保持はきわめて重要である。
又、電池セパレーターは電池製造工程において生じる張
力に対抗するために、一定以上の引張強度及び電極挿入
時に際し幅入れしない等の機械的特性も併せて備えてい
ることが要求される。
2. Description of the Related Art The role of a battery separator is to separate a positive electrode and a negative electrode, prevent a short circuit, hold an electrolyte, and pass a gas generated by an electrode reaction in a secondary battery. In particular, the retention of the electrolytic solution is extremely important because the electrolytic solution in the separator is attracted to the electrode plate as the charge / discharge cycle progresses, which shortens the life of the battery.
In addition, the battery separator is required to have tensile strength of a certain level or more and mechanical characteristics such as not being widened at the time of inserting the electrode in order to counter the tension generated in the battery manufacturing process.

【0003】しかしながら、従来の電池用セパレーター
ではこれらのことが充分に実現されていなかった。特開
平5−129012号公報では耐アルカリ性界面活性剤
を0.3〜3.0重量%付着させてセパレーターの吸液
速度、保液率を向上させることが提案されているが、界
面活性剤を多く付着させたために電解液中への界面活性
剤の脱落が多くなり、界面活性剤の電極板上への再付着
が時間の経過とともに起こり、保液率の高いセパレータ
ーにも関わらず電解液が電極板に吸い寄せられる現象が
現れる。従って、電解液の電極板への移行、いわゆるド
ライアウトは電池の寿命を早める。
However, these have not been sufficiently realized in the conventional battery separator. Japanese Unexamined Patent Publication (Kokai) No. 5-129012 proposes to add an alkali resistant surfactant in an amount of 0.3 to 3.0% by weight to improve the liquid absorption rate and liquid retention of the separator. Since a large amount of the surfactant is attached, the amount of the surfactant that is dropped into the electrolyte increases, and the redeposition of the surfactant on the electrode plate occurs over time, resulting in the electrolyte remaining in spite of the high liquid retention separator. The phenomenon of being attracted to the electrode plate appears. Therefore, the transfer of the electrolytic solution to the electrode plate, so-called dry-out, shortens the life of the battery.

【0004】特開平1−157055号公報ではメルト
ブロ−ン不織布を特定の条件で加熱されたロ−ルに接触
させ、短絡防止、保液性と機械強度の向上を図ろうとし
ているが、機械強度は充分でなく、またガス通気性の低
下が懸念される。又、特開平2−259189号公報で
は熱融着繊維を融着させることで強度と保液率の両方を
向上させようとしているが、高強度を得るために熱処理
温度を高くすると繊維の相互接着により繊維表面積が減
少し、保液率の低下が免れない結果となっているのが現
状である。
In Japanese Patent Laid-Open No. 1-157055, a melt blown nonwoven fabric is brought into contact with a roll heated under specific conditions to prevent short circuit, improve liquid retention and mechanical strength. Is not sufficient, and there is concern that the gas permeability may be reduced. Further, in Japanese Patent Application Laid-Open No. 2-259189, it is attempted to improve both strength and liquid retention by fusing heat-sealing fibers, but when heat treatment temperature is increased to obtain high strength, mutual adhesion of fibers As a result, the fiber surface area is reduced, and the liquid retention rate is unavoidably reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記のよう
な問題を解決しようとするものであり、短絡防止性能が
良く、二次電池に使用される際はガス通過性が良好な上
に電池内での電解液の保持性能に優れ、ドライアウトし
難い上、更に電池製造工程上充分な機械的強度を有する
電池用セパレーター及び上記電池用セパレーターを組み
込んだサイクル特性に優れたアルカリ蓄電池を提供する
ことを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems, has good short-circuit prevention performance, and has good gas permeability when used in a secondary battery. Provides an alkaline storage battery that has excellent electrolyte retention performance in the battery, is difficult to dry out, and has sufficient mechanical strength in the battery manufacturing process, and an excellent cycle characteristic that incorporates the battery separator. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は、下記の手段に
よって達成することができる。すなわち、 1種以上
の熱可塑性短繊維と熱融着短繊維とが相互に三次元的に
水流交絡されており、熱融着短繊維の一部又は全部が熱
溶融されて繊維間が接着されてなる湿式不織布におい
て、繊維表面には不織布の全重量に基いて0.05〜
0.5重量%のノニオン系界面活性剤が付着している電
池用セパレーターを提供することによる。
The present invention can be achieved by the following means. That is, one or more kinds of thermoplastic short fibers and heat-bonded short fibers are hydroentangled with each other three-dimensionally, and part or all of the heat-bonded short fibers are heat-melted to bond the fibers. In the wet non-woven fabric, the surface of the fiber is 0.05-based on the total weight of the non-woven fabric.
By providing a battery separator having 0.5% by weight of a nonionic surfactant attached thereto.

【0007】また、 上記電池用セパレーターが吸液
速度40mm以上、抱液率85%以上の性能を有する点
にも特徴を有する。また、 上記熱可塑性短繊維がポ
リアミド系繊維である点にも特徴を有する。更に、
抄造法により作製される1種以上の熱可塑性短繊維と熱
融着短繊維からなる混抄シ−トに水流を衝突させて、繊
維を三次元的に立体交絡させた後、熱処理によって熱融
着短繊維の一部又は全部を溶融させた湿式不織布の繊維
表面に0.05〜0.5重量%のノニオン系界面活性剤
を付着させる電池用セパレーターの製造方法を提供する
ことによる。
The battery separator is also characterized in that it has a liquid absorption rate of 40 mm or more and a liquid retention rate of 85% or more. Another feature is that the thermoplastic short fibers are polyamide fibers. Furthermore,
A water jet is made to collide with a mixed paper sheet made of one or more kinds of thermoplastic short fibers and heat-fusible short fibers produced by a paper-making method to three-dimensionally entangle the fibers, and then heat-bonding is performed by heat treatment. By providing a method for producing a battery separator in which 0.05 to 0.5% by weight of a nonionic surfactant is attached to the fiber surface of a wet non-woven fabric in which some or all of short fibers are melted.

【0008】従って、本発明のもう一つ発明は、上記
電池用セパレーターを組み込んだサイクル特性に優れた
アルカリ蓄電池である。以下、本発明を具体的に説明す
る。本発明の電池用セパレーターを組み込んだアルカリ
蓄電池の種類としては代表的なものとして、ニッケル−
カドニウム型、ニッケル−水素型、ニッケル−鉄型、酸
化銀−亜鉛型でボタン形状や円筒形状のものが含まれ
る。
Therefore, another aspect of the present invention is an alkaline storage battery having the above-mentioned battery separator and excellent in cycle characteristics. Hereinafter, the present invention will be specifically described. As a typical type of alkaline storage battery incorporating the battery separator of the present invention, nickel-
A cadmium type, a nickel-hydrogen type, a nickel-iron type, a silver oxide-zinc type, and a button shape or a cylindrical shape are included.

【0009】本発明に用いる熱可塑性短繊維、熱融着短
繊維の素材としては、電解液のアルカリ溶液に対し耐久
性を有するもの、例えばポリエチレン、ポリプロピレン
等のポリオレフィン系:COOH、SO3 H、OH、C
OOM、SO3 M、OM(Mは軽、重金属)などの親水
基を持つポリオレフィン系:ナイロン6、ナイロン6
6、ナイロン610、ナイロン612、ナイロン10、
ナイロン12などのポリアミド系:ポリパラフェニレン
テレフタルアミド等のアラミド系繊維等の単独または組
合せたものが好ましい。
The material of the thermoplastic short fibers and the heat-fusible short fibers used in the present invention is one having durability against the alkaline solution of the electrolytic solution, for example, polyolefin such as polyethylene and polypropylene: COOH, SO 3 H, OH, C
Polyolefins with hydrophilic groups such as OOM, SO 3 M, OM (M is light or heavy metal): nylon 6, nylon 6
6, nylon 610, nylon 612, nylon 10,
Polyamide type such as nylon 12: aramid type fibers such as polyparaphenylene terephthalamide, etc., alone or in combination, are preferable.

【0010】本発明に用いる熱可塑性短繊維として、よ
り好ましくは適度の親水性を有し、耐アルカリ性を有す
るポリアミド系繊維であり、具体的には特に好ましくは
ナイロン6、ナイロン66が使用される。本発明の電池
用セパレーターを構成する熱融着短繊維は熱融着温度が
熱可塑性短繊維の融点よりも10℃以上低いもので、熱
可塑性短繊維が2種以上の場合は最も低い融点を持つ短
繊維より10℃以上低いことが好ましい。10℃未満で
あると熱融着短繊維が熱溶融の際短繊維の一部も溶融す
る恐れがあり、目的とする充分な不織布強度が得られ
ず、又電解液の保持率が低下するという問題がある。更
に好ましくは20℃以上である。
The thermoplastic short fibers used in the present invention are more preferably polyamide fibers having appropriate hydrophilicity and alkali resistance. Specifically, nylon 6 and nylon 66 are particularly preferably used. . The heat-sealing short fibers constituting the battery separator of the present invention have a heat-sealing temperature which is lower than the melting point of the thermoplastic short fibers by 10 ° C. or more, and the lowest melting point when the thermoplastic short fibers are two or more kinds. It is preferable that the temperature is 10 ° C. or more lower than that of the short fibers. If the temperature is less than 10 ° C, the heat-fusible short fibers may melt a part of the short fibers at the time of heat melting, so that the desired sufficient strength of the nonwoven fabric cannot be obtained and the retention rate of the electrolytic solution decreases. There's a problem. More preferably, it is 20 ° C. or higher.

【0011】本発明における熱融着短繊維は、従来の熱
融着乾式不織布や熱融着湿式不織布に使用されている鞘
芯型、サイドバイサイド型の複合繊維、あるいは単一成
分タイプなどが挙げられるが、高い引張強度を得るとい
う点から特に鞘芯型熱融着短繊維であることが好まし
い。例えば、具体的な鞘芯型熱融着短繊維としては、耐
アルカリ性の芯成分がナイロン66で鞘成分がナイロン
6、或いは芯成分がナイロン6又は66で鞘成分がナイ
ロン612、610等の共重合ナイロン及びポリエチレ
ン、ポリプロピレンなどのポリオレフィン、更には芯成
分がポリプロピレンで鞘成分がポリエチレンのような組
合せが好適に用いられる。
The heat-fusible short fibers in the present invention include sheath-core type, side-by-side type composite fibers, single component type and the like which are used in conventional heat-fusing dry nonwoven fabrics and heat-fusing wet nonwoven fabrics. However, from the viewpoint of obtaining high tensile strength, a sheath-core type heat-bondable short fiber is particularly preferable. For example, as a concrete sheath-core type heat-sealing short fiber, an alkali-resistant core component of nylon 66 and a sheath component of nylon 6 or a core component of nylon 6 or 66 and a sheath component of nylon 612, 610, etc. Polymerized nylon and polyolefin such as polyethylene and polypropylene, and a combination such as polypropylene as the core component and polyethylene as the sheath component are preferably used.

【0012】本発明における熱融着短繊維の効果は、熱
融着短繊維を使用しない場合に起こる低い引張強度でか
つ伸び易い、また電池製造工程で切断あるいは伸びによ
る幅入れのため極板の幅より小さくなり、短絡が起きる
などの問題を解決するためである。また熱融着短繊維の
混合比率としては、不織布全体の5〜80%が好まし
く、更に好ましくは10〜70%である。混合比率が8
0%を超えると繊維間接着部の増大で繊維表面積が減少
し、液体の保持率の低下を引き起こす。
The effect of the heat-fusible short fibers in the present invention is that they have a low tensile strength and are easily stretched when the heat-fusible short fibers are not used. This is to solve the problem that the width becomes smaller than the width and a short circuit occurs. Further, the mixing ratio of the heat-fusible short fibers is preferably 5 to 80%, more preferably 10 to 70% of the whole nonwoven fabric. Mixing ratio is 8
If it exceeds 0%, the fiber surface area is reduced due to an increase in the interfiber bond portion, which causes a reduction in the liquid retention rate.

【0013】一方、熱融着短繊維の混合比率が5%未満
であると引張強度が低くなる。本発明における熱可塑性
短繊維、熱融着短繊維の単糸直径はガス通過性、短絡防
止、液体保持の点から見て、好ましくは3〜25μm、
さらに好ましくは5〜20μmであるが、電池セパレー
ターとしての性能が達成されれば特に限定されるもので
はない。
On the other hand, if the mixing ratio of the heat-fusible short fibers is less than 5%, the tensile strength will be low. The single yarn diameter of the thermoplastic short fibers and the heat fusion short fibers in the present invention is preferably 3 to 25 μm from the viewpoint of gas permeability, short circuit prevention, and liquid retention.
The thickness is more preferably 5 to 20 μm, but is not particularly limited as long as the performance as a battery separator is achieved.

【0014】ここで言う単糸の断面は円形であっても非
円形の種々の断面であってもよい。単糸の断面が円形の
場合は直接的にその直径を測定した値でもって単糸の直
径とし、異形断面の場合は重量法によりその繊度(デニ
−ル)を測定し、このデニ−ルを単糸が円形と仮定した
場合の次式で得られる平均直径でもって表すこととす
る。
The cross section of the single yarn referred to herein may be circular or various non-circular cross sections. If the cross section of a single yarn is circular, the diameter of the single yarn is directly determined as the diameter of the single yarn, and if the cross section is irregular, the fineness (denier) is measured by the gravimetric method. It is represented by the average diameter obtained by the following equation when the single yarn is assumed to be circular.

【数1】 R=√(4d/(π×9×105 ×ρ))×104 〔ここで、Rは単繊維直径(μm)であり、ρは単繊維
を構成する高分子重合体の密度(g/cm3 )であり、
dは単繊維繊度(デニール)であり、πは円周率であ
る。〕
## EQU1 ## R = √ (4d / (π × 9 × 10 5 × ρ)) × 10 4 [where R is the diameter (μm) of the single fiber, and ρ is a high-molecular polymer constituting the single fiber. Density (g / cm 3 ) of
d is the single fiber fineness (denier), and π is the circular constant. ]

【0015】本発明に用いる界面活性剤は耐アルカリ性
を有することが必要である。例えば、ポリオキシエチレ
ンアルキルエーテル、ポリオキシエチレンアルキルフェ
ニルエーテル等のノニオン系界面活性剤が望ましい。界
面活性剤の親水性あるいは親油性を表すHLBは特に限
定するものではないが、10〜17、好ましくは12〜
16がよい。
The surfactant used in the present invention is required to have alkali resistance. For example, nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether are desirable. The HLB representing the hydrophilicity or lipophilicity of the surfactant is not particularly limited, but is 10-17, preferably 12-
16 is good.

【0016】HLBが10未満の界面活性剤は水への溶
解性が極めて悪くイソプロピルアルコール等の溶剤と併
用する必要があり、製造工程が複雑になる。また、HL
Bが17を超える界面活性剤は目的である親水性能が低
く、本発明の電池用セパレーターを作り得ない。界面活
性剤の付着量は不織布の全重量に対して0.05〜0.
5重量%、好ましくは0.1〜0.3重量%が必要であ
る。
A surfactant having an HLB of less than 10 has extremely poor solubility in water and must be used in combination with a solvent such as isopropyl alcohol, which complicates the manufacturing process. Also, HL
A surfactant having a B of more than 17 has a low hydrophilic property as intended, and cannot make the battery separator of the present invention. The amount of the surface active agent deposited is 0.05 to 0.
5% by weight, preferably 0.1-0.3% by weight is required.

【0017】界面活性剤が全く付着していない、または
0.05重量%未満では親水基を持つ繊維といえども電
解液の吸液速度が著しく遅くなり、セパレーターが濡れ
ない等、実用の点から問題になる。これは、本発明の電
池用セパレーターの不織布原反の製造方法が抄造、水流
交絡という水を多量に使うプロセスであって、紡糸に由
来する繊維表面の界面活性剤をほとんど全て洗い流すた
めである。
If no surfactant is attached, or if the amount is less than 0.05% by weight, the absorbing speed of the electrolytic solution is remarkably slowed even for fibers having a hydrophilic group, and the separator does not get wet. It becomes a problem. This is because the method for producing a non-woven fabric raw material for a battery separator of the present invention is a process using a large amount of water called papermaking and hydroentangling, and almost all surfactants on the fiber surface derived from spinning are washed away.

【0018】また、界面活性剤の付着量が0.5重量%
を超えると吸液速度は満足するものの、電解液中への脱
落が多くなり界面活性剤の再付着が電極板上に行われる
ために、時間の経過とともにセパレーター中の電解液が
電極板に移行するという問題が生じる。従来、セパレー
ターの電解液を保持する能力を表す評価として保液率が
挙げられていたが、この評価はセパレーター単独の能力
であり、保液率の高いセパレーターであっても界面活性
剤の付着量が多い場合、電池内では電解液を保持できな
い。
The amount of the surface active agent attached is 0.5% by weight.
If it exceeds, the liquid absorption rate will be satisfied, but since it will drop into the electrolyte solution and the surfactant will re-deposit on the electrode plate, the electrolyte solution in the separator will migrate to the electrode plate over time. The problem arises. Conventionally, the liquid retention rate has been mentioned as an evaluation showing the ability of the separator to hold the electrolytic solution, but this evaluation is the ability of the separator alone, and the amount of surfactant attached even with a separator having a high liquid retention rate. When the amount is high, the electrolyte cannot be retained in the battery.

【0019】電解液の電極板への移行といった電池内で
のセパレーターの電解液を保持する能力として新しく抱
液率により規定することにより本発明の特定の不織布を
使用した効果を明確に表すことができる。濡れやすさを
表すセパレーターの吸液速度は構成繊維の繊維径に相関
があり、繊維が太くなるほど高くなる。液離れを表すセ
パレーターの抱液率は構成繊維の繊維径に逆相関があ
り、繊維が太くなるほど低くなる。
The effect of using the specific non-woven fabric of the present invention can be clearly shown by newly defining the electrolyte retention as the ability of the separator to retain the electrolytic solution, such as the transfer of the electrolytic solution to the electrode plate. it can. The liquid absorption rate of the separator, which indicates the wettability, is correlated with the fiber diameter of the constituent fibers, and increases as the fiber becomes thicker. The liquid retention rate of the separator, which represents liquid separation, is inversely related to the fiber diameter of the constituent fibers, and becomes lower as the fibers become thicker.

【0020】この為、セパレーターを構成する繊維によ
り界面活性剤の付着量を適正化する必要がある。電池の
性能を満足するためにはセパレーターとして、好ましく
は吸液速度40mm以上、抱液率85%以上が必要であ
る。吸液速度が40mm未満であると、セパレーターに
アルカリ電解液が均一に含浸されず、内部抵抗が高くな
り十分な放電電圧が得られない問題を生ずる。一方、抱
液率が85%未満であるとセパレーターが電解液を保持
する力が弱いため、電池の充放電サイクルを繰り返すと
経時的にセパレーターの電解液が電極に取られるドライ
アウト現象を起こし、電池の寿命が早く尽きるなどの問
題が生じる。
For this reason, it is necessary to optimize the amount of the surfactant adhering to the fibers constituting the separator. In order to satisfy the battery performance, the separator preferably has a liquid absorption rate of 40 mm or more and a liquid retention rate of 85% or more. When the liquid absorption speed is less than 40 mm, the separator is not uniformly impregnated with the alkaline electrolyte, and the internal resistance becomes high, so that a sufficient discharge voltage cannot be obtained. On the other hand, if the liquid retention rate is less than 85%, the separator has a weak force to retain the electrolytic solution, and thus, when the charge / discharge cycle of the battery is repeated, a dryout phenomenon occurs in which the electrolytic solution of the separator is taken by the electrode over time, Problems such as the battery running out quickly occur.

【0021】本発明の電池セパレーター用不織布の目付
は10〜350g/m2 であり、好ましくは25〜15
0g/m2 であり、より好ましくは35〜100g/m
2 である。また、本発明の電池セパレーター用不織布の
厚みは30〜1,000μmであり、好ましくは70〜
400μm、より好ましくは90〜250μmである。
The unit weight of the non-woven fabric for battery separator of the present invention is 10 to 350 g / m 2 , preferably 25 to 15
0 g / m 2 , more preferably 35 to 100 g / m
2 The thickness of the nonwoven fabric for a battery separator of the present invention is 30 to 1,000 μm, preferably 70 to
It is 400 μm, more preferably 90 to 250 μm.

【0022】目付が10g/m2 以下で、厚みが40μ
m以下になると、余りにも目付が薄いために強度が不足
し、活物質の通過も完全に防止できず、また目付が35
0g/m2 を超え、厚みが1,000μmより厚くなる
と十分な繊維交絡を得られず電気抵抗も大きくなり、電
極活物質を多く充填できなくなることから、十分な電気
容量が得られないなどの問題が生じるため好ましくな
い。
The basis weight is 10 g / m 2 or less and the thickness is 40 μm.
If it is less than m, the strength is insufficient because the basis weight is too thin, the passage of the active material cannot be completely prevented, and the basis weight is 35
When it exceeds 0 g / m 2 and the thickness is more than 1,000 μm, sufficient fiber entanglement cannot be obtained and electric resistance also becomes large, so that it becomes impossible to fill much of the electrode active material, so that sufficient electric capacity cannot be obtained. It is not preferable because it causes problems.

【0023】次に、本発明の電池用セパレーターの製造
方法について説明する。1種以上の熱可塑性短繊維と熱
融着短繊維を準備して、これを0.05〜3%の濃度に
なるように水に分散させスラリ−を調合する。このスラ
リ−を長網式或は傾斜型長網式、丸網式の抄造機で抄造
する。次いで得られた混抄シ−トを円柱柱状の水流にて
交絡させる。水圧は用いる原糸の種類及び混抄シ−トの
目付量により異なるが、繊維間の充分な交絡を得るため
には3〜100kg/cm2 、好ましくは3〜50kg
/cm2 の範囲で衝突させる。
Next, a method of manufacturing the battery separator of the present invention will be described. One or more types of thermoplastic short fibers and heat-fusible short fibers are prepared and dispersed in water to a concentration of 0.05 to 3% to prepare a slurry. The slurry is made into paper by a Fourdrinier, inclined fourdrinier, or round net paper machine. Next, the obtained mixed paper sheet is entangled with a water columnar stream. The water pressure varies depending on the type of raw yarn used and the basis weight of the mixed sheet, but in order to obtain sufficient entanglement between fibers, it is 3 to 100 kg / cm 2 , preferably 3 to 50 kg.
Collide in the range of / cm 2 .

【0024】同一繊維の場合低目付ほど水圧は低く、高
目付になるほど高水圧に設定すればよい。又、同一目付
の場合、ヤング率の高い原糸の時には高水圧で処理する
と本発明の目的とする高強度が得られる。水流を噴射す
るノズルの径は0.01〜1mmが好ましい。水流の軌
跡形状は混抄シ−トの進行方向に対し並行な直線状であ
っても良いし、ノズルを取り付けたヘッダ−の回転運動
やシ−トの進行方向に直角に往復する振動運動によって
得られる曲線形状であっても良い。
In the case of the same fiber, the lower the unit weight, the lower the water pressure, and the higher the unit weight, the higher the water pressure. Further, in the case of the same basis weight, when the raw yarn having a high Young's modulus is treated with high water pressure, the high strength which is the object of the present invention can be obtained. The diameter of the nozzle that jets the water flow is preferably 0.01 to 1 mm. The trajectory shape of the water flow may be a straight line parallel to the advancing direction of the mixed sheet, or it may be obtained by the rotational movement of the header with the nozzle attached or the vibration movement reciprocating at right angles to the advancing direction of the sheet. It may have a curved shape.

【0025】回転運動により得られる幾重にも重なった
円形状の水流軌跡の交絡は、ノズル1錘あたりのシ−ト
に対する水流の噴射面積が大きくなり効率的であると同
時に、商品価値を低下させる水流軌跡の斑が見えにくく
なる。混抄シ−トに対する水流処理の方法は表裏交互に
水流を噴射する方法でも良いし、片面だけを処理する方
法でも良い。
The confounding of circular water flow loci obtained by the rotational movement is efficient because the jetting area of the water flow with respect to the sheet per nozzle weight is large, and at the same time, it reduces the commercial value. It is difficult to see spots on the water flow path. The method of water flow treatment for the mixed paper sheet may be a method of alternately injecting a water flow on the front side or the back side, or a method of treating only one side.

【0026】又、処理回数も目的に応じて最適条件を選
択すれば良い。これら混抄シ−トの水流処理の水圧条件
は目的とする充分な繊維交絡を得、且つ均一性を得るよ
うな条件下で選択させるが、例えば10〜100g/m
2 の比較的小さい目付の混抄シ−トの場合は3〜40k
g/cm2 の水圧で片面或は両面処理するのが好まし
い。 この交絡処理によって混抄シ−トの構成繊維は水
流によって移動し相互に絡み合って強固な結合を得るに
至る。
Also, regarding the number of times of processing, an optimum condition may be selected according to the purpose. The water pressure condition for the water treatment of these mixed sheet is selected under the condition that the desired sufficient fiber entanglement can be obtained and the uniformity can be obtained. For example, 10 to 100 g / m
2 ~ 3k for mixed sheet with comparatively small weight
It is preferable to perform one-side or both-side treatment with a water pressure of g / cm 2 . By this entanglement treatment, the constituent fibers of the mixed paper sheet are moved by the water flow and entangled with each other to obtain a strong bond.

【0027】不織布製造工程において、水流交絡が無い
製造工程では、基布を乾燥機に導布する場合、混抄シー
ト中の熱可塑性短繊維と熱融着短繊維が三次元的に絡み
合っていないことから、混抄シートはほとんど引張強度
を持っていない。強度発現のためには、一度熱融着短繊
維を溶融させ繊維相互間を仮接着せねばならず、その後
でないと乾燥機に導布することが出来ない。直接混抄シ
ートをそのまま乾燥させる面接触型の乾燥機などにより
乾燥させることが考えられるが、混抄シートの表面だけ
しか熱が伝わらないため強度が充分発現できなかった
り、表面の熱融着短繊維によるフィルム化により通気度
の低下を招いたりするため余り実用的でなく、また低温
高圧力で混抄シートを圧着すれば厚みが薄くなり、通気
度、液体の保持の低下を招くこととなる。
In the non-woven fabric manufacturing process, in the manufacturing process without hydroentanglement, when the base fabric is introduced into the dryer, the thermoplastic staple fibers and the heat-fusible staple fibers in the mixed paper sheet are not three-dimensionally entangled. Therefore, the mixed sheet has almost no tensile strength. In order to develop strength, the heat-sealing short fibers must be once melted and the fibers must be temporarily bonded to each other, and the fibers cannot be guided to the dryer until after that. It is possible to dry the mixed sheet directly with a surface contact type dryer, etc., but it is not possible to sufficiently develop the strength because heat is transferred only to the surface of the mixed sheet, or due to the heat-sealing short fibers on the surface. It is not very practical because it causes a decrease in air permeability due to the formation of a film, and when the mixed sheet is pressure-bonded at a low temperature and a high pressure, the thickness becomes thin, and the air permeability and the retention of liquid are deteriorated.

【0028】一方では、熱可塑性短繊維と熱融着短繊維
の交絡点の数が減少するために、上記に記載した熱融着
短繊維の効果が発現しにくいと解釈される。この様な工
程上の問題を解決するために水流交絡工程が必要不可欠
となってくる。次いで得られた交絡シ−トを熱処理する
ことによって熱融着短繊維の一部または全部を溶融せし
める。熱処理条件はガスの通過性や電解液の保持率を損
なわないようにするため、非接触式の熱風乾燥機を用い
て5秒〜10分の短時間処理が好ましい。熱処理温度は
熱融着短繊維の融点以上、短繊維の融点以下の温度に設
定する。
On the other hand, since the number of entanglement points between the thermoplastic short fibers and the heat fusion short fibers is reduced, it can be understood that the effects of the heat fusion short fibers described above are not easily exhibited. The hydroentangling process becomes indispensable to solve such process problems. Then, the obtained entangled sheet is heat-treated to melt a part or all of the heat-fusible short fibers. The heat treatment condition is preferably a short time treatment of 5 seconds to 10 minutes using a non-contact hot air dryer in order not to impair the gas permeability and the electrolyte retention rate. The heat treatment temperature is set to a temperature equal to or higher than the melting point of the heat-sealing short fibers and lower than the melting point of the short fibers.

【0029】このようにして得られた不織布に不織布の
全重量に対して0.05〜0.5重量%、好ましくは
0.1〜0.3重量%のノニオン系界面活性剤を付着さ
せる。界面活性剤をシートに付着させる方法としては、
界面活性剤を水溶液にして浸漬させた後、水分率を調整
し乾燥する方法、界面活性剤の水溶液を噴霧し、その後
乾燥する方法等が用いられる。界面活性剤の濃度は特に
限定されないが、斑付等が起こらないようにするために
好ましくは0.02〜0.5%である。
To the non-woven fabric thus obtained, 0.05 to 0.5% by weight, preferably 0.1 to 0.3% by weight, of nonionic surfactant is attached to the total weight of the non-woven fabric. As a method of attaching the surfactant to the sheet,
A method of adjusting the water content and then drying after immersing the surface active agent in an aqueous solution, and a method of spraying an aqueous solution of the surface active agent and then drying are used. Although the concentration of the surfactant is not particularly limited, it is preferably 0.02 to 0.5% in order to prevent spotting.

【0030】厚みの調整が必要な場合はエンボス機やカ
レンダー機等で圧着処理をする。しかし、この時ガス通
過性や電解液の保持能力を低下させないような条件を選
択しなければならない。界面活性剤の付着処理と厚み調
整のための圧着処理の順序は特にこだわらないが、圧着
処理を行った後のシートは繊維密度が高くなり界面活性
剤水溶液の浸透性が悪く付着斑を生じることがあるので
付着処理後に圧着処理を行う方が良い。この後、使用す
る電池つまり電極板に合った大きさにシートを切断して
本発明の電池用セパレーターが得られる。
When it is necessary to adjust the thickness, a pressure-bonding treatment is carried out with an embossing machine or a calendering machine. However, at this time, it is necessary to select a condition that does not reduce the gas permeability and the electrolyte retaining ability. The order of the surface-active agent adhesion treatment and the pressure-bonding treatment for adjusting the thickness is not particularly limited, but the sheet after the pressure-bonding treatment has a high fiber density and poor penetrability of the aqueous surfactant solution, causing adhesion spots. Therefore, it is better to perform the pressure bonding process after the adhesion process. Then, the sheet is cut into a size suitable for the battery used, that is, the electrode plate, to obtain the battery separator of the present invention.

【0031】[0031]

【実施例】以下実施例でもって本発明をさらに詳しく説
明するが、これらは本発明の範囲を制限しない。なお、
実施例中、測定値は以下の方法によって測定したもので
あり%はすべて重量%である。
The present invention will be described in more detail with reference to the following examples, which do not limit the scope of the present invention. In addition,
In the examples, the measured values are measured by the following methods, and all% are weight%.

【0032】1)引張強度 (Kg/cm):JIS−
L1096 ストリップ法に準じ測定する。 2)通気度 (cc/cm2 s):JIS−L1096
フラジ−ル法に準じ測定する。 3)保液率 (%):10cm×10cmの正方形にカ
ットした試験片を採取し、水分平衡に至らせた状態の重
量(W1 )を1mgまで測定する。次に31%水酸化カ
リウム水溶液中に1時間以上広げて浸した後、液中から
引き上げて正方形の1角をつかみ10分間吊した後の試
験片重量(W2 )を測定する。保液率(%)は次式で求
める。
1) Tensile strength (Kg / cm): JIS-
L1096 Measure according to the strip method. 2) Air permeability (cc / cm 2 s): JIS-L1096
Measure according to the Frazier method. 3) Liquid retention rate (%): A test piece cut into a square of 10 cm × 10 cm is collected, and the weight (W 1 ) in a state of reaching water equilibrium is measured up to 1 mg. Next, after spreading and soaking in a 31% potassium hydroxide aqueous solution for 1 hour or more, it is pulled out from the solution, one corner of the square is grabbed and hung for 10 minutes, and the weight (W 2 ) of the test piece is measured. The liquid retention rate (%) is calculated by the following formula.

【数2】保液率=(W2 −W1 )/W1 ×100[Formula 2] Liquid retention rate = (W 2 −W 1 ) / W 1 × 100

【0033】4)吸液速度 (mm):2.5cm×2
0cmの試験片の先端5mmを31%水酸化カリウム水
溶液に垂直に浸漬する。毛細管現象による水酸化カリウ
ム水溶液の30分後の上昇高さ(mm)を測定し、吸液
速度とする。 5)抱液率 (%):3.4cm×5cmの試験片に試
験片と等重量(W1 )の31%水酸化カリウム水溶液を
加え、濾紙(アドバンテックNo.4−A)上に置き試
験片と同じ大きさの100gの重りを加えて、30秒間
放置し離液させた後の試験片が保持している液重量(W
2 )を測定する。抱液率(%)は次式で求める。
4) Liquid absorption speed (mm): 2.5 cm × 2
A 5 mm tip of a 0 cm test piece is vertically dipped in a 31% potassium hydroxide aqueous solution. The rising height (mm) of the potassium hydroxide aqueous solution after 30 minutes due to the capillary phenomenon is measured and used as the liquid absorption speed. 5) Liquid retention rate (%): A 31 cm aqueous potassium hydroxide solution having the same weight (W 1 ) as the test piece was added to a test piece of 3.4 cm × 5 cm, and the test piece was placed on a filter paper (Advantech No. 4-A) for testing. The weight of the liquid held by the test piece after adding a 100 g weight of the same size as that of the piece and allowing it to stand for 30 seconds for liquid separation (W
2 ) Measure. The liquid retention rate (%) is calculated by the following formula.

【数3】抱液率=W2 /W1 ×100[Formula 3] Liquid retention rate = W 2 / W 1 × 100

【0034】(実施例1)繊維長L=7.5mmである
0.5デニール(単糸直径D=7.8μm)のナイロン
66短繊維80%とL=15mmである2デニール(単
糸直径D=14.1mm)の熱融着短繊維ユニメルトU
L−61〔ユニチカ(株)製、芯部:ナイロン6、鞘
部:共重合ナイロン〕20%を水に分散し1%濃度のス
ラリー液に調整した。このスラリー液から傾斜型長網抄
紙機により85g/m2 の混抄シートを得た。得られた
混抄シ−トを80メッシュの金網に乗せ、ノズル径0.
15mmのノズルを装着したノズルヘッダーを285r
pmで円運動させ、圧力15kg/cm2 の水を噴射さ
せて混抄シートに衝突させることにより短繊維、熱融着
短繊維を交絡させた。更に同じ処理を6回行った後、シ
ートの表裏を逆転させて同じ処理を7回施した。続いて
ノズルヘッダーを420rpmで回転させ、水圧10k
g/cm2 で表裏各2回ずつ処理して交絡シートが完成
した。
(Example 1) 0.5 denier (single yarn diameter D = 7.8 μm) nylon 66 short fibers with a fiber length L = 7.5 mm and 2 denier (single yarn diameter with L = 15 mm) D = 14.1 mm) heat fusion short fibers Unimelt U
20% of L-61 [manufactured by Unitika Ltd., core: nylon 6, sheath: copolymerized nylon] was dispersed in water to prepare a slurry liquid having a concentration of 1%. A mixed paper sheet of 85 g / m 2 was obtained from this slurry liquid by an inclined fourdrinier paper machine. The obtained mixed paper sheet was placed on a wire mesh of 80 mesh and the nozzle diameter was 0.
285r nozzle header with 15mm nozzle
The short fibers and the heat-fusible short fibers were entangled by making a circular motion at pm and jetting water with a pressure of 15 kg / cm 2 to collide with the mixed paper sheet. After the same treatment was performed 6 times, the front and back of the sheet were reversed and the same treatment was performed 7 times. Subsequently, the nozzle header is rotated at 420 rpm and the water pressure is 10k.
The entangled sheet was completed by treating the front and back sides twice with g / cm 2 .

【0035】得られた交絡シートを温度を160℃に設
定したピンテンター乾燥機で乾燥すると同時に交絡シー
ト間のユニメルトUL−61の鞘部(融点140℃)を
溶融せしめた。次いで、ノニオン系界面活性剤エマルゲ
ン120(花王(株)製)を0.05%含有する水溶液
に浸漬した後、付着率が不織布の200%になるように
絞り、温度を130℃に設定したピンテンター乾燥機で
乾燥した。更に、100℃に加熱した一対の金属ロール
に導き、線圧45kg/cmでカレンダー加工を施して
目付65g/m2 、厚さ0.15mmの電池用セパレー
ターを得た。
The resulting entangled sheet was dried by a pin tenter dryer set at a temperature of 160 ° C., and at the same time, the sheath portion (melting point 140 ° C.) of Unimelt UL-61 between the entangled sheets was melted. Then, after immersing the nonionic surfactant Emulgen 120 (manufactured by Kao Corporation) in an aqueous solution containing 0.05%, the pintenter was set to a temperature of 130 ° C. by squeezing it so that the adhesion rate was 200% of that of the nonwoven fabric. It was dried in a dryer. Further, it was introduced into a pair of metal rolls heated to 100 ° C. and calendered at a linear pressure of 45 kg / cm to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm.

【0036】(実施例2)ノニオン系界面活性剤水溶液
の濃度が0.1%の他は全て実施例1と同様の方法で電
池用セパレーターを得た。 (実施例3)ノニオン系界面活性剤水溶液の濃度が0.
25%の他は全て実施例1と同様の方法で電池用セパレ
ーターを得た。
Example 2 A battery separator was obtained in the same manner as in Example 1, except that the concentration of the nonionic surfactant aqueous solution was 0.1%. (Example 3) The concentration of the nonionic surfactant aqueous solution was 0.
A battery separator was obtained in the same manner as in Example 1 except for 25%.

【0037】(比較例1)ノニオン系界面活性剤水溶液
の代わりに水だけを用い、他は全て実施例1と同様の方
法で電池用セパレーターを得た。 (比較例2)ノニオン系界面活性剤水溶液の濃度が1%
の他は全て実施例1と同様の方法で電池用セパレーター
を得た。
Comparative Example 1 A battery separator was obtained in the same manner as in Example 1, except that only water was used in place of the nonionic surfactant aqueous solution. (Comparative Example 2) The concentration of the aqueous nonionic surfactant solution is 1%.
A battery separator was obtained in the same manner as in Example 1 except for the above.

【0038】(比較例3)実施例1と同様にナイロン6
6が80%、ユニメルトUL−61が20%からなる混
抄シートに実施例記載の流体流処理を全く施さず、温度
160℃、圧力70g/cm2 の条件で熱プレスし、続
いて温度を160℃に設定したピンテンター乾燥機でシ
ート内のユニメルトUL−61を溶解せしめた。更に実
施例1と同様に同じ界面活性剤付与、カレンダー加工を
行い目付65g/m2 、厚さ0.15mmの電池用セパ
レーターを得た。 上記の実施例1、2、3及び比較例1、2、3で得られ
た電池用セパレーターの性能試験結果を下記表1に示
す。
(Comparative Example 3) Nylon 6 as in Example 1
No. 6 was 20% and Unimelt UL-61 was 20%. The mixed paper sheet was not subjected to the fluid flow treatment described in the examples at all, hot pressed under the conditions of a temperature of 160 ° C. and a pressure of 70 g / cm 2 , and subsequently a temperature of 160. Unimelt UL-61 in the sheet was melted with a pin tenter dryer set at ° C. Further, in the same manner as in Example 1, the same surfactant was added and calendering was performed to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm. Table 1 below shows the performance test results of the battery separators obtained in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 described above.

【0039】[0039]

【表1】 [Table 1]

【0040】比較例1は界面活性剤が繊維表面に全く付
着していない場合で、電池用セパレーターに必須の親水
性が認められない。比較例2は界面活性剤の付着量が
2.0重量%と多い。この為、界面活性剤は電解液中に
溶解し、次いで電極板(この場合は濾紙)上への再付着
が行われることにより抱液率が極めて低くなる。比較例
3の場合は熱可塑性短繊維と熱融着短繊維が三次元的に
絡み合っていない。つまり混抄シートはほとんど引張強
度を持っていないので、一度熱融着短繊維を溶融させ繊
維相互間を仮接着した後、乾燥機で融着しているのも関
わらず引張強度が低い。また、厚み調整のためのプレス
圧が高くなり、通気度も低くなる。
In Comparative Example 1, the surfactant is not attached to the fiber surface at all, and the essential hydrophilicity of the battery separator is not recognized. In Comparative Example 2, the amount of the surfactant attached is as high as 2.0% by weight. Therefore, the surfactant is dissolved in the electrolytic solution, and then redeposited on the electrode plate (in this case, filter paper), so that the liquid retention becomes extremely low. In the case of Comparative Example 3, the thermoplastic short fibers and the heat fusion short fibers are not three-dimensionally entangled. That is, since the mixed paper sheet has almost no tensile strength, the tensile strength is low despite the fact that the heat-sealing short fibers are once melted and the fibers are temporarily bonded to each other, and then they are fused by a dryer. Further, the pressing pressure for adjusting the thickness becomes high, and the air permeability also becomes low.

【0041】表1で明らかなように本発明の電池用セパ
レーターは引張強度、通気度、保液率が高く、吸液速度
が良好な上に抱液率が高い。実施例1、2、3及び比較
例2のセパレーターを用い、公称容量1.2AHのSC
サイズの密閉形ニッケル−カドミウム蓄電池を作成しサ
イクル特性を調べた。
As is apparent from Table 1, the battery separator of the present invention has high tensile strength, air permeability and liquid retention, and has a high liquid absorption rate and a high liquid retention. Using the separators of Examples 1, 2, 3 and Comparative Example 2, SC having a nominal capacity of 1.2 AH
A size sealed nickel-cadmium storage battery was prepared and the cycle characteristics were examined.

【0042】この時の条件は1.8Aの電流で1時間充
電を行った後、1.2Aの電流で終止電圧1.0Vまで
放電するというものである。図1にこの結果を示す。本
発明の実施例1、2、3は比較例2に比べサイクルの進
行に伴う電池容量の低下が小さい、極めて優れたサイク
ル特性を示した。比較例2の電池の容量低下はセパレー
ターに付着している界面活性剤がサイクルの進行ととも
に電極板面にも付着し出し、セパレーター中の電解液が
電極板に吸い寄せられた結果である。
The condition at this time is that the battery is charged with a current of 1.8 A for 1 hour and then discharged with a current of 1.2 A to a final voltage of 1.0 V. This result is shown in FIG. Examples 1, 2 and 3 of the present invention showed extremely excellent cycle characteristics in which the decrease of the battery capacity with the progress of the cycle was smaller than that of Comparative Example 2. The decrease in capacity of the battery of Comparative Example 2 is a result of the surfactant adhering to the separator adhering to the electrode plate surface as the cycle progressed, and the electrolytic solution in the separator was drawn up to the electrode plate.

【0043】[0043]

【発明の効果】本発明の電池用セパレーターは機械的強
度が充分な上、通気度、保液率、吸液速度性能が良好
で、かつ抱液率が優れているので、電池セパレーターの
用途に採用しうるものである。上記電池用セパレーター
を組み込んだアルカリ蓄電池はサイクル特性に優れてお
り、その工業的価値は極めて大きい。
INDUSTRIAL APPLICABILITY The battery separator of the present invention has sufficient mechanical strength, good air permeability, liquid retention rate, liquid absorption rate performance, and excellent liquid retention rate. It can be adopted. The alkaline storage battery incorporating the above battery separator has excellent cycle characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に従うノニオン系界面活性剤を施した電
池用セパレーターとそのような処理を施さない比較例の
電池用セパレーターとを組み込んだアルカリ蓄電池のサ
イクル回数と電池容量比との関係を示すグラフである。
FIG. 1 shows the relationship between the cycle number and the battery capacity ratio of an alkaline storage battery in which a battery separator provided with a nonionic surfactant according to an example and a battery separator of a comparative example not subjected to such treatment are incorporated. It is a graph.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D21H 13/26 H01M 10/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D21H 13/26 H01M 10/24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1種以上の熱可塑性短繊維と熱融着短繊
維とが相互に三次元的に水流交絡されており、熱融着短
繊維の一部又は全部が熱溶融されて繊維間が接着されて
なる湿式不織布において、繊維表面に不織布の全重量に
基いて0.05〜0.5重量%のノニオン系界面活性剤
が付着していることを特徴とする、電池用セパレータ
ー。
1. One or more types of thermoplastic short fibers and heat-sealed short fibers are three-dimensionally hydroentangled with each other, and some or all of the heat-sealed short fibers are heat-melted to form interfibers. The non-ionic surfactant of 0.05 to 0.5% by weight based on the total weight of the non-woven fabric is adhered to the fiber surface of the wet non-woven fabric.
【請求項2】 吸液速度40mm以上、抱液率85%以
上の性能を有することを特徴とする、請求項1記載の電
池用セパレーター。
2. The battery separator according to claim 1, which has a liquid absorption rate of 40 mm or more and a liquid retention rate of 85% or more.
【請求項3】 上記熱可塑性短繊維がポリアミド系繊維
であることを特徴とする、請求項1記載の電池用セパレ
ーター。
3. The battery separator according to claim 1, wherein the thermoplastic short fibers are polyamide fibers.
【請求項4】 抄造法により作製される1種以上の熱可
塑性短繊維と熱融着短繊維からなる混抄シ−トに水流を
衝突させて、繊維を三次元的に立体交絡させた後、熱処
理によって熱融着短繊維の一部又は全部を溶融させた湿
式不織布の繊維表面に0.05〜0.5重量%のノニオ
ン系界面活性剤を付着させることを特徴とする、電池用
セパレーターの製造方法。
4. A three-dimensionally three-dimensionally entangled fiber after three-dimensionally interlacing the fibers by impinging a water stream on a mixed paper sheet made of one or more kinds of thermoplastic short fibers and heat-fusible short fibers produced by a paper-making method. A non-ionic surfactant of 0.05 to 0.5% by weight is attached to the fiber surface of a wet-laid nonwoven fabric obtained by melting a part or all of the heat-melt-adhesive short fibers by heat treatment. Production method.
【請求項5】 請求項1〜3のいずれかに記載の電池用
セパレーターを組み込んだことを特徴とするアルカリ蓄
電池。
5. An alkaline storage battery comprising the battery separator according to any one of claims 1 to 3 incorporated therein.
JP33768994A 1994-12-28 1994-12-28 Battery separator, manufacturing method thereof, and alkaline storage battery Expired - Lifetime JP3775814B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33768994A JP3775814B2 (en) 1994-12-28 1994-12-28 Battery separator, manufacturing method thereof, and alkaline storage battery
TW084114080A TW308742B (en) 1994-12-28 1995-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33768994A JP3775814B2 (en) 1994-12-28 1994-12-28 Battery separator, manufacturing method thereof, and alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH08185848A true JPH08185848A (en) 1996-07-16
JP3775814B2 JP3775814B2 (en) 2006-05-17

Family

ID=18311042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33768994A Expired - Lifetime JP3775814B2 (en) 1994-12-28 1994-12-28 Battery separator, manufacturing method thereof, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3775814B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834938A2 (en) * 1996-09-27 1998-04-08 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
JP2001266832A (en) * 2000-03-23 2001-09-28 Japan Vilene Co Ltd Separator for alkaline battery
JP2003031197A (en) * 2001-07-11 2003-01-31 Asahi Kasei Corp Separator for cell
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
JP2005203305A (en) * 2004-01-19 2005-07-28 Asahi Kasei Fibers Corp Separator for battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834938A2 (en) * 1996-09-27 1998-04-08 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
EP0834938A3 (en) * 1996-09-27 1999-09-01 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
US6183913B1 (en) 1996-09-27 2001-02-06 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
JP2001266832A (en) * 2000-03-23 2001-09-28 Japan Vilene Co Ltd Separator for alkaline battery
JP2003031197A (en) * 2001-07-11 2003-01-31 Asahi Kasei Corp Separator for cell
JP2005203305A (en) * 2004-01-19 2005-07-28 Asahi Kasei Fibers Corp Separator for battery

Also Published As

Publication number Publication date
JP3775814B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP4031529B2 (en) Wet non-woven fabric for battery separator, method for producing the same, and sealed secondary battery
JP4699899B2 (en) Separator material for alkaline secondary battery, method for producing the same, and separator for alkaline secondary battery
EP1179864B1 (en) Battery separator
US6355375B2 (en) Alkaline battery separator and process for producing the same
JP2001207362A (en) Non-woven fabric having excellent thrust resistance, method for producing the same and separator for battery
JPH08185848A (en) Battery separator, its manufacture and alkaline secondary battery
JP3678081B2 (en) Battery separator and battery using the same
JP2984561B2 (en) Battery separator and manufacturing method thereof
US3344013A (en) Separator material for accumulator batteries and process of making the same
WO2002050930A1 (en) Nonwoven separator for a nickel-metal hydride battery
JP2960284B2 (en) Battery separator and manufacturing method thereof
JP4139454B2 (en) Alkaline battery separator and method for producing the same
JPH11283602A (en) Separator for battery
JPH0574440A (en) New unwoven cloth and manufacture thereof
JP2003059482A (en) Separator material, its manufacturing method, and battery
JP2764335B2 (en) Alkaline battery separator
JP2000106163A (en) Separator for alkaline battery and manufacture thereof
JP3403647B2 (en) Battery separator, method of manufacturing the same, and battery
JPH08212997A (en) Batterry separator, manufacture thereof, and sealed secondary battery
JP2002151043A (en) Wet nonwoven fabric for battery separator and its manufacturing method
JP2001084986A (en) Nonwoven fabric for alkaline storage battery separator and manufacturing method therefor
TW308742B (en)
JP4601748B2 (en) Battery separator
JP4061012B2 (en) Battery separator and battery using the same
JP4047412B2 (en) Alkaline battery separator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7