JPH081813B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH081813B2
JPH081813B2 JP60080565A JP8056585A JPH081813B2 JP H081813 B2 JPH081813 B2 JP H081813B2 JP 60080565 A JP60080565 A JP 60080565A JP 8056585 A JP8056585 A JP 8056585A JP H081813 B2 JPH081813 B2 JP H081813B2
Authority
JP
Japan
Prior art keywords
discharge
battery
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60080565A
Other languages
Japanese (ja)
Other versions
JPS61239562A (en
Inventor
徹 松井
純一 山浦
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60080565A priority Critical patent/JPH081813B2/en
Publication of JPS61239562A publication Critical patent/JPS61239562A/en
Publication of JPH081813B2 publication Critical patent/JPH081813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特にその正極の改良
に関する。
TECHNICAL FIELD The present invention relates to improvement of a non-aqueous electrolyte secondary battery, particularly a positive electrode thereof.

従来の技術 現在まで、Li,Na等のアルカリ金属を負極活物質材料
として用い、γ−ブチロラクトン,テトラヒドロフラ
ン,プロピレンカーボネート,ジメトキシエタン等の溶
媒中に、溶質としてLiClO4,LiBF4,LiCl等を溶解した、
いわゆる非水電解質を用いる二次電池の開発が進められ
てきた。
Conventional technology Until now, alkali metals such as Li and Na have been used as negative electrode active material materials, and LiClO 4 , LiBF 4 , LiCl, etc. as solutes have been dissolved in solvents such as γ-butyrolactone, tetrahydrofuran, propylene carbonate, dimethoxyethane, etc. did,
Development of secondary batteries using so-called non-aqueous electrolytes has been advanced.

しかし、この種の二次電池はまだ実用化されていな
い。その理由は、充放電回数の寿命が短く、また充放電
に際しての充放電効率が低いためであり、この性能劣化
の原因は、主に正極及び負極活物質の充放電における化
学的又は物理的可逆性の低下である。
However, this type of secondary battery has not yet been put to practical use. The reason is that the life of charge and discharge is short and the charge and discharge efficiency at the time of charge and discharge is low, and the cause of this performance deterioration is mainly chemical or physical reversible charge and discharge of the positive electrode and the negative electrode active material. It is a decrease in sex.

正極活物質については、これまで、Ti,V,Cr,Mo等の層
状構造もしくはトンネル構造を有する酸化物及びカルコ
ゲン化合物が知られている。これらの中でTiS2,VSe2
のカルコゲン化合物は充放電に際しての可逆性にすぐれ
る。しかし、カルコゲン化合物は密度が小さいため、体
積当たりのエネルギー密度が小さい。一方、酸化物は密
度が大きく、また酸化数の高い金属元素を有するもの
は、電圧が高くなる傾向がある。したがって、カルコゲ
ン化合物より、酸化物を正極活物質として用いる方が、
エネルギー密度を大きくとれる点から望ましい。
As the positive electrode active material, oxides and chalcogen compounds such as Ti, V, Cr and Mo having a layered structure or a tunnel structure have been known so far. Among these, chalcogen compounds such as TiS 2 and VSe 2 are excellent in reversibility during charge and discharge. However, since the chalcogen compound has a low density, the energy density per volume is low. On the other hand, an oxide having a high density and a metal element having a high oxidation number tends to have a high voltage. Therefore, it is better to use an oxide as a positive electrode active material than a chalcogen compound.
It is desirable from the viewpoint that a large energy density can be obtained.

V2O5,MoO3,MnO2等の酸化物は、上述のような高い電
圧、大きい充放電容量、すなわち高エネルギー密度を有
する正極活物質として検討されている。また、これら
は、サイクル特性においても、一定の放電電圧までであ
れば、良好な可逆性を示す。しかしながら、これより下
の電圧まで放電、すなわち過放電を行なうと、これらの
酸化物は不可逆な構造に転移する。この後、再び放電を
行なっても、過放電前の充放電挙動とは全く異なり、特
に、放電曲線は平坦性のない、放電とともに単調に下が
り電池としては著しく不都合なものとなる。また、充放
電容量も過放電を行なうとサイクルとともに急速に減少
する。上記のような酸化物の可逆性を良好に保つために
は、放電電位の下限をLi/Li+に対して約2Vにする必要が
ある。これより下の電位まで放電を行なうと以降の充放
電挙動は大きく変化する。
Oxides such as V 2 O 5 , MoO 3 and MnO 2 have been studied as a positive electrode active material having the above-mentioned high voltage and large charge / discharge capacity, that is, high energy density. Further, they also show good reversibility in terms of cycle characteristics up to a certain discharge voltage. However, when discharged below this voltage, that is, overdischarged, these oxides are transformed into an irreversible structure. Even if the battery is discharged again thereafter, it is completely different from the charge-discharge behavior before over-discharge, and in particular, the discharge curve has no flatness and drops monotonously with discharge, which is extremely inconvenient for a battery. In addition, the charge / discharge capacity also decreases rapidly with cycles when overdischarge is performed. In order to maintain good reversibility of the above oxides, it is necessary to set the lower limit of the discharge potential to about 2V with respect to Li / Li + . When discharging to a potential lower than this, subsequent charging / discharging behavior changes greatly.

従来より、正極活物質の過放電を避ける手段として
は、電池組み立て時に、負極活物質の放電容量を正極活
物質のそれよりも少なくするという、負極制限型の電池
を構成していた。しかし、Li等のアルカリ金属を負極活
物質に用いる二次電池では、負極活物質の低い充放電効
率から、逆に正極活物質の放電容量を少なくする正極制
限型の電池を構成しなければならない。このため、この
種の電池は、正極活物質が放電により可逆性の下限にま
できても、負極活物質が残存するためさらに過放電を行
なうことになり、以降の充放電に支障を招く。
Conventionally, as a means for avoiding overdischarge of the positive electrode active material, a negative electrode limited type battery has been constructed in which the discharge capacity of the negative electrode active material is made smaller than that of the positive electrode active material at the time of battery assembly. However, in a secondary battery using an alkali metal such as Li as a negative electrode active material, a positive electrode limited type battery that reduces the discharge capacity of the positive electrode active material must be constructed due to the low charge and discharge efficiency of the negative electrode active material. . Therefore, in this type of battery, even if the positive electrode active material reaches the lower limit of reversibility due to discharge, the negative electrode active material remains, so that the battery is further overdischarged, which causes a hindrance to subsequent charge and discharge.

発明が解決しようとする問題点 このように、V2O5,MoO3,MnO2等の酸化物を正極活物質
に用いた非水電解質二次電池は、放電電圧を制御すると
いう条件下でのみ、充放電挙動を良く、またエネルギー
密度を高く保つことができるが、過放電を行なうと劣化
する問題点があった。
Problems to be Solved by the Invention Thus, a non-aqueous electrolyte secondary battery using an oxide such as V 2 O 5 , MoO 3 , and MnO 2 as a positive electrode active material is under the condition of controlling the discharge voltage. Only, the charge and discharge behavior can be good and the energy density can be kept high, but there is a problem that it deteriorates when over-discharged.

本発明は、このような従来の欠点を除去するものであ
り、高エネルギー密度で、しかも過放電を行なっても充
放電曲線に変化のない充放電挙動にすぐれた、信頼性の
高い非水電解質二次電池を提供することを目的とする。
The present invention eliminates such conventional drawbacks and is a highly reliable non-aqueous electrolyte having a high energy density and excellent charge / discharge behavior in which the charge / discharge curve does not change even when overdischarge is performed. It is intended to provide a secondary battery.

問題点を解決するための手段 本発明の非水電解質二次電池は、ピロール、チオフェ
ンまたはこれらの誘導体の重合体からなり充電状態でア
ニオンを含む導電性高分子と層状またはトンネル構造を
有する金属酸化物とを含む正極、アルカリ金属イオン伝
導性の非水電解質、およびアルカリ金属を活物質とする
負極を具備し、前記金属酸化物が、前記導電性高分子か
らアニオンが放出される電位より低い電位で不可逆転移
が起きる酸化物である。すなわち、放電時、前記金属酸
化物が不可逆構造に転移する電位に達する以前に、前記
導電性高分子よりアニオンが放出され始める。
Means for Solving the Problems The non-aqueous electrolyte secondary battery of the present invention is composed of a polymer of pyrrole, thiophene or a derivative thereof, a conductive polymer containing anions in a charged state, and a metal oxide having a layered or tunnel structure. A positive electrode containing a substance, an alkali metal ion conductive non-aqueous electrolyte, and a negative electrode using an alkali metal as an active material, wherein the metal oxide has a potential lower than a potential at which anions are released from the conductive polymer. Is an oxide that undergoes irreversible transition. That is, during discharge, before the metal oxide reaches a potential at which it transitions to an irreversible structure, anions start to be released from the conductive polymer.

前記の導電性高分子は、よく知られているように、酸
化重合により合成することができる。例えば、あらかじ
め電池電解質にピロール、チオフェンあるいはこれらの
誘導体を溶解しておき、電池組立後、電池正極側にアノ
ード電流を流し、電解重合させることにより容易に正極
内に生成させることができる。電解質中の溶質がLiClO4
の場合には、反応は次のようになる。
As is well known, the conductive polymer can be synthesized by oxidative polymerization. For example, pyrrole, thiophene, or a derivative thereof may be dissolved in a battery electrolyte in advance, and after the battery is assembled, an anode current may be passed to the battery positive electrode side and electrolytic polymerization may be performed to easily generate in the positive electrode. The solute in the electrolyte is LiClO 4
In the case of, the reaction is as follows.

M:ピロール,チオフェン等の単量体 作用 この技術的手段による作用は次のようになる。 M: Pyrrole, thiophene, etc. Monomer action The action by this technical means is as follows.

上記のような導電性高分子を正極板内に含む電池を放
電すると、V2O5,MoO3,MnO2等の正極活物質が次式により
還元される。正極がV2O5、負極がLiの場合には となる。他の酸化物も同様である。(2)式により放電
がさらに進み、正極活物質の可逆性の下限である約2V
(対Li/Li+)にまで正極の電位が下がると次の反応が起
こる。
When a battery containing the above-described conductive polymer in the positive electrode plate is discharged, the positive electrode active material such as V 2 O 5 , MoO 3 , MnO 2 is reduced by the following formula. If the positive electrode is V 2 O 5 and the negative electrode is Li, Becomes The same applies to other oxides. Discharge further progresses according to formula (2), and the lower limit of reversibility of the positive electrode active material is about 2V.
When the potential of the positive electrode drops to (to Li / Li + ), the following reaction occurs.

(3)式によりClO4 -を放出した正極内の高分子
(M)nは、導電性を失い絶縁体となる。したがって、
正極内の抵抗値は急激に増大して分極が大きくなり、電
池電圧が低下する。すなわち、正極活物質の過放電領域
の放電が困難となり、正極活物質の不可逆構造への転移
がなくなる。このため、本発明の電池は、可逆性の保た
れる電圧領域より低い電圧では放電が進まず、充放電の
可逆性は損なわれない。
The polymer (M) n in the positive electrode that has released ClO 4 − according to the formula (3) loses conductivity and becomes an insulator. Therefore,
The resistance value in the positive electrode rapidly increases, the polarization increases, and the battery voltage decreases. That is, it becomes difficult to discharge the positive electrode active material in the overdischarge region, and the positive electrode active material is not transferred to the irreversible structure. Therefore, in the battery of the present invention, the discharge does not proceed at a voltage lower than the voltage range where reversibility is maintained, and the reversibility of charge / discharge is not impaired.

実 施 例 以下、本発明を実施例により詳述する。Examples Hereinafter, the present invention will be described in detail with reference to Examples.

(実施例1) 正極活物質にV2O5を用いた。このV2O5,カーボンブラ
ック,及び四弗化エチレン樹脂を重量比で100対5対10
の割合で混合した。混合物400mgを2cm×2cmのチタンの
エキスパンドメタル集電体に成形圧着し、これを正極板
とし、チタンリード線をスポット溶接した。負極には、
金属リチウム板をニッケルのエキスパンドメタル集電体
に加圧圧着したものにニッケルリードを付けたものを用
いた。参照極にも金属リチウム板を用い、負極と同様に
構成した。電解液には、プロピレンカーボネートとジメ
トキシエタンを等体積の割合で混合したものに1モル/
の割合でLiClO4を溶解させ、これにピロールを0.05モ
ル/になるように加えたものを用いた。これらを、ガ
ラスセルに組み入れた。
With V 2 O 5 (Example 1) the positive electrode active material. The V 2 O 5 , carbon black, and tetrafluoroethylene resin were used in a weight ratio of 100: 5: 10.
Were mixed in the ratio. 400 mg of the mixture was molded and pressure-bonded to a 2 cm × 2 cm titanium expanded metal current collector, and this was used as a positive electrode plate, and a titanium lead wire was spot-welded. For the negative electrode,
A nickel lithium metal plate was press-pressed to an expanded metal current collector of nickel and provided with a nickel lead. A metal lithium plate was also used for the reference electrode, and the reference electrode was constructed in the same manner as the negative electrode. The electrolyte solution was prepared by mixing propylene carbonate and dimethoxyethane at an equal volume ratio to 1 mol / mol.
LiClO 4 was dissolved at a ratio of, and pyrrole was added to this in an amount of 0.05 mol / mol. These were incorporated into a glass cell.

この電池に対し、まず、1mAのアノード電流を正極側
へ30分間流した。このときの正極の電位は3.8Vであっ
た。分析により、導電性高分子であるポリピロールが導
電剤のカーボンブラック上に生成していることが認めら
れた。この電池を用いて、充放電を、2mAの定電流で1.5
〜3.5Vの電位の範囲で行なった。
To this battery, first, an anode current of 1 mA was passed to the positive electrode side for 30 minutes. At this time, the potential of the positive electrode was 3.8V. It was confirmed by analysis that polypyrrole, which is a conductive polymer, was formed on carbon black as a conductive agent. Using this battery, charge and discharge at a constant current of 2 mA at 1.5
It was performed in the range of potential of ~ 3.5V.

比較例としては、正極中にポリピロールを生成してい
ない以外は、同一条件の電池を同様に構成し充放電を行
なった。
As a comparative example, a battery under the same conditions was charged and discharged similarly except that polypyrrole was not generated in the positive electrode.

第1図は、本発明の電池の第1サイクルと第2サイク
ルの放電曲線を描いた図である。これより、V2O5正極を
過放電させても、放電曲線には変化がないことがわか
る。
FIG. 1 is a diagram depicting the discharge curves of the first cycle and the second cycle of the battery of the present invention. From this, it can be seen that the discharge curve does not change even if the V 2 O 5 positive electrode is overdischarged.

第2図は、比較例の電池の第1サイクルと第2サイク
ルの放電曲線を描いた図である。これより、正極中に、
導電性高分子であるポリピロールを含んでいない場合に
は、V2O5は2V以下になっても放電を続けることになり、
不可逆構造へと転移するため、過放電後の放電曲線に著
しい変化が現れることがわかる。
FIG. 2 is a diagram illustrating discharge curves of the first cycle and the second cycle of the battery of the comparative example. From this, in the positive electrode,
If it does not contain polypyrrole, which is a conductive polymer, V 2 O 5 will continue to discharge even if it becomes 2 V or less,
It can be seen that the transition to an irreversible structure causes a remarkable change in the discharge curve after overdischarge.

(実施例2) 正極活物質にMnO2を用い、扁平型電池にて試験を行な
った。MnO2,カーボンブラック,及び四弗化エチレン樹
脂を実施例1と同様に調整した。その混合物200mg(理
論容量53.6mAh)をチタンのエキスパンドメタル集電体
をスポット溶接した電池ケース内に成形し圧着した。正
極板の直径は17.5mmである。負極には、厚さ0.38mmの金
属リチウムを用い、ニッケルのエキスパンドメタル集電
体をスポット溶接した封口板に加圧圧着した。電解液に
は、プロピレンカーボネートとジメトキシエタンを等体
積の割合で混合したものに1モル/の割合でLiClO4
溶解させ、これにチオフェンを0.05モル/の割合で加
えたものを用いた。また、金属リチウム極に発生するデ
ンドライトによる内部短絡を防ぐためにセパレータには
ポリプロピレン不織布を用いた。
Example 2 MnO 2 was used as the positive electrode active material, and a test was performed in a flat battery. MnO 2 , carbon black, and tetrafluoroethylene resin were prepared in the same manner as in Example 1. 200 mg (theoretical capacity: 53.6 mAh) of the mixture was molded and crimped in a battery case in which a titanium expanded metal current collector was spot-welded. The diameter of the positive electrode plate is 17.5 mm. A 0.38 mm-thick metallic lithium was used as the negative electrode, and a nickel expanded metal current collector was pressure-welded to a spot-welded sealing plate. The electrolytic solution used was a mixture of propylene carbonate and dimethoxyethane in an equal volume ratio, in which LiClO 4 was dissolved at a ratio of 1 mol / mol, and thiophene was added at a ratio of 0.05 mol / mol. A polypropylene non-woven fabric was used for the separator in order to prevent an internal short circuit due to dendrite generated in the metal lithium electrode.

なお、比較例として用いる電池も、電解液にチオフェ
ンが加えられていない以外は同様に構成した。
The battery used as a comparative example was also configured in the same manner except that thiophene was not added to the electrolytic solution.

このように構成した電池を、まず、正極側にアノード
電流を0.5mAで電池電圧が4.5Vになるまで流した。分析
により、本発明の電池には、実施例1と同様に、ポリチ
オフェンがカーボン粒子上に生成しているのが認められ
た。
In the battery thus configured, first, the anode current was applied to the positive electrode side at 0.5 mA until the battery voltage became 4.5V. From the analysis, it was confirmed that polythiophene was generated on the carbon particles in the battery of the present invention as in Example 1.

次に、以上の電池を用いて、2mAの定電流で1.2〜3.8V
の電圧の範囲で充放電を行なった。
Next, using the above batteries, 1.2mA to 3.8V at a constant current of 2mA
Charging and discharging were performed in the voltage range of.

第3図は、本発明の実施例及び比較例の第2サイクル
における放電曲線を示したもので、実線が本発明の電池
であり、破線が比較例の電池である。これより、比較例
の電池の放電曲線は単調に下がり、平坦性がなく、電池
としては不都合なものであることがわかる。
FIG. 3 shows discharge curves in the second cycle of Examples and Comparative Examples of the present invention, where the solid line is the battery of the present invention and the broken line is the battery of Comparative Example. From this, it can be seen that the discharge curve of the battery of the comparative example monotonously decreases and has no flatness, which is an inconvenient battery.

第4図は、本実施例(実線)及び比較例(破線)の電
池の各サイクルでの放電容量をプロットした図である。
これより、本実施例の電池は、サイクル数の初期では、
比較例より放電容量が小さいものの、サイクルごとの放
電容量はほぼ一定であり、また、サイクル寿命も長く、
信頼性の高い電池となっていることがわかる。
FIG. 4 is a diagram in which the discharge capacities of the batteries of the present example (solid line) and the comparative example (broken line) are plotted in each cycle.
From this, the battery of the present example, in the initial cycle number,
Although the discharge capacity is smaller than the comparative example, the discharge capacity for each cycle is almost constant, and the cycle life is long,
It can be seen that the battery has high reliability.

なお、ピロール,チオフェンの他に、N−メチルピロ
ール,3−メチルチオフェン等の誘導体から得られる導電
性高分子を用いても同様な結果が得られた。
Similar results were obtained using conductive polymers obtained from derivatives such as N-methylpyrrole and 3-methylthiophene, in addition to pyrrole and thiophene.

発明の効果 以上のように、本発明によれば、高エネルギー密度
で、しかも放電電圧の規制をしなくとも充放電の可逆性
が損なわれない、のすぐれた非水電解質二次電池が得ら
れる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery having a high energy density, which does not impair the reversibility of charge / discharge even if the discharge voltage is not regulated. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1の非水電解質二次電池におけ
る第1サイクル及び第2サイクルの放電曲線を示す図で
あり、第2図は比較例電池における各サイクルでの放電
曲線を示す図であり、第3図は本発明の実施例2及び比
較例における第2サイクルの放電曲線を描いた図であ
り、第4図は実施例2及び比較例の電池の各サイクルで
の放電容量をプロットした図である。
FIG. 1 is a diagram showing discharge curves of the first cycle and the second cycle in the non-aqueous electrolyte secondary battery of Example 1 of the present invention, and FIG. 2 shows discharge curves in each cycle of the comparative battery. FIG. 3 is a diagram illustrating a discharge curve of a second cycle in Example 2 and a comparative example of the present invention, and FIG. 4 is a discharge capacity in each cycle of batteries of Example 2 and a comparative example. It is the figure which plotted.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ピロール、チオフェンまたはこれらの誘導
体の重合体からなり充電状態でアニオンを含む導電性高
分子と層状またはトンネル構造を有する金属酸化物とを
含む正極、アルカリ金属イオン伝導性の非水電解質、お
よびアルカリ金属を活物質とする負極を具備し、前記金
属酸化物が、前記導電性高分子からアニオンが放出され
る電位より低い電位で不可逆転移が起きる酸化物である
非水電解質二次電池。
1. A positive electrode comprising a conductive polymer made of a polymer of pyrrole, thiophene or a derivative thereof and containing anions in a charged state, and a metal oxide having a layered structure or a tunnel structure, an alkali metal ion conductive non-aqueous liquid. A non-aqueous electrolyte secondary comprising an electrolyte and a negative electrode having an alkali metal as an active material, wherein the metal oxide is an oxide in which an irreversible transition occurs at a potential lower than a potential at which anions are released from the conductive polymer. battery.
JP60080565A 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH081813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080565A JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080565A JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS61239562A JPS61239562A (en) 1986-10-24
JPH081813B2 true JPH081813B2 (en) 1996-01-10

Family

ID=13721856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080565A Expired - Fee Related JPH081813B2 (en) 1985-04-16 1985-04-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH081813B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9216393D0 (en) * 1992-08-01 1992-09-16 Atomic Energy Authority Uk Electrochemical cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065477A (en) * 1983-09-19 1985-04-15 Keiichi Kanefuji Battery

Also Published As

Publication number Publication date
JPS61239562A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US4956247A (en) Nonaqueous electrolyte secondary cell
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
US5015547A (en) Lithium secondary cell
JPH10255767A (en) Set battery for use in electric vehicle
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH0425676B2 (en)
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3403858B2 (en) Organic electrolyte battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPH081813B2 (en) Non-aqueous electrolyte secondary battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH0359963A (en) Lithium secondary battery
JPH08111233A (en) Solid electrolytic secondary battery
JPH11273662A (en) Paste composition for positive electrode, its manufacture, positive electrode, and lithium secondary battery using the same
JP3119945B2 (en) Lithium secondary battery
JPH0558224B2 (en)
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JPH0646565B2 (en) Non-aqueous electrolyte secondary battery
JPH0564429B2 (en)
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH06275269A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2001006660A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees