JPH08181261A - Heat spreader for semiconductor device, and its manufacture, and semiconductor device - Google Patents

Heat spreader for semiconductor device, and its manufacture, and semiconductor device

Info

Publication number
JPH08181261A
JPH08181261A JP32445194A JP32445194A JPH08181261A JP H08181261 A JPH08181261 A JP H08181261A JP 32445194 A JP32445194 A JP 32445194A JP 32445194 A JP32445194 A JP 32445194A JP H08181261 A JPH08181261 A JP H08181261A
Authority
JP
Japan
Prior art keywords
resin
heat spreader
filament
semiconductor device
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32445194A
Other languages
Japanese (ja)
Inventor
Susumu Okikawa
進 沖川
Fumihiro Sato
文廣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32445194A priority Critical patent/JPH08181261A/en
Publication of JPH08181261A publication Critical patent/JPH08181261A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE: To get an object which is excellent in head radiation property and has a small thermal expansion difference with an Si chip, and besides is small in specific gravity, by arranging this heat spreader such that this consists of fiber-reinforcing resin for carbon fiber filaments, and that the filament is buried, passing through it in the direction of opposite face from a chip mounting face. CONSTITUTION: This heat spreader consists of the fiber reinforcing resin 4 for a carbon fiber filament 2, and the filament 2 is buried, passing through it in the direction of opposite face from a chip mounting face, and also it is restricted within the orthogonal face in that direction. For example, a prepreg where carbon fiber filament 2 of two-dimensional fabric is impregnated with epoxy resin or phenol resin as resin 3 is rounded spirally with the longitudinal direction of the filament 2 as the axis. Epoxy resin or phenol resin is stuck as resin 3 to the periphery of the bar-shaped one, and is pressed and and hardened at high temperature so as to form a fiber-reinforced resin bar being a square pillar, and the resin bar is cut, with the face orthogonal to the axis as the cutting face, so as to get a heat spreader.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱放散性に優れ、Si
チップとの熱膨張差が小さく、かつ比重が小さく、高集
積化して発熱量が増大した場合にも対応でき、しかも半
導体装置の製造時のトラブル発生を解消したヒートスプ
レッダー、およびその製造法ならびに該ヒートスプレッ
ダーを使用した半導体装置に関するものである。
BACKGROUND OF THE INVENTION The present invention is excellent in heat dissipation and is made of Si.
A heat spreader which has a small difference in thermal expansion from a chip, a small specific gravity, can cope with a case where the heat generation amount is increased due to high integration, and eliminates troubles during the manufacturing of a semiconductor device, and its manufacturing method and The present invention relates to a semiconductor device using a heat spreader.

【0002】[0002]

【従来の技術】ICの高集積化による発熱量の増大に対
応して、Siチップをヒートスプレッダーに搭載し、放
熱しやすい構造とした半導体装置が知られている。その
代表例を図7〜10に示す。図7は、チップ11をヒー
トスプレッダー1に接合材18で接合して搭載し、モー
ルド樹脂13に埋込んだ構造のプラスチックパッケージ
を、回路基板21に、半田15で接合した状態の断面を
示している。チップ11の熱はAgペースト等の接合材
18を経てヒートスプレッダー1に吸収され、インナリ
ード4およびアウタリード17を経て回路基板21に放
熱される。なお、ヒートスプレッダー1は、ヒートシン
クあるいはヘッダーと呼ばれる場合もあるが、本明細書
では、統一してヒートスプレッダーという。
2. Description of the Related Art A semiconductor device having a structure in which a Si chip is mounted on a heat spreader to easily dissipate heat is known in response to an increase in heat generation due to high integration of ICs. Typical examples thereof are shown in FIGS. FIG. 7 shows a cross section of a state in which the chip 11 is mounted on the heat spreader 1 by bonding with the bonding material 18, and the plastic package having a structure embedded in the mold resin 13 is bonded to the circuit board 21 by the solder 15. There is. The heat of the chip 11 is absorbed by the heat spreader 1 through the bonding material 18 such as Ag paste, and is radiated to the circuit board 21 through the inner leads 4 and the outer leads 17. The heat spreader 1 may be called a heat sink or a header, but in this specification, it is referred to as a heat spreader.

【0003】図8は、ヒートスプレッダー1をモールド
樹脂13から露出させた構造のプラスチックパッケージ
であり、ヒートスプレッダー1の露出面からも放熱され
る。図9は、さらにヒートスプレッダー1に放熱フィン
22を設けて放熱効果を高めたものである。以上の構造
において、チップ11の回路は、ボンディングワイヤ1
2、インナリード14、アウタリード17を経て外部の
回路基板21に接続される。
FIG. 8 shows a plastic package having a structure in which the heat spreader 1 is exposed from the mold resin 13, and heat is also radiated from the exposed surface of the heat spreader 1. In FIG. 9, the heat spreader 1 is further provided with heat radiation fins 22 to enhance the heat radiation effect. In the above structure, the circuit of the chip 11 is the bonding wire 1
2, via the inner leads 14 and the outer leads 17, they are connected to an external circuit board 21.

【0004】図10は、BGA(Ball Grid
Array)タイプのプラスチックパッケージの例であ
る。樹脂で形成された配線基板23とチップ11をボン
ディングワイヤ12で接続し、ボールバンプ24で外部
と接続され、ボンディングワイヤ12はモールド樹脂1
3で封止されている。チップ11の熱は、ヒートスプレ
ッダー1から放熱フィン22により放熱される。
FIG. 10 shows a BGA (Ball Grid).
It is an example of an Array type plastic package. The wiring board 23 made of resin and the chip 11 are connected by the bonding wires 12 and connected to the outside by the ball bumps 24.
It is sealed with 3. The heat of the chip 11 is radiated from the heat spreader 1 by the radiation fins 22.

【0005】上記のような各種タイプの半導体装置にお
いて、ヒートスプレッダー1としては、熱伝導性の良い
材料が望まれる。しかし、実装工程における半田リフロ
ー処理時や、耐用試験としてのTサイクル熱履歴テスト
(−55〜+150℃)での熱歪みの問題から、Siに
近い低熱膨張率を有する金属や焼結体が、モールド樹脂
との間のなじみを考慮し、タイプに応じて採用されてい
る。プラスチックパッケージの場合、42Ni−Fe合
金はモールド樹脂とのなじみがよいが放熱性が悪い。C
u合金の場合、放熱性は良いがモールド樹脂とのなじみ
が悪い。Moの場合は、機械加工性、メッキ加工性の問
題や、コストおよび重量の点で改善の余地が残されてい
た。
In the above-mentioned various types of semiconductor devices, the heat spreader 1 is desired to be made of a material having good thermal conductivity. However, due to the problem of thermal strain during solder reflow treatment in the mounting process and in the T cycle thermal history test (−55 to + 150 ° C.) as a durability test, a metal or sintered body having a low coefficient of thermal expansion close to Si is It is adopted according to the type in consideration of compatibility with the mold resin. In the case of a plastic package, the 42Ni-Fe alloy has good compatibility with the mold resin but poor heat dissipation. C
In the case of u alloy, the heat dissipation is good, but the compatibility with the mold resin is poor. In the case of Mo, there is still room for improvement in terms of machinability and plating workability as well as cost and weight.

【0006】[0006]

【発明が解決しようとする課題】本発明は、熱放散性に
優れ、Siチップとの熱膨張差が小さく、かつ比重が小
さく、高集積化して発熱量が増大した場合にも対応で
き、しかも半導体装置の製造時のトラブル発生を解消し
たヒートスプレッダー、およびその製造法ならびに該ヒ
ートスプレッダーを使用した半導体装置を提供すること
を目的とする。
The present invention is excellent in heat dissipation, has a small difference in thermal expansion from the Si chip, has a small specific gravity, and can cope with a case where the heat generation amount is increased due to high integration. It is an object of the present invention to provide a heat spreader that eliminates the occurrence of troubles during the manufacture of a semiconductor device, a method for manufacturing the heat spreader, and a semiconductor device using the heat spreader.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の第1発明は、炭素繊維フィラメントの繊維強化樹脂
からなり、該フィラメントがチップ搭載面から反対面の
方向に貫通して埋設されているとともに、該方向の直交
面内で拘束されていることを特徴とする半導体装置用ヒ
ートスプレッダーである。
According to a first aspect of the present invention which achieves the above object, a carbon fiber filament is made of a fiber reinforced resin, and the filament is embedded so as to penetrate in the direction from the chip mounting surface to the opposite surface. In addition, the heat spreader for a semiconductor device is characterized by being constrained within a plane orthogonal to the direction.

【0008】また上記目的を達成する本発明の第2発明
は、炭素繊維フィラメントを、該フィラメントの長さ方
向を軸とし、かつ該方向の直交面内で拘束し、樹脂を含
浸させて棒状の繊維強化樹脂を形成し、該繊維強化樹脂
から、軸の直交面を切断面として切り出すことを特徴と
する半導体装置用ヒートスプレッダーの製造法である。
そして、2次元織りの炭素繊維フィラメントに樹脂を含
浸させたシート状のプリプレグを、該フィラメントの長
さ方向を軸として渦巻き状に棒状の繊維強化樹脂を形成
することが好ましい。
A second aspect of the present invention which achieves the above object, is a rod-shaped carbon fiber filament, which is constrained within a plane orthogonal to the lengthwise direction of the filament, and impregnated with a resin. A method for manufacturing a heat spreader for a semiconductor device, which comprises forming a fiber reinforced resin and cutting the fiber reinforced resin with a plane perpendicular to an axis as a cutting plane.
Then, it is preferable that a sheet-shaped prepreg obtained by impregnating a two-dimensionally woven carbon fiber filament with a resin is formed into a spiral rod-shaped fiber-reinforced resin around the length direction of the filament.

【0009】さらに、上記目的を達成する本発明の第3
発明は、第1発明のヒートスプレッダーに、金属メッキ
層を介して半導体チップが搭載されていることを特徴と
する半導体装置である。
Further, a third aspect of the present invention which achieves the above object.
The invention is a semiconductor device in which a semiconductor chip is mounted on the heat spreader of the first invention via a metal plating layer.

【0010】[0010]

【作用】第1発明の半導体装置用ヒートスプレッダーの
例を図1および図2に示す。図1のヒートスプレッダー
は、円柱状の繊維強化樹脂4の周囲を樹脂5で固め、四
角柱状に成形したものである。繊維強化樹脂4は上下に
貫通しており、上面あるいは下面に半導体チップが搭載
される。繊維強化樹脂4は、2次元織りの炭素繊維フィ
ラメント2が渦巻き状に巻かれた状態で樹脂3が含浸さ
れているので、フィラメント2は上下に貫通し、かつ横
方向に拘束されている。図2のヒートスプレッダーは、
四角柱状の繊維強化樹脂4で形成され、三次元織りの炭
素繊維フィラメント2に樹脂3が含浸されており、フィ
ラメント2は、やはり上下に貫通し、かつ横方向に拘束
されている。
1 and 2 show an example of the heat spreader for a semiconductor device of the first invention. The heat spreader shown in FIG. 1 is formed by solidifying the periphery of a columnar fiber-reinforced resin 4 with a resin 5 to form a square column. The fiber reinforced resin 4 penetrates vertically, and a semiconductor chip is mounted on the upper surface or the lower surface. The fiber-reinforced resin 4 is impregnated with the resin 3 in a state in which the two-dimensionally woven carbon fiber filament 2 is spirally wound, so that the filament 2 penetrates vertically and is restrained in the lateral direction. The heat spreader in Figure 2 is
A carbon fiber filament 2 formed of a quadrangular prismatic fiber-reinforced resin 4 and having a three-dimensional weave is impregnated with the resin 3, and the filament 2 also vertically penetrates and is constrained in the lateral direction.

【0011】第1発明のヒートスプレッダーにおいて、
繊維強化樹脂4を構成する炭素繊維フィラメント2は、
直径7〜10μm程度の長尺フィラメントが数千本纏ま
ったストランドを、2次元織り、2.5次元織り、ある
いは3次元織りにしたものを採用することができる。二
次元織りの場合は、図1のように渦巻き状に形成する。
そして、図1および図2のように、縦糸をなすフィラメ
ント2がヒートスプレッダーの上下に貫通して埋設され
るように、繊維強化樹脂4を成形している。そして、縦
糸をなすフィラメント2は横糸をなすフィラメント2で
横方向に拘束されている。
In the heat spreader of the first invention,
The carbon fiber filaments 2 constituting the fiber reinforced resin 4 are
It is possible to employ a two-dimensional weave, a 2.5-dimensional weave, or a three-dimensional weave of a strand in which thousands of long filaments having a diameter of about 7 to 10 μm are gathered. In the case of a two-dimensional weave, it is formed in a spiral shape as shown in FIG.
Then, as shown in FIGS. 1 and 2, the fiber reinforced resin 4 is molded so that the filaments 2 forming the warp threads are embedded vertically through the heat spreader. The filament 2 forming the warp yarn is laterally constrained by the filament 2 forming the weft yarn.

【0012】このような第1発明のヒートスプレッダー
を使用して半導体装置を製造するには、図3に示すよう
に、ヒートスプレッダー1に金属メッキ層6を介してチ
ップ11を搭載し、またヒートスプレッダー1に絶縁テ
ープ8等の接合材でインナリード14を接合する。そし
て、チップ11とインナリード14をボンディングワイ
ヤ12で接続し、全体をモールド樹脂13に埋め込む。
また、図3のようなヒートスプレッダー露出型のほか、
図7、図9および図10のような各種タイプの半導体装
置にも適用することができる。
In order to manufacture a semiconductor device using the heat spreader of the first invention, as shown in FIG. 3, a chip 11 is mounted on the heat spreader 1 with a metal plating layer 6 interposed therebetween, and heat is applied. The inner leads 14 are joined to the spreader 1 with a joining material such as an insulating tape 8. Then, the chip 11 and the inner leads 14 are connected by the bonding wires 12, and the whole is embedded in the molding resin 13.
In addition to the heat spreader exposed type as shown in Fig. 3,
It can also be applied to various types of semiconductor devices as shown in FIGS. 7, 9 and 10.

【0013】第1発明のヒートスプレッダーを搭載した
半導体装置では、チップ11で発生した熱が、ヒートス
プレッダー1を経て外部に効率良く放散され、かつ熱膨
張による問題が解消される。すなわち、チップの熱が縦
糸をなす炭素繊維フィラメント2を通って反対面に伝導
するとともに、横糸をなすフィラメント2により、横方
向の熱膨張が抑えられ、また樹脂の耐熱性が補強され
る。一般に、炭素繊維フィラメントは熱伝導率が良いこ
とが知られているが、本発明においては、軸方向の熱伝
導率が200W/mK以上であるものを採用するのが好ま
しい。そして、フィラメント2の熱膨脹係数は、2×1
-6/℃程度と、Siチップの3.2×10-6/℃に近
く、リフロー処理等における熱歪みによる問題が解消さ
れる。
In the semiconductor device equipped with the heat spreader of the first invention, the heat generated in the chip 11 is efficiently dissipated to the outside via the heat spreader 1 and the problem due to thermal expansion is solved. That is, the heat of the chip is conducted to the opposite surface through the carbon fiber filament 2 forming the warp yarn, and the filament 2 forming the weft yarn suppresses the thermal expansion in the lateral direction and reinforces the heat resistance of the resin. Generally, carbon fiber filaments are known to have good thermal conductivity, but in the present invention, it is preferable to employ carbon fiber filaments having a thermal conductivity of 200 W / mK or more in the axial direction. The coefficient of thermal expansion of the filament 2 is 2 × 1
It is about 0 −6 / ° C., which is close to 3.2 × 10 −6 / ° C. of the Si chip, and the problem due to thermal strain in the reflow process or the like is solved.

【0014】フィラメント2に含浸させる樹脂3として
は、耐熱性の良いものが良く、ガラス転移温度Tgが1
75℃以上であるものを採用することが好ましい。この
ようにしてヒートスプレッダーの耐熱性を高めることに
より、ダイボンディング、ワイヤボンディングおよびモ
ールディング時に熱歪みを受けても、品質が損なわれる
ことがない。また、第1発明のヒートスプレッダーを応
力緩衝板として使用するとき、半田性の問題も生じな
い。さらに、モールド樹脂13に埋め込んだ場合、樹脂
同士が接合するので、リフロー処理等において、ヒート
スプレッダー1とモールド樹脂13の間の剥離やクラッ
ク発生といった問題が解消される。
The resin 3 with which the filament 2 is impregnated preferably has good heat resistance and has a glass transition temperature Tg of 1
It is preferable to adopt one having a temperature of 75 ° C. or higher. By thus increasing the heat resistance of the heat spreader, the quality will not be impaired even if it is subjected to thermal strain during die bonding, wire bonding and molding. Further, when the heat spreader of the first invention is used as a stress buffer plate, the problem of solderability does not occur. Furthermore, when the resin is embedded in the mold resin 13, the resins are bonded to each other, so that problems such as peeling and cracking between the heat spreader 1 and the mold resin 13 are eliminated in reflow processing or the like.

【0015】また、第1発明のヒートスプレッダーは比
重が小さいので、半導体装置製造時の操作性が著しく向
上する。たとえば、22mm×22mm×1.5mm寸法のヒ
ートスプレッダーについて、従来の42合金では約6g
あったものが2〜1.5gにできる。したがって、ワイ
ヤボンディングやダイボンディングにおけるレール上、
あるいは真空チャックによる搬送性が優れ、停止時の位
置決め精度が向上する。さらに落下事故等が解消され
る。
Further, since the heat spreader of the first invention has a small specific gravity, the operability at the time of manufacturing the semiconductor device is remarkably improved. For example, for a heat spreader measuring 22 mm x 22 mm x 1.5 mm, the conventional 42 alloy is about 6 g.
The existing one can be 2 to 1.5g. Therefore, on the rail for wire bonding and die bonding,
Alternatively, the vacuum chuck excels in transportability and improves positioning accuracy when stopped. Furthermore, accidents such as falling are eliminated.

【0016】第1発明のヒートスプレッダーにチップを
搭載するには、図3に示すように、ヒートスプレッダー
1に金属メッキ層6を形成し、その上にAgペースト7
等の接合材でチップ11を接合する。このとき、金属メ
ッキはチップ搭載部位に行い、その周囲および側面には
メッキを施さないで、樹脂が露出した状態にしておく。
これは、前述のように、モールド樹脂13との接合性を
良くするためである。金属メッキ層6を形成するには、
周囲および側面をマスキングし、Cuの無電解メッキを
施した後、電解でNiメッキ層を1〜2μm厚さに形成
し、その上に電解でAgメッキ層を2μm以上の厚さに
形成するのが好ましい。金属メッキ層6はまた、図3の
ように、グランド配線25を、ボンディングワイヤ12
を接続したインナリード14とは別のインナリードに接
続する場合にも効果的である。
To mount a chip on the heat spreader of the first invention, as shown in FIG. 3, a metal plating layer 6 is formed on the heat spreader 1 and an Ag paste 7 is formed thereon.
The chip 11 is bonded with a bonding material such as. At this time, metal plating is performed on the chip mounting portion, and the periphery and side surfaces thereof are not plated, and the resin is exposed.
This is to improve the bondability with the mold resin 13, as described above. To form the metal plating layer 6,
After masking the periphery and the side and performing electroless plating of Cu, a Ni plating layer is formed to a thickness of 1 to 2 μm by electrolysis, and an Ag plating layer is formed to a thickness of 2 μm or more thereon by electrolysis. Is preferred. The metal plating layer 6 also connects the ground wire 25 to the bonding wire 12 as shown in FIG.
This is also effective when connecting to an inner lead different from the inner lead 14 to which is connected.

【0017】ヒートスプレッダーの裏面には、金属メッ
キ層6を形成しなくてもよく、外観上の問題等により形
成してもよい。ただし、図3のようなヒートスプレッダ
ー露出型の場合、モールド樹脂13に埋め込んだ後、ヒ
ートスプレッダー1の裏面に付着したレジンフラッシュ
を除去する作業が必要となる。裏面に金属メッキを施さ
ない場合は、レジンフラッシュが目立たないので、除去
作業を省略することができる。
The metal plating layer 6 may not be formed on the back surface of the heat spreader, and may be formed due to external problems or the like. However, in the case of the heat spreader exposed type as shown in FIG. 3, it is necessary to remove the resin flash attached to the back surface of the heat spreader 1 after the resin is embedded in the mold resin 13. When metal plating is not applied to the back surface, the resin flash is not conspicuous, and therefore the removal work can be omitted.

【0018】また、第1発明のヒートスプレッダーは、
パワートランジスタやパワーモジュールに使用される応
力緩衝板として使用することもできる。図4の断面図に
示すように、チップ11とヘッダー16の間に応力緩衝
板9を入れ、半田15で接合する。応力緩衝板9には表
裏とも金属メッキ層6を形成しておく。金属メッキ層6
としては、上記のようなCuメッキおよびNiメッキで
よい。この場合も、同様に熱放散性に優れ、かつ熱歪み
による半田疲労の問題等が解決される。従来は主にMo
が使用されており、機械加工性やメッキ性に難点があっ
たが、本発明のヒートスプレッダーを採用することによ
り、このような問題が解決される。
The heat spreader of the first invention is
It can also be used as a stress buffer plate used in power transistors and power modules. As shown in the cross-sectional view of FIG. 4, the stress buffer plate 9 is inserted between the chip 11 and the header 16 and joined by the solder 15. Metal plating layers 6 are formed on the front and back of the stress buffer plate 9. Metal plating layer 6
As the above, Cu plating and Ni plating as described above may be used. In this case as well, the heat dissipation property is similarly excellent, and the problem of solder fatigue due to thermal strain is solved. Conventionally mainly Mo
However, the heat spreader of the present invention solves such a problem.

【0019】以上述べたように、第1発明の半導体装置
用ヒートスプレッダーを各種半導体装置に採用すること
により、チップ11上の回路を高集積化し、発熱量が増
しても、優れた放熱性を発揮できるとともに、リフロー
処理等において、熱膨張差によるチップ1の変形や破
壊、剥離といったトラブル発生のおそれが解消される。
またヒートスプレッダーとモールド樹脂13のなじみが
よいので、リフロー処理等における剥離やクラック発生
の問題が解消される。さらに、ヒートスプレッダーの重
量が軽いので、半導体装置の製造およびプリント基盤実
装において、特にBGA(図10)の半田バンプ高さを
確保する点できわめて有利な操業が可能になる。
As described above, by adopting the heat spreader for a semiconductor device of the first invention in various semiconductor devices, the circuit on the chip 11 is highly integrated, and even if the amount of heat generation is increased, the excellent heat dissipation is achieved. In addition to being able to exhibit, the possibility of troubles such as deformation, breakage, and peeling of the chip 1 due to a difference in thermal expansion is eliminated in reflow processing and the like.
Further, since the heat spreader and the mold resin 13 are well compatible with each other, the problems of peeling and cracking in the reflow process and the like are solved. Further, since the weight of the heat spreader is light, extremely advantageous operations can be performed in manufacturing the semiconductor device and mounting the printed circuit board, especially in terms of securing the solder bump height of the BGA (FIG. 10).

【0020】つぎに、第2発明の製造法について説明す
る。図5は、好ましい態様を示すものであり、二次元織
りの炭素繊維フィラメント2に樹脂3を含浸させたシー
ト状のプリプレグ5を渦巻き状に丸め、フィラメント2
の長さ方向を軸とする棒状の繊維強化樹脂4を形成す
る。ついで、所要形状のヒートスプレッダーに合わせて
周囲に樹脂を付着させ、これを加圧し高温で硬化させ、
軸との直交面を切断面10として切り出す。従来の42
合金等の金属製ヒートスプレッダーに対して、切断加工
性が優れており、回転刃等により高精度の加工が可能で
ある。
Next, the manufacturing method of the second invention will be described. FIG. 5 shows a preferred embodiment, in which a sheet-shaped prepreg 5 obtained by impregnating a two-dimensionally woven carbon fiber filament 2 with a resin 3 is rolled into a spiral shape.
A rod-shaped fiber-reinforced resin 4 whose axis is the length direction of is formed. Then, attach a resin around the heat spreader of the required shape, pressurize it and cure at high temperature,
A plane perpendicular to the axis is cut out as a cutting plane 10. Conventional 42
It has excellent cutting workability with respect to heat spreaders made of metal such as alloys, and can be processed with high precision using a rotary blade.

【0021】また、図6に示すように、3次元織りの炭
素繊維フィラメント2に樹脂3を含浸させ、加圧高温硬
化させて、所要形状の棒状の繊維強化樹脂4を形成し、
軸と直交する切断面10で切り出すこともできる。さら
に、図示例のほか、C/Cコンポジットを作り、気孔部
に封孔処理を施したヒートスプレッダー材料も考えられ
る。
Further, as shown in FIG. 6, the carbon fiber filaments 2 of three-dimensional weave are impregnated with the resin 3 and cured at a high temperature under pressure to form a rod-shaped fiber reinforced resin 4 of a required shape.
It is also possible to cut out at a cutting plane 10 orthogonal to the axis. Further, in addition to the illustrated example, a heat spreader material in which a C / C composite is made and pores are subjected to sealing treatment is also conceivable.

【0022】第3発明の半導体装置は、上記第1発明の
ヒートスプレッダーを、図3あるいは、図7〜10のよ
うな各種タイプのものに適用したものであり、その作用
効果は、上記第1発明の説明の中で述べたとおりであ
る。
A semiconductor device according to a third invention is obtained by applying the heat spreader according to the first invention to various types as shown in FIG. 3 or FIGS. 7 to 10. The operation and effect are as follows. As described in the description of the invention.

【0023】[0023]

【実施例】図5に示す本発明法により、2次元織りの炭
素繊維フィラメント2に、樹脂3としてエポキシ樹脂ま
たはフェノール樹脂を含浸させた、厚さ100〜300
μmのプリプレグ5を、フィラメント2の長さ方向を軸
として渦巻き状に丸めた。炭素繊維フィラメント2は3
種類のものを使用し、いずれも1本の太さが10μmの
ものを3000本纏めたストランドを織ったものであ
る。得られた丸棒状の周囲に、樹脂3としてエポキシ樹
脂およびフェノール樹脂を付着させ、圧力1〜10kg/
cm2 、温度180℃で加圧高温硬化させ、22mm×22
mmの四角柱の、繊維強化樹脂棒を形成した。この樹脂棒
を、軸との直交面を切断面として切断し、厚さ0.5〜
1.5mmのヒートスプレッダーを製造した。
EXAMPLE Two-dimensionally woven carbon fiber filaments 2 were impregnated with epoxy resin or phenol resin as resin 3 by the method of the present invention shown in FIG.
The prepreg 5 of μm was spirally rolled around the length direction of the filament 2. Carbon fiber filament 2 is 3
Each type is made of woven strands of 3000 pieces each having a thickness of 10 μm. Epoxy resin and phenol resin are attached as resin 3 around the obtained round bar shape, and the pressure is 1 to 10 kg /
22 mm x 22 after pressure high temperature curing at cm 2 and temperature 180 ° C
A mm-square prism fiber-reinforced resin rod was formed. This resin rod is cut with a plane perpendicular to the axis as a cutting plane to obtain a thickness of 0.5 to
A 1.5 mm heat spreader was produced.

【0024】得られたヒートスプレッダーについて、厚
さ方向の熱伝導率、および厚さ方向と面方向の熱膨張率
を測定した。また、これらヒートスプレッダーを使用し
て、図3のような半導体装置を製造するときの作業性を
評価した。そして、これら半導体装置について、−55
℃〜+150℃のTサイクル熱履歴テストにより半田疲
労を評価し、また樹脂の剥離やクラック等の欠陥状況、
および熱抵抗(熱放散性)を評価した。結果を表1に示
す。本発明例は、いずれも、作業性がよく、チップ、樹
脂、半田ともに破壊や損傷が見られず、接合部の剥離も
認められなかった。
With respect to the obtained heat spreader, the thermal conductivity in the thickness direction and the thermal expansion coefficients in the thickness direction and the surface direction were measured. Further, workability when manufacturing a semiconductor device as shown in FIG. 3 was evaluated using these heat spreaders. And about these semiconductor devices, -55
℃ ~ +150 ℃ T cycle thermal history test to evaluate the solder fatigue, the resin peeling, cracks and other defects,
And the heat resistance (heat dissipation) was evaluated. The results are shown in Table 1. In each of the examples of the present invention, workability was good, no breakage or damage was observed in the chip, the resin, and the solder, and no peeling of the joint part was observed.

【0025】なお、表1において、炭素繊維のNT7
0,NT80,NT−6Kは、いずれも新日鉄化学株式
会社の製品ESKAINOS(登録商標)のグレード名
である。また、作業性の欄は搬送のしやすさ、および搬
送トラブルによる歩留まり落ちで評価し、◎は極めて良
好、×は不良を示す。半田疲労の欄は、Tサイクルテス
トによる結果、◎は半田疲労なし、○は半田疲労良好、
△は半田疲労あり、×は半田疲労大を示す。耐リフロー
試験の欄は、耐リフロー試験によるヒートスプレッダー
と樹脂の剥離状況を評価し、◎は極めて良好、○は良
好、△はやや不良、×は不良を示す。熱抵抗の欄は、放
熱性を評価し、◎は極めて良好、○は良好、△はやや不
良、×は不良を示す。
In Table 1, the carbon fiber NT7
0, NT80, and NT-6K are all grade names of the product ESKAINOS (registered trademark) manufactured by Nippon Steel Chemical Co., Ltd. Further, in the column of workability, the ease of transportation and the yield loss due to transportation trouble are evaluated, and ⊚ indicates extremely good, and x indicates defective. In the column of solder fatigue, as a result of the T cycle test, ◎ indicates no solder fatigue, ○ indicates good solder fatigue,
Δ indicates solder fatigue, and × indicates large solder fatigue. In the column of the reflow resistance test, the peeling condition of the heat spreader and the resin by the reflow resistance test is evaluated, and ⊚ indicates extremely good, ◯ indicates good, Δ indicates slightly poor, and × indicates defective. In the column of thermal resistance, heat dissipation is evaluated, and ⊚ indicates extremely good, ∘ indicates good, Δ indicates slightly poor, and x indicates defective.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の半導体装置用ヒートスプレッダ
ーは、炭素繊維フィラメントの繊維強化樹脂からなり、
該フィラメントがチップ搭載面から反対面の方向に貫通
して埋設されているとともに、該方向の直交面内で拘束
されているので、熱放散性に優れ、Siチップとの熱膨
張差が小さく、高集積化して発熱量が増大した場合にも
対応できる。しかも、比重が小さく軽量なので、半導体
装置の製造時の作業性が優れている。また、製造も容易
であり、安価なものが得られる。
The heat spreader for a semiconductor device of the present invention comprises a fiber reinforced resin of carbon fiber filaments,
Since the filament is embedded so as to penetrate in the direction opposite to the chip mounting surface and is constrained in the plane orthogonal to the direction, the heat dissipation is excellent, and the difference in thermal expansion from the Si chip is small. It is possible to deal with the case where the heat generation amount is increased due to high integration. Moreover, since the specific gravity is small and the weight is light, the workability at the time of manufacturing the semiconductor device is excellent. In addition, it is easy to manufacture and an inexpensive product can be obtained.

【0028】また本発明の製造法は、炭素繊維フィラメ
ントを、該フィラメントの長さ方向を軸とし、かつ該方
向の直交面内で拘束し、樹脂を含浸させて棒状の繊維強
化樹脂を形成し、該繊維強化樹脂から、軸の直交面を切
断面として切り出すものであり、あらかじめ樹脂を含浸
させたプリプレグを使用することもでき、切断加工性が
よく、工業的規模で安定した安価な製造法である。さら
に、本発明の半導体装置は、第1発明のヒートスプレッ
ダーに、金属メッキ層を介して半導体チップが搭載され
ているので、放熱性に優れ、回路の高集積化が可能で、
欠陥発生頻度が低く、信頼性の高いものである。
Further, in the production method of the present invention, a carbon fiber filament is constrained within a plane orthogonal to the lengthwise direction of the filament as an axis and impregnated with the resin to form a rod-shaped fiber-reinforced resin. A prepreg impregnated with a resin can be used as a cut surface from the fiber-reinforced resin as a cut surface perpendicular to the axis, and the cutting processability is good, and the manufacturing method is stable and inexpensive on an industrial scale. Is. Further, in the semiconductor device of the present invention, since the semiconductor chip is mounted on the heat spreader of the first invention via the metal plating layer, the heat dissipation is excellent, and the circuit can be highly integrated.
The frequency of defects is low and the reliability is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ヒートスプレッダーの例を示す斜視図で
ある。
FIG. 1 is a perspective view showing an example of a heat spreader of the present invention.

【図2】本発明ヒートスプレッダーの別の例を示す斜視
図である。
FIG. 2 is a perspective view showing another example of the heat spreader of the present invention.

【図3】本発明の半導体装置の例を示す斜視図である。FIG. 3 is a perspective view showing an example of a semiconductor device of the present invention.

【図4】本発明の対象とする応力緩衝板の例を示す斜視
図である。
FIG. 4 is a perspective view showing an example of a stress buffer plate which is an object of the present invention.

【図5】本発明ヒートスプレッダーの製造法を示す斜視
図である。
FIG. 5 is a perspective view showing a method for manufacturing the heat spreader of the present invention.

【図6】本発明ヒートスプレッダーの製造法の別の例を
示す斜視図である。
FIG. 6 is a perspective view showing another example of a method for manufacturing the heat spreader of the present invention.

【図7】従来の半導体装置の例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a conventional semiconductor device.

【図8】従来の半導体装置の別の例を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing another example of a conventional semiconductor device.

【図9】従来の半導体装置の別の例を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing another example of a conventional semiconductor device.

【図10】従来の半導体装置の別の例を示す断面図であ
る。
FIG. 10 is a cross-sectional view showing another example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…ヒートスプレッダー 2…フィラメント 3…樹脂 4…繊維強化樹脂 5…プリプレグ 6…金属メッキ層 7…Agペースト 8…絶縁テープ 9…応力緩衝板 10…切断面 11…チップ 12…ボンディングワイヤ 13…モールド樹脂 14…インナリード 15…半田 16…ヘッダー 17…アウタリード 18,19,20…接合材 21…回路基板 22…放熱フィン 23…配線基板 24…ボールバンプ 25…グランド配線 DESCRIPTION OF SYMBOLS 1 ... Heat spreader 2 ... Filament 3 ... Resin 4 ... Fiber reinforced resin 5 ... Prepreg 6 ... Metal plating layer 7 ... Ag paste 8 ... Insulation tape 9 ... Stress buffer plate 10 ... Cutting surface 11 ... Chip 12 ... Bonding wire 13 ... Mold Resin 14 ... Inner lead 15 ... Solder 16 ... Header 17 ... Outer lead 18,19,20 ... Joining material 21 ... Circuit board 22 ... Radiation fin 23 ... Wiring board 24 ... Ball bump 25 ... Ground wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維フィラメントの繊維強化樹脂か
らなり、該フィラメントがチップ搭載面から反対面の方
向に貫通して埋設されているとともに、該方向の直交面
内で拘束されていることを特徴とする半導体装置用ヒー
トスプレッダー。
1. A carbon fiber filament made of a fiber reinforced resin, the filament being embedded so as to penetrate in a direction from a chip mounting surface to an opposite surface and constrained in a plane orthogonal to the direction. Heat spreader for semiconductor devices.
【請求項2】 炭素繊維フィラメントを、該フィラメン
トの長さ方向を軸とし、かつ該方向の直交面内で拘束
し、樹脂を含浸させて棒状の繊維強化樹脂を形成し、該
繊維強化樹脂から、軸の直交面を切断面として切り出す
ことを特徴とする半導体装置用ヒートスプレッダーの製
造法。
2. A carbon fiber filament is constrained within a plane orthogonal to the lengthwise direction of the filament as an axis and impregnated with a resin to form a rod-shaped fiber reinforced resin. A method for manufacturing a heat spreader for a semiconductor device, which comprises cutting out a plane perpendicular to the axis as a cutting plane.
【請求項3】 2次元織りの炭素繊維フィラメントに樹
脂を含浸させたシート状のプリプレグを、該フィラメン
トの長さ方向を軸として渦巻き状に棒状の繊維強化樹脂
を形成することを特徴とする、請求項2記載の半導体装
置用ヒートスプレッダーの製造法。
3. A sheet-shaped prepreg obtained by impregnating a two-dimensionally woven carbon fiber filament with a resin, and forming a rod-shaped fiber-reinforced resin spirally around the length direction of the filament. The method for manufacturing a heat spreader for a semiconductor device according to claim 2.
【請求項4】 請求項1に記載のヒートスプレッダー
に、金属メッキ層を介して半導体チップが搭載されてい
ることを特徴とする半導体装置。
4. A semiconductor device, wherein a semiconductor chip is mounted on the heat spreader according to claim 1 via a metal plating layer.
JP32445194A 1994-12-27 1994-12-27 Heat spreader for semiconductor device, and its manufacture, and semiconductor device Withdrawn JPH08181261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32445194A JPH08181261A (en) 1994-12-27 1994-12-27 Heat spreader for semiconductor device, and its manufacture, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32445194A JPH08181261A (en) 1994-12-27 1994-12-27 Heat spreader for semiconductor device, and its manufacture, and semiconductor device

Publications (1)

Publication Number Publication Date
JPH08181261A true JPH08181261A (en) 1996-07-12

Family

ID=18165965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32445194A Withdrawn JPH08181261A (en) 1994-12-27 1994-12-27 Heat spreader for semiconductor device, and its manufacture, and semiconductor device

Country Status (1)

Country Link
JP (1) JPH08181261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165665A (en) * 2002-11-12 2004-06-10 Electrovac Fab Elektrotechnischer Spezialartikel Gmbh Heat radiating device
JP2012533882A (en) * 2009-07-14 2012-12-27 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド Anisotropic heat conducting element and method for producing the same
KR101399980B1 (en) * 2012-12-28 2014-05-29 하이쎌(주) Heat-dissipating flexible module for led using carbon fiber substrate and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165665A (en) * 2002-11-12 2004-06-10 Electrovac Fab Elektrotechnischer Spezialartikel Gmbh Heat radiating device
JP2012533882A (en) * 2009-07-14 2012-12-27 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド Anisotropic heat conducting element and method for producing the same
KR101399980B1 (en) * 2012-12-28 2014-05-29 하이쎌(주) Heat-dissipating flexible module for led using carbon fiber substrate and method for manufacturing the same
WO2014104559A1 (en) * 2012-12-28 2014-07-03 하이쎌 주식회사 Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR100999754B1 (en) Semiconductor apparatus and manufacturing method thereof
CN1312748C (en) Method for mfg. semiconductor integrated circuit device
US5773878A (en) IC packaging lead frame for reducing chip stress and deformation
CN1213479C (en) Electronic packaged component with high density interconnection layer
DE19821715B4 (en) Packaged integrated circuit device and method of making the same
US7582964B2 (en) Semiconductor package having non-ceramic based window frame
EP0566872A2 (en) A thermally enhanced semiconductor device and method for making the same
KR100881476B1 (en) Semiconductor device and semiconductor device producing substrate and production method for semiconductor device producing substrate
WO1996000980A1 (en) Manufacturing dual sided wire bonded integrated circuit chip packages using offset wire bonds and support block cavities
DE10297164T5 (en) Fully attachable optocoupler pack
JP2001244362A (en) Semiconductor device
KR20110059860A (en) Leadframe substrate and method for manufacturing same
KR20110081813A (en) Leadframe substrate, method for manufacturing same, and semiconductor device
JP2015060947A (en) Printed wiring board having metal post and method of manufacturing printed wiring board having metal post
EP3608951A1 (en) Ceramic metal circuit board and semiconductor device using same
JPH08181261A (en) Heat spreader for semiconductor device, and its manufacture, and semiconductor device
JPH10107190A (en) Semiconductor package
JPH07273256A (en) Semiconductor device and heat spreader for semiconductor device
JP2002033418A (en) Semiconductor device and its manufacturing method
CN107017221B (en) Integrated circuit assembly
JP3526614B2 (en) Semiconductor device
JP2708221B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JPH10284651A (en) Heat dissipating sheet and manufacture therefor
JP2005109526A (en) Semiconductor device
TW558773B (en) A structure without Ag epoxy and die pad in lead frame packaging producing process and its method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305