JPH08180891A - Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell - Google Patents

Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell

Info

Publication number
JPH08180891A
JPH08180891A JP7220390A JP22039095A JPH08180891A JP H08180891 A JPH08180891 A JP H08180891A JP 7220390 A JP7220390 A JP 7220390A JP 22039095 A JP22039095 A JP 22039095A JP H08180891 A JPH08180891 A JP H08180891A
Authority
JP
Japan
Prior art keywords
thin film
fuel cell
electrolyte
film electrolyte
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7220390A
Other languages
Japanese (ja)
Inventor
Yuzo Izumi
祐三 出水
Natsuko Shimizu
奈津子 清水
Keiichi Koseki
恵一 古関
Norimitsu Kaimai
教充 開米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP7220390A priority Critical patent/JPH08180891A/en
Publication of JPH08180891A publication Critical patent/JPH08180891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To provide high ordinary temperature generating performance by using a thin film electrolyte obtained by impregnating an electrolytic solution containing phosphoric acid or sulfuric acid in the pore of a polymer porous film having a hydrophoilic group. CONSTITUTION: A thin film electrolyte 3 is manufactured by impregnating a polymer porous thin film having a hydrophilic group with an electrolytic solution containing phosphoric acid or sulfuric acid and an organic solvent. This thin film electrolyte 3 is nipped between a pair or electrodes 4, and current collecting members 6 surrounded by Teflon gaskets 7 are arranged on both sides. The resulting laminated body is sealed between a sealing member 15 having a hydrogen feed port 19 and a hydrogen exhaust gas port 11, and a sealing member 16 having an oxygen feed port 12 and an oxygen exhaust gas port 13. When such a fuel cell body is arranged in a thermostatic bath, and hydrogen fuel and oxygen are supplied to the hydrogen feed port and the oxygen feed port 12, respectively, an electromotive force is generated between an anode terminal 8 and a cathode terminal 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は常温型燃料電池用薄
膜電解質、特に固体高分子型燃料電池用の新規高分子薄
膜電解質とこれを用いた常温型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electrolyte for room temperature fuel cells, particularly a novel polymer thin film electrolyte for polymer electrolyte fuel cells, and a room temperature fuel cell using the same.

【0002】[0002]

【従来の技術】常温型燃料電池用の固体高分子電解質と
してデュポン社のナフィオン(登録商標)に代表される
フッ素樹脂系イオン交換膜が知られている。このような
イオン交換膜を用いた燃料電池は、100℃以下の低温
において、燃料極では H2 → 2H + + 2e- 、空気極では
O2+ 4H+ + 4e- → 2H2O の反応が進むことによって作動
する。このように低温で作動する(常温型の)固体高分
子型燃料電池は、一般に出力密度が高く、装置の作製が
容易であり小型軽量化が図れるなどの特徴を有し、車載
用途や小規模コジェネレーションへの応用が期待されて
いる。
2. Description of the Related Art As a solid polymer electrolyte for room temperature fuel cells, a fluororesin ion exchange membrane represented by Nafion (registered trademark) manufactured by DuPont is known. A fuel cell using such an ion-exchange membrane is H 2 → 2H + + 2e − at the fuel electrode and at the air electrode at a low temperature of 100 ° C. or lower.
O 2 + 4H + + 4e - → 2H 2 O in the reaction is activated by proceeding. Such a polymer electrolyte fuel cell that operates at a low temperature (normal temperature type) generally has high output density, is easy to manufacture, and can be made compact and lightweight. It is expected to be applied to cogeneration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ナフィオン(登録商標)に代表されるフッ素樹脂系イオ
ン交換膜にはガスのクロスリークが大きいという本質的
な欠点があるため、膜厚を通常100〜180μmにす
る必要がある。膜が厚いほど、出力密度の増大と共に電
解質オーム損による発熱も大きくなるため、セルの温度
管理が難しくなり、エネルギーロスも大きくなるといっ
た問題が生じる。
However, the fluororesin ion-exchange membrane represented by Nafion (registered trademark) has an essential drawback of large gas cross-leakage. It is necessary to set the thickness to 180 μm. The thicker the film, the more the power density increases and the more heat is generated due to the ohmic loss of the electrolyte, which makes it difficult to control the temperature of the cell and increases the energy loss.

【0004】また、フッ素樹脂系イオン交換膜の製造に
は多段階工程が必要であるため製造コストが非常に高い
という欠点がある。さらに、フッ素樹脂系イオン交換膜
は、膜中に水分が含まれていなければイオン導電体とし
て機能しないため、水蒸気による加湿(水分管理)を施
す必要がある。
Further, there is a drawback that the manufacturing cost is very high because a multi-step process is required to manufacture the fluororesin ion exchange membrane. Further, since the fluororesin ion exchange membrane does not function as an ionic conductor unless water is contained in the membrane, it needs to be humidified by water vapor (water management).

【0005】本出願人は、上記の如き課題を解決するた
め、先の特願平6−221606号明細書において、リ
ン酸及び有機溶媒を含む電解質溶液を高分子多孔質膜の
空孔中に含浸してなる常温型燃料電池用薄膜電解質を開
示している。しかしながら、この薄膜電解質は、その高
分子多孔質膜自体の撥水性が高いため、電解質溶液の含
浸前に多孔質膜表面に界面活性剤を塗布する必要があっ
た。
In order to solve the above problems, the applicant of the present invention has disclosed in Japanese Patent Application No. Hei 6-221606 the electrolyte solution containing phosphoric acid and an organic solvent in the pores of the polymer porous membrane. Disclosed is a thin-film electrolyte for room temperature fuel cells which is impregnated. However, since the thin film electrolyte has high water repellency of the polymer porous film itself, it is necessary to apply a surfactant to the surface of the porous film before the impregnation with the electrolyte solution.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の如き課
題を解決するために、 (1)リン酸又は硫酸を含む電解質溶液を親水基を有す
る高分子多孔質膜の空孔中に含浸してなる常温型燃料電
池用薄膜電解質 を提供する。さらに、本発明は、 (2)(1)項記載の薄膜電解質を用いた常温型燃料電
池 をも提供する。
In order to solve the above-mentioned problems, the present invention provides (1) impregnation of an electrolyte solution containing phosphoric acid or sulfuric acid into the pores of a polymer porous membrane having a hydrophilic group. A thin film electrolyte for room temperature fuel cells is provided. Further, the present invention also provides an ambient temperature fuel cell using the thin film electrolyte according to (2) and (1).

【0007】本発明の好ましい実施態様を以下に項分け
して列挙する。 (3)親水基がカルボキシル基、水酸基及びエポキシ基
から成る群より選ばれた少なくとも1種であることを特
徴とする(1)項記載の常温型燃料電池用薄膜電解質。 (4)親水基がグラフト処理によって高分子多孔質膜に
導入されたことを特徴とする(1)項又は(3)項記載
の常温型燃料電池用薄膜電解質。
The preferred embodiments of the present invention are listed below item by item. (3) The thin film electrolyte for a room temperature fuel cell according to the item (1), wherein the hydrophilic group is at least one selected from the group consisting of a carboxyl group, a hydroxyl group and an epoxy group. (4) The thin film electrolyte for a room temperature fuel cell according to item (1) or (3), wherein the hydrophilic group is introduced into the polymer porous membrane by a graft treatment.

【0008】(5)多孔質膜の膜厚が0.1μm〜50
μm、空孔率が40%〜90%、破断強度が200kg
/cm2 以上及び平均貫通孔径が0.001μm〜0.
7μmであることを特徴とする(1)項、(3)項又は
(4)項記載の常温型燃料電池用薄膜電解質。
(5) The thickness of the porous film is 0.1 μm to 50
μm, porosity 40% to 90%, breaking strength 200 kg
/ Cm 2 or more and the average through-hole diameter is 0.001 μm to 0.
The thin film electrolyte for a room temperature fuel cell according to item (1), (3) or (4), which has a thickness of 7 μm.

【0009】(6)有機溶媒が、芳香族エーテル、芳香
族アルコール、脂肪族エーテル及び脂肪族アルコール並
びにこれらの2種以上を組み合わせた混合物の中から選
ばれることを特徴とする、(1)項及び(3)〜(5)
項のいずれか一項に記載の常温型燃料電池用薄膜電解
質。 (7)有機溶媒が、ベンゾニトリル、シアン化ベンジ
ル、1−フェニル−1−シクロプロパンカルボニトリ
ル、DL−2−フェニルブチロニトリル、4−フェニル
ブチロニトリル、2,2−ジフェニルプロピオニトリ
ル、ポリエチレングリコールジメチルエーテル、ポリプ
ロピレングリコールジメチルエーテル、2−フェニルエ
タノール及び2−フェノキシエタノール並びにこれらの
2種以上を組み合わせた混合物の中から選ばれることを
特徴とする、(6)項記載の常温型燃料電池用薄膜電解
質。
(6) The organic solvent is selected from aromatic ethers, aromatic alcohols, aliphatic ethers and aliphatic alcohols, and mixtures of two or more thereof in combination (1). And (3) to (5)
Item 6. A thin film electrolyte for a room temperature fuel cell according to any one of items. (7) The organic solvent is benzonitrile, benzyl cyanide, 1-phenyl-1-cyclopropanecarbonitrile, DL-2-phenylbutyronitrile, 4-phenylbutyronitrile, 2,2-diphenylpropionitrile, A thin film electrolyte for a room temperature fuel cell according to item (6), which is selected from polyethylene glycol dimethyl ether, polypropylene glycol dimethyl ether, 2-phenylethanol, 2-phenoxyethanol, and a mixture of two or more thereof. .

【0010】(8)リン酸又は硫酸と任意に含まれる有
機溶媒との合計重量に対する有機溶媒の重量が0〜30
重量%、好ましくは5〜30重量%であることを特徴と
する、(1)項及び(3)〜(7)項のいずれか一項に
記載の常温型燃料電池用薄膜電解質。 (9)(3)〜(8)項のいずれか一項に記載の薄膜電
解質を用いた常温型燃料電池。
(8) The weight of the organic solvent relative to the total weight of phosphoric acid or sulfuric acid and the organic solvent optionally contained is 0 to 30.
%, Preferably 5 to 30% by weight, The thin film electrolyte for a room temperature fuel cell according to any one of items (1) and (3) to (7). (9) An ambient temperature fuel cell using the thin film electrolyte according to any one of (3) to (8).

【0011】上記のような構成をとることにより、本発
明の薄膜電解質は、電解質溶液の含浸前に高分子多孔質
膜表面に界面活性剤を塗布しなくても製作することがで
き、その結果、これを常温型燃料電池の電解質として使
用した場合に、従来のフッ素樹脂系イオン交換膜にまつ
わる上記の欠点が克服された上、それを上回る高い出力
密度が達成された。
By adopting the above-mentioned constitution, the thin film electrolyte of the present invention can be manufactured without applying a surfactant to the surface of the polymer porous membrane before impregnation with the electrolyte solution. When this was used as an electrolyte for a room temperature fuel cell, the above-mentioned drawbacks associated with conventional fluororesin ion exchange membranes were overcome, and a higher power density than that was achieved.

【0012】本発明の薄膜電解質に用いられる親水基を
有する多孔質膜には、膜厚0.1μm〜50μm、空孔
率40%〜90%、破断強度200kg/cm2 以上及
び平均貫通孔径0.001μm〜0.7μmを示すもの
が好ましく用いられる。
The hydrophilic group-containing porous membrane used in the thin film electrolyte of the present invention has a film thickness of 0.1 μm to 50 μm, a porosity of 40% to 90%, a breaking strength of 200 kg / cm 2 or more and an average through hole diameter of 0. Those having a thickness of 0.001 to 0.7 μm are preferably used.

【0013】本発明による多孔質膜の厚さは一般に0.
1μm〜50μmであり、好ましくは1μm〜25μm
である。厚さが0.1μm未満では支持体としての機械
的強度の低下及び取扱性の面から実用に供することが難
しい。一方、50μmを越える場合には実効抵抗を抑え
るという観点から好ましくない。
The thickness of the porous membrane according to the present invention is generally 0.
1 μm to 50 μm, preferably 1 μm to 25 μm
Is. When the thickness is less than 0.1 μm, it is difficult to put it into practical use from the viewpoints of a decrease in mechanical strength as a support and handleability. On the other hand, when it exceeds 50 μm, it is not preferable from the viewpoint of suppressing the effective resistance.

【0014】本発明による多孔質膜の空孔率は40%〜
90%とするのがよく、好ましくは60%〜90%の範
囲である。空孔率が40%未満では薄膜電解質としての
イオン導電性が不十分となり、一方90%を越えると支
持体としての機械的強度が小さくなり実用に供すること
が難しい。
The porosity of the porous film according to the present invention is 40% to
90% is preferable, and the range is preferably 60% to 90%. When the porosity is less than 40%, the ionic conductivity as a thin film electrolyte becomes insufficient, while when it exceeds 90%, the mechanical strength as a support becomes small and it is difficult to put it into practical use.

【0015】多孔質膜の平均貫通孔径は、空孔中に電解
質溶液を固定化できればよいが、一般に0.001μm
〜0.7μmである。好ましい平均貫通孔径は多孔質膜
の材質や孔の形状にもよる。親水基を有する多孔質膜の
破断強度は一般に200kg/cm2 以上、より好まし
くは500kg/cm2 以上を有することにより支持体
としての実用化に好適である。本発明に用いる多孔質膜
は特開昭60−242035号公報等に記載されている
方法により製造することができるが、特に超高分子量成
分を含む高分子を有機溶媒に加熱溶解し、この溶液をダ
イから押出して冷却することによりゲル状物を成形す
る。このゲル状成形物を延伸、溶媒除去し多孔質膜を得
ることができる。
The average through-pore diameter of the porous membrane should be such that the electrolyte solution can be fixed in the pores, but it is generally 0.001 μm.
Is about 0.7 μm. The preferable average through-hole diameter depends on the material of the porous membrane and the shape of the holes. The breaking strength of the porous membrane having a hydrophilic group is generally 200 kg / cm 2 or more, and more preferably 500 kg / cm 2 or more, which is suitable for practical use as a support. The porous membrane used in the present invention can be produced by the method described in JP-A-60-242035 and the like. In particular, a polymer containing an ultrahigh molecular weight component is heated and dissolved in an organic solvent, and this solution is prepared. Is extruded from a die and cooled to form a gel. This gel-like molded product can be stretched and the solvent removed to obtain a porous film.

【0016】本発明に用いる親水基を有する多孔質膜
は、電解質溶液の支持体としての機能を持ち、機械的強
度の優れた高分子材料を含む。化学的・電気化学的安定
性の観点から、例えば、ポリオレフィン、ポリテトラフ
ルオロエチレン、ポリフッ化ビニリデンを用いることが
できるが、本発明の多孔構造の設計や薄膜化と機械的強
度の両立の容易さの観点から好適な高分子材料の一例
は、特に重量平均分子量が5×105 以上のポリオレフ
ィンである。その他好適な高分子材料の例として、ポリ
カーボネート、ポリエステル、ポリメタクリレート、ポ
リアセタール、ポリ塩化ビニリデン、ポリテトラフルオ
ロエチレン、等が挙げられる。
The hydrophilic group-containing porous membrane used in the present invention includes a polymer material having a function as a support for an electrolyte solution and excellent mechanical strength. From the viewpoint of chemical / electrochemical stability, for example, polyolefin, polytetrafluoroethylene, or polyvinylidene fluoride can be used, but the design of the porous structure of the present invention and the ease of compatibility between thinning and mechanical strength From the viewpoint of, one example of a suitable polymer material is a polyolefin having a weight average molecular weight of 5 × 10 5 or more. Examples of other suitable polymer materials include polycarbonate, polyester, polymethacrylate, polyacetal, polyvinylidene chloride, polytetrafluoroethylene, and the like.

【0017】本発明に用いられる多孔質膜は親水基を有
する。この親水基はカルボキシル基、水酸基及びエポキ
シ基の中から選ばれることが好ましい。親水基の導入方
法には、多孔質膜の製膜前として、上記のような高分
子材料の重合時又は重合後に、親水基を付与できるモノ
マー(以降、親水性付与モノマーと称する)又はそのオ
リゴマーを共重合させる方法、及び該高分子材料に親
水性付与モノマーの重合体又は共重合体をブレンドする
方法が挙げられ、また多孔質膜の製膜後として、多孔
質膜に親水性付与モノマー又はそのオリゴマーをグラフ
ト化する方法、が挙げられる。
The porous membrane used in the present invention has a hydrophilic group. This hydrophilic group is preferably selected from a carboxyl group, a hydroxyl group and an epoxy group. As a method for introducing a hydrophilic group, a monomer capable of imparting a hydrophilic group (hereinafter referred to as a hydrophilicity imparting monomer) or an oligomer thereof before or after the formation of a porous membrane, during or after the polymerization of the above-mentioned polymer material. And a method of blending a polymer or a copolymer of a hydrophilicity-imparting monomer into the polymer material, and after forming the porous membrane, the hydrophilicity-imparting monomer or the hydrophilicity-imparting monomer to the porous membrane. And a method of grafting the oligomer.

【0018】親水性付与モノマーの好ましい例として、
アクリル酸、メタクリル酸、無水マレイン酸、等の不飽
和カルボン酸もしくはその誘導体、又はグリシジルアク
リレート、グリシジルメタクリレート、下式:
As a preferred example of the hydrophilicity-imparting monomer,
Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride or derivatives thereof, or glycidyl acrylate, glycidyl methacrylate, the following formula:

【0019】[0019]

【化1】 Embedded image

【0020】で示されるグリシジル化合物(AXE)、
等の不飽和グリシジル化合物、が挙げられる。しかしな
がら、これらに限定されるわけではない。
A glycidyl compound (AXE) represented by
Unsaturated glycidyl compounds such as However, it is not limited to these.

【0021】高分子材料の重合時に親水性付与モノマー
等を共重合させる方法で得られる共重合体は、グラフト
共重合体、ランダム共重合体、ブロック共重合体のいず
れであってもよい。本発明において好ましい共重合体の
例として、エチレン/アクリル酸系ランダム共重合体及
びエチレン/グリシジルメタクリレート系ランダム共重
合体が挙げられる。これらの共重合体は、溶融ラジカル
重合法をはじめとする重合技術分野において周知の方法
により当業者であれば容易に製造することができる。
The copolymer obtained by the method of copolymerizing a hydrophilicity-imparting monomer at the time of polymerizing the polymer material may be a graft copolymer, a random copolymer or a block copolymer. Examples of preferred copolymers in the present invention include ethylene / acrylic acid random copolymers and ethylene / glycidyl methacrylate random copolymers. Those copolymers can be easily produced by those skilled in the art by methods well known in the polymerization technical field including the melt radical polymerization method.

【0022】多孔質膜の製膜前に親水基を導入する好ま
しい方法として、上記のような高分子材料の重合後に親
水性付与モノマーを溶融混練法または溶液法でグラフト
化する方法が挙げられる。溶融混練法では、高分子材料
と親水性付与モノマー、及び必要に応じて触媒を用い、
これら成分を押出機や二軸混練機等に投入し、150〜
300℃程度の温度に加熱して溶融しながら0.1〜2
0分程度混練する。また、溶液法の場合には、キシレン
等の有機溶剤に高分子材料と親水性付与モノマーを溶解
し、90〜200℃程度の温度で0.1〜100時間攪
拌する。本発明において好ましいグラフト共重合体の例
として、アクリル酸変性ポリエチレン、無水マレイン酸
変性ポリエチレン及びAXE変性ポリエチレンが挙げら
れる。
As a preferred method for introducing a hydrophilic group before forming the porous film, there is a method in which the hydrophilicity-imparting monomer is grafted by a melt-kneading method or a solution method after the polymerization of the polymer material as described above. In the melt-kneading method, a polymer material, a hydrophilicity-imparting monomer, and, if necessary, a catalyst are used.
These ingredients are put into an extruder, a twin-screw kneader, etc.
0.1-2 while melting by heating to a temperature of about 300 ° C
Knead for about 0 minutes. In the case of the solution method, the polymer material and the hydrophilicity-imparting monomer are dissolved in an organic solvent such as xylene, and the mixture is stirred at a temperature of about 90 to 200 ° C for 0.1 to 100 hours. Examples of preferred graft copolymers in the present invention include acrylic acid-modified polyethylene, maleic anhydride-modified polyethylene and AXE-modified polyethylene.

【0023】本発明の多孔質膜には、高分子材料に親水
性付与モノマーの重合体又は共重合体をブレンドする方
法によっても親水基を導入することができる。ブレンド
は、一般的な従来公知の溶融混練法によって達成するこ
とができる。すなわち、高分子材料、親水性付与モノマ
ーの重合体又は共重合体及び必要に応じて相溶化剤等の
添加剤を同時に或いは適当な順序でバッチ式混練機や、
バンバリーミキサー、ブラベンダー、混練ロール、一軸
押出機、二軸押出機等の混練機に投入して適当な温度で
混練する。このようなポリマーブレンド法における各種
工程変数は、使用する材料や混練機などに依存するが、
当業者であれば容易に設定することができる。
The hydrophilic group can be introduced into the porous membrane of the present invention by a method of blending a polymer or copolymer of a hydrophilicity-imparting monomer with a polymer material. Blending can be achieved by a general conventionally known melt-kneading method. That is, a polymeric material, a polymer or copolymer of a hydrophilicity-imparting monomer, and, if necessary, additives such as a compatibilizer at the same time or in a suitable order in a batch-type kneading machine,
The mixture is put into a kneading machine such as a Banbury mixer, a Brabender, a kneading roll, a single-screw extruder or a twin-screw extruder and kneaded at an appropriate temperature. Various process variables in such a polymer blending method depend on the materials used and the kneading machine,
It can be easily set by those skilled in the art.

【0024】上記のように高分子材料に親水基を導入し
た後、前述の多孔質膜製法により先に規定した膜厚、空
孔率、破断強度及び平均貫通孔径を示す多孔質膜を作製
する。このように親水基を導入してから製膜する場合に
は、これらの親水性付与モノマーを膜に対して5〜30
重量%、好ましくは10〜15重量%導入する。親水性
付与モノマーが5重量%以下では多孔質膜に十分な濡れ
性を付与することができず、反対に、30重量%以上で
は多孔質膜の化学的・物理的・電気化学的安定性が劣化
する。
After introducing the hydrophilic group into the polymer material as described above, a porous membrane having the above-specified thickness, porosity, breaking strength and average through-pore diameter is prepared by the above-mentioned porous membrane manufacturing method. . When a film is formed after introducing a hydrophilic group in this way, these hydrophilicity-imparting monomers are added to the film in an amount of 5 to 30.
%, Preferably 10 to 15% by weight. If the hydrophilicity-imparting monomer is 5% by weight or less, sufficient wettability cannot be imparted to the porous membrane, and conversely, if it is 30% by weight or more, the chemical / physical / electrochemical stability of the porous membrane is reduced. to degrade.

【0025】先にも述べたように、親水基の導入は、上
記のような高分子材料の多孔質膜を作製した後に、適当
な表面改質法によって行うこともできる。有用な表面改
質法は、多孔質膜に電離放射線、プラズマを照射してか
ら上記のような親水性付与モノマー又はそのオリゴマー
を反応させてグラフト化する方法(以降、グラフト処理
と称する)である。製膜後の表面改質法は、多孔質膜の
濡れ性に寄与する膜表面(ここでいう表面とは、主に多
孔質膜の空孔における界面をいう)に親水基をより多く
導入できるため、上記の製膜前に導入する場合に比べ親
水性付与モノマーの導入量を少なくして膜強度を低下さ
せない点で好ましい。本発明において特に好ましい表面
改質法は、多孔質膜をアクリル酸でグラフト処理する方
法である。本発明で用いる多孔質膜のグラフト化方法と
して電離放射線を照射する方法が好ましく用いられる。
電離放射線としてはα線、β線(電子線)、γ線等を用
いることができるが特に電子線が好ましい。電子線によ
るグラフト重合は、基材に予め電離放射線を照射し、活
性点を生成させた後、モノマーを接触させる前照射法、
および基材とモノマーとを接触共存下で電離放射線を照
射する同時照射法があるが、本発明ではいずれの方法を
も用いることができる。照射は、加速電圧150〜5,
000keV、好ましくは200〜500keVで、空
気雰囲気下または不活性ガス(窒素、アルゴン等)雰囲
気下にて行なわれる。照射線量としては、5〜500k
Gy、好ましくは5〜100kGy程度が適当である。
5kGy未満ではグラフトが十分に行なわれず、500
kGyを超えると基材の劣化が著しくなるので好ましく
ない。前照射法および同時照射法のいずれにおいても、
基材とモノマーとの接触はモノマー液に基材を浸漬して
直接処理する方法、モノマーを溶媒に溶かした溶液に基
材を浸漬する方法、あるいは気化させたモノマーで基材
を直接処理する方法により行なうことができる。いずれ
の方法においても、モノマー溶液を不活性ガス(窒素、
アルゴン等)によりバブリングさせた状態でモノマーに
接触させるのが好ましい。本発明において好ましく用い
られるアクリル酸モノマー溶液は以下のようにして調製
される。なお、溶媒としては水の他、アルコール類や二
塩化エチレン等の有機溶媒が使用できる。すなわち、溶
媒として蒸留水を用い、これに所定量のモール塩を添加
し溶解させた後、アクリル酸を加え溶解させる。酸性の
環境下で添加することにより沈澱物の発生および事前重
合が抑制される。アクリル酸モノマー水溶液の濃度は
0.1〜10mol/lが好ましい。0.1mol/l
未満であるとグラフト反応が十分に行なわれず、10m
ol/lを超えるとホモポリマーが多量に生成されるた
め反応効率が低下する。モノマー濃度を調節することに
よりグラフト率を調整することができる。
As described above, the introduction of the hydrophilic group can also be carried out by an appropriate surface modification method after the porous film of the polymer material as described above is prepared. A useful surface modification method is a method of irradiating the porous film with ionizing radiation or plasma and then reacting the above-mentioned hydrophilicity-imparting monomer or oligomer thereof to graft (hereinafter referred to as graft treatment). . The surface modification method after film formation can introduce more hydrophilic groups on the film surface that contributes to the wettability of the porous film (the surface here mainly means the interface in the pores of the porous film). Therefore, it is preferable in that the amount of the hydrophilicity-imparting monomer introduced is reduced and the film strength is not lowered as compared with the case where the monomer is introduced before film formation. A particularly preferred surface modification method in the present invention is a method of graft-treating a porous film with acrylic acid. As a method for grafting the porous film used in the present invention, a method of irradiating with ionizing radiation is preferably used.
As the ionizing radiation, α rays, β rays (electron rays), γ rays and the like can be used, but electron rays are particularly preferable. Graft polymerization by electron beam is a pre-irradiation method in which a base material is previously irradiated with ionizing radiation to generate active sites, and then a monomer is brought into contact with the base material.
Further, there is a simultaneous irradiation method of irradiating ionizing radiation in the presence of contact and coexistence of the base material and the monomer, but any method can be used in the present invention. The irradiation is performed with an acceleration voltage of 150 to 5,
It is performed at 000 keV, preferably 200 to 500 keV in an air atmosphere or an inert gas (nitrogen, argon, etc.) atmosphere. The irradiation dose is 5 to 500k
Gy, preferably about 5 to 100 kGy, is suitable.
If it is less than 5 kGy, grafting is not sufficiently performed, and
If it exceeds kGy, the deterioration of the base material becomes remarkable, which is not preferable. In both the pre-irradiation method and the simultaneous irradiation method,
The contact between the base material and the monomer is performed by directly immersing the base material in a monomer solution, immersing the base material in a solution in which the monomer is dissolved in a solvent, or by directly treating the base material with a vaporized monomer. Can be done by. In either method, the monomer solution is treated with an inert gas (nitrogen,
It is preferable to contact the monomer while bubbling with argon or the like. The acrylic acid monomer solution preferably used in the present invention is prepared as follows. In addition to water, organic solvents such as alcohols and ethylene dichloride can be used as the solvent. That is, distilled water is used as a solvent, and a predetermined amount of Mohr salt is added and dissolved therein, and then acrylic acid is added and dissolved. Addition in an acidic environment suppresses the generation of precipitates and prepolymerization. The concentration of the acrylic acid monomer aqueous solution is preferably 0.1 to 10 mol / l. 0.1 mol / l
If it is less than 10 m, the graft reaction is not sufficiently performed,
If it exceeds ol / l, a large amount of homopolymer is produced and the reaction efficiency is lowered. The graft ratio can be adjusted by adjusting the monomer concentration.

【0026】グラフト化反応は、浸漬法による場合は、
10〜60℃で5〜60分間程度、気化モノマーとの接
触による場合は、20〜60℃で反応モノマーの蒸気圧
下で1〜60分間程度かけて行なうことが好ましい。い
ずれも下限値未満であると、グラフト化が不十分であ
り、上限値を超えるとエネルギーコストが過大となった
り作業効率が悪くなる等の問題を生じる。グラフト率は
3〜40重量%程度が好ましい。3重量%未満であると
十分に機能が発揮されず、40重量%を超えると本発明
の性能の向上は認められずエネルギーコストが過大とな
る。
When the dipping method is used for the grafting reaction,
It is preferable to perform the treatment at 10 to 60 ° C. for about 5 to 60 minutes, and in the case of contact with the vaporized monomer, at 20 to 60 ° C. under the vapor pressure of the reaction monomer for about 1 to 60 minutes. If both are less than the lower limit, grafting is insufficient, and if more than the upper limit, problems such as excessive energy cost and poor work efficiency occur. The graft ratio is preferably about 3 to 40% by weight. If it is less than 3% by weight, the function is not sufficiently exhibited, and if it exceeds 40% by weight, the improvement of the performance of the present invention is not recognized and the energy cost becomes excessive.

【0027】このように多孔質膜の製膜後に親水基を導
入する場合には、親水性付与モノマーを膜に対して2重
量%以上導入する。親水性付与モノマーが2重量%未満
では表面改質の効果が少なく、多孔質膜に十分な濡れ性
を付与することができない。親水性付与モノマーの導入
量の上限は特に限定されず、導入後に電解質溶液を充填
するための十分な空孔が多孔質膜に残ればよい。この導
入後の空孔率は電解質膜としての特性上40%以上であ
ることが好ましい。親水性付与モノマーの導入量は、通
常、膜に対して2〜16重量%とするのが好ましい。
When the hydrophilic group is introduced after the formation of the porous film as described above, 2% by weight or more of the hydrophilicity-imparting monomer is introduced into the film. If the hydrophilicity-imparting monomer is less than 2% by weight, the effect of surface modification is small and sufficient wettability cannot be imparted to the porous membrane. The upper limit of the amount of the hydrophilicity-imparting monomer introduced is not particularly limited, and it is sufficient that sufficient pores for filling the electrolyte solution remain in the porous membrane after the introduction. The porosity after this introduction is preferably 40% or more in view of the characteristics as an electrolyte membrane. Usually, the amount of the hydrophilicity-imparting monomer introduced is preferably 2 to 16% by weight with respect to the film.

【0028】本発明の薄膜電解質用の電解質溶液にはリ
ン酸又は硫酸を用いる。リン酸又は硫酸を用いることに
より常温型燃料電池が可能にされる。リン酸又は硫酸が
水分を多量に含むと電解質溶液のイオン伝導度が低下す
るため水分はできるだけ少ないことが望ましいが、一般
に市販されている85%リン酸水溶液又は98%硫酸水
溶液を使用することができる。しかしながら、より多く
の水分が含まれる場合を排除するわけではない。
Phosphoric acid or sulfuric acid is used for the electrolyte solution for the thin film electrolyte of the present invention. The use of phosphoric acid or sulfuric acid enables a room temperature fuel cell. If the phosphoric acid or sulfuric acid contains a large amount of water, the ionic conductivity of the electrolyte solution will decrease, so it is desirable that the water content be as low as possible, but it is generally possible to use a commercially available 85% phosphoric acid aqueous solution or a 98% sulfuric acid aqueous solution. it can. However, it does not exclude the case where more water is contained.

【0029】電解質溶液の任意成分として用いられる有
機溶媒は、リン酸又は硫酸を高分子多孔質膜の空孔中に
含浸させるために有効であり、リン酸又は硫酸(水溶
液)と相溶性があり且つ高分子多孔質膜に対して濡れ性
があるものから選択される。また本発明による常温型燃
料電池の作動温度(約80〜150℃)において低い蒸
気圧を示すものがよい。
The organic solvent used as an optional component of the electrolyte solution is effective for impregnating the pores of the polymer porous membrane with phosphoric acid or sulfuric acid, and is compatible with phosphoric acid or sulfuric acid (aqueous solution). Moreover, it is selected from those having wettability to the polymer porous membrane. Further, it is preferable that the room temperature fuel cell according to the present invention has a low vapor pressure at the operating temperature (about 80 to 150 ° C.).

【0030】使用可能な有機溶媒の例として、芳香族エ
ーテル、芳香族アルコール、脂肪族エーテル及び脂肪族
アルコール、とりわけベンゾニトリル、シアン化ベンジ
ル、1−フェニル−1−シクロプロパンカルボニトリ
ル、DL−2−フェニルブチロニトリル、4−フェニル
ブチロニトリル、2,2−ジフェニルプロピオニトリ
ル、ポリエチレングリコールジメチルエーテル、ポリプ
ロピレングリコールジメチルエーテル、2−フェニルエ
タノール及び2−フェノキシエタノール並びにこれらの
2種以上を組み合わせた混合物、等が挙げられるが、こ
れらに限定はされない。有機溶媒の沸点は約200℃以
上であることが好ましい。
Examples of organic solvents that can be used are aromatic ethers, aromatic alcohols, aliphatic ethers and aliphatic alcohols, especially benzonitrile, benzyl cyanide, 1-phenyl-1-cyclopropanecarbonitrile, DL-2. -Phenylbutyronitrile, 4-phenylbutyronitrile, 2,2-diphenylpropionitrile, polyethylene glycol dimethyl ether, polypropylene glycol dimethyl ether, 2-phenylethanol and 2-phenoxyethanol, and mixtures of two or more thereof, and the like. But is not limited to these. The boiling point of the organic solvent is preferably about 200 ° C. or higher.

【0031】電解質溶液における有機溶媒の好適な比率
は、グラフト処理後の多孔質膜の表面物性(濡れ性)に
よるが、リン酸又は硫酸(水溶液としての水分を含む)
と有機溶媒との合計重量に対して約50重量%以下、好
ましくは30重量%以下、より好ましくは5〜30重量
%、場合により10〜30重量%である。有機溶媒が少
ないとリン酸又は硫酸を高分子多孔質膜の空孔中に含浸
させることが困難である。一方、有機溶媒が多過ぎると
薄膜電解質のイオン導電性が低下する。
The suitable ratio of the organic solvent in the electrolytic solution depends on the surface physical properties (wettability) of the porous membrane after the graft treatment, but phosphoric acid or sulfuric acid (including water as an aqueous solution).
It is about 50% by weight or less, preferably 30% by weight or less, more preferably 5 to 30% by weight, and optionally 10 to 30% by weight based on the total weight of the organic solvent. When the organic solvent is small, it is difficult to impregnate the pores of the polymer porous membrane with phosphoric acid or sulfuric acid. On the other hand, when the amount of the organic solvent is too much, the ionic conductivity of the thin film electrolyte is lowered.

【0032】本発明の薄膜電解質は、上記のような親水
基を有する高分子多孔質膜にリン酸又は硫酸及び有機溶
媒を含む電解質溶液を含浸させることによって製造され
る。高分子多孔質膜の空孔中に電解質溶液を含浸させる
方法については、本出願人が特開平1−158051号
公報及び同2−291607号公報等に既に開示してい
るので、詳しくはこれらを参照されたい。電解質溶液の
表面張力が高い場合には、必要に応じて多孔質膜を10
4 パスカル以下に真空引きすることによって溶液を含浸
させてもよい。グラフト処理後の多孔質膜の表面物性に
よるが、一般に表面張力が70ダイン/cm以上の電解
質溶液の場合には真空引きした方が含浸させ易い。
The thin film electrolyte of the present invention is produced by impregnating the polymer porous membrane having a hydrophilic group as described above with an electrolyte solution containing phosphoric acid or sulfuric acid and an organic solvent. The method of impregnating the pores of the polymer porous membrane with the electrolyte solution has already been disclosed by the present applicant in Japanese Patent Laid-Open Nos. 1-158051 and 2-291607, and so on. Please refer. If the surface tension of the electrolyte solution is high, a porous membrane may be added as needed.
The solution may be impregnated by evacuation to 4 Pascal or less. Although it depends on the physical properties of the surface of the porous membrane after the graft treatment, generally, in the case of an electrolyte solution having a surface tension of 70 dynes / cm or more, it is easier to impregnate by vacuuming.

【0033】本発明の薄膜電解質は、全体として固体と
して取り扱うことができ、液漏れの心配がなく、しかも
含浸した電解質溶液を用いるのでイオン導電性に優れ、
また薄膜化が可能である、等の特徴を有する。
The thin film electrolyte of the present invention can be handled as a solid as a whole, there is no fear of liquid leakage, and since an impregnated electrolyte solution is used, it has excellent ionic conductivity.
Further, it has a feature that it can be thinned.

【0034】本発明は、上記の薄膜電解質を用いた常温
型燃料電池をも提供する。電解質以外の電極やその他の
構造は、フッ素樹脂系イオン交換膜を電解質に用いた従
来の常温型燃料電池において知られているものを採用す
ることができる。本発明による常温型燃料電池は約80
℃〜150℃の温度で好適に作動する。作動温度が約8
0℃より低いと電解質としてのイオン導電性が低くなり
実用に供することが難しく、一方、約150℃より高い
と、リン酸又は硫酸の酸度が上がり膜が腐食される。好
ましい作動温度範囲は約80℃〜100℃である。
The present invention also provides an ambient temperature fuel cell using the above-mentioned thin film electrolyte. For the electrodes and other structures other than the electrolyte, those known in conventional room temperature fuel cells using a fluororesin ion exchange membrane as the electrolyte can be adopted. The room temperature fuel cell according to the present invention has about 80
It suitably operates at temperatures of ℃ to 150 ℃. Operating temperature is about 8
If the temperature is lower than 0 ° C, the ionic conductivity as an electrolyte is low and it is difficult to put it into practical use. On the other hand, if the temperature is higher than about 150 ° C, the acidity of phosphoric acid or sulfuric acid is increased and the film is corroded. The preferred operating temperature range is about 80 ° C to 100 ° C.

【0035】図1〜図3を参照して、本発明の常温型燃
料電池本体の典型的な構成例を説明する。
A typical configuration example of the room temperature fuel cell body of the present invention will be described with reference to FIGS.

【0036】図1に、本発明の薄膜電解質に用いられる
多孔質膜1の一例を模式的に示す。多孔質膜1は一般に
二軸延伸法で作製され、内部に空孔2を有する。図1で
は、空孔2を模式的に示したが、実際には、空孔2が規
則的な配置や形状を取る必要はない。
FIG. 1 schematically shows an example of the porous membrane 1 used in the thin film electrolyte of the present invention. The porous membrane 1 is generally produced by a biaxial stretching method and has pores 2 inside. Although the holes 2 are schematically shown in FIG. 1, the holes 2 do not actually need to have a regular arrangement or shape.

【0037】図2に、図1の如き多孔質膜1の空孔2に
電解質溶液4を含浸させて作製した薄膜電解質3の一例
を模式的に示す。電解質溶液4は空孔2の内部に固定さ
れるので、薄膜電解質3は全体的に固体として取り扱う
ことができる。図2でも、空孔2の断面が規則的な配置
や形状を取る必要はない。
FIG. 2 schematically shows an example of the thin film electrolyte 3 produced by impregnating the pores 2 of the porous membrane 1 as shown in FIG. 1 with the electrolyte solution 4. Since the electrolyte solution 4 is fixed inside the pores 2, the thin film electrolyte 3 can be handled as a solid as a whole. Also in FIG. 2, it is not necessary for the cross section of the holes 2 to have a regular arrangement or shape.

【0038】図3は、図2の如き薄膜電解質3を用いた
常温型燃料電池本体の一例を示すものである。電解質溶
液を含浸させた1層以上の高分子多孔質膜からなる薄膜
電解質3を一対の電極5の間に挟持し、その両側に、テ
フロン製ガスケット7で囲まれている集電材6を配置す
る。この集成体を、水素供給口10及び水素排ガス口1
1を有する封止部材15と、酸素供給口12及び酸素排
ガス口13を有する封止部材16との間に封入する。封
入部材15、16の内側には、集電材6を支持するため
の支持部材14が設けられている。集電材6には、例え
ば白金を被覆したチタン基材が用いられる。封入部材1
5、16には、例えばステンレスが用いられる。電極間
の起電力によって得られる電流を取り出すため、封入部
材15にはアノード端子8(水素供給側)が、また封入
部材16にはカソード端子9(酸素供給側)がそれぞれ
設けられている。
FIG. 3 shows an example of a room temperature fuel cell body using the thin film electrolyte 3 as shown in FIG. A thin film electrolyte 3 composed of one or more polymer porous membranes impregnated with an electrolyte solution is sandwiched between a pair of electrodes 5, and a current collector 6 surrounded by a Teflon gasket 7 is arranged on both sides thereof. . This assembly is provided with a hydrogen supply port 10 and a hydrogen exhaust gas port 1
It is sealed between the sealing member 15 having No. 1 and the sealing member 16 having the oxygen supply port 12 and the oxygen exhaust gas port 13. A support member 14 for supporting the current collector 6 is provided inside the enclosing members 15 and 16. For the current collector 6, for example, a titanium base material coated with platinum is used. Encapsulation member 1
For example, stainless steel is used for 5 and 16. The encapsulating member 15 is provided with an anode terminal 8 (hydrogen supply side) and the encapsulating member 16 is provided with a cathode terminal 9 (oxygen supply side) in order to extract a current obtained by an electromotive force between the electrodes.

【0039】図3の如き燃料電池本体を、これを作動温
度(80℃〜150℃)に保つための恒温槽(図示な
し)の中に配置し、水素供給口10に水素燃料を、そし
て酸素供給口12に酸素を供給すると、前記の H2 → 2
H + + 2e- (アノード側)及びO2+ 4H+ + 4e- → 2H2O
(カソード側)の反応が起こり、その際アノード端子
8、カソード端子9間に起電力が発生する。
The fuel cell main body as shown in FIG. 3 is placed in a thermostatic chamber (not shown) for maintaining the operating temperature (80 ° C. to 150 ° C.), and hydrogen fuel is supplied to the hydrogen supply port 10 and oxygen. When oxygen is supplied to the supply port 12, the above H 2 → 2
H + + 2e - (anode) and O 2 + 4H + + 4e - → 2H 2 O
A reaction on the (cathode side) occurs, and at that time, an electromotive force is generated between the anode terminal 8 and the cathode terminal 9.

【0040】[0040]

【実施例】重量平均分子量2×106 、膜厚25μm、
空孔率41%、平均貫通孔径0.02μmのポリエチレ
ン微多孔膜(東燃化学(株)製)を空気中で加速電圧2
50keV、照射線量250kGyで電子線を照射し、
反応温度40℃で10%アクリル酸水溶液に窒素バブリ
ング下に30分間浸漬させた。その後蒸留水で洗浄、真
空乾燥を施し、アクリル酸グラフト率が10%の親水化
膜を得た。グラフト処理後の多孔質膜に、ジプロピレン
グリコールジエチルエーテル10重量%とリン酸(85
%水溶液)90重量%とを含む電解質溶液を含浸して薄
膜電解質を製作した。
Example: Weight average molecular weight 2 × 10 6 , film thickness 25 μm,
Accelerating voltage of 2 in a polyethylene microporous membrane (manufactured by Tonen Chemical Co., Ltd.) with a porosity of 41% and an average through pore diameter of 0.02 μm 2
Irradiate with electron beam at 50 keV and irradiation dose of 250 kGy,
The mixture was immersed in a 10% acrylic acid aqueous solution at a reaction temperature of 40 ° C. for 30 minutes under nitrogen bubbling. Then, it was washed with distilled water and vacuum dried to obtain a hydrophilic film having an acrylic acid graft ratio of 10%. After the grafting treatment, 10% by weight of dipropylene glycol diethyl ether and phosphoric acid (85
% Aqueous solution) 90% by weight to impregnate an electrolytic solution into a thin film electrolyte.

【0041】この薄膜電解質を2枚重ね(電解質の全体
厚50μm)、図3に示したような燃料電池本体を組み
立てた。燃料電池本体の電極5は、グラッシーカーボン
又はカーボンクロスからなる集電体に白金を0.35m
g/cm2 担持させて製作した。
Two thin film electrolytes were stacked (the total thickness of the electrolyte was 50 μm), and a fuel cell body as shown in FIG. 3 was assembled. For the electrode 5 of the fuel cell body, 0.35 m of platinum is added to the current collector made of glassy carbon or carbon cloth.
It was manufactured by supporting g / cm 2 .

【0042】この燃料電池本体にガス圧力1kg/cm
2 の酸素ガスを60ml/分、水素ガスを60ml/分
の流速で供給し、80℃で発電させた。
Gas pressure of 1 kg / cm was applied to the fuel cell body.
The oxygen gas of 2 was supplied at a flow rate of 60 ml / min, and the hydrogen gas was supplied at a flow rate of 60 ml / min to generate power at 80 ° C.

【0043】その結果、出力密度0.42W/cm2
得られた。なお、上記実施例の燃料電池本体において厚
さ25μmの薄膜電解質を1枚で使用して同様に発電さ
せた場合にも同等の出力密度が得られた。
As a result, an output density of 0.42 W / cm 2 was obtained. It should be noted that the same output density was obtained when the same power generation was performed using one sheet of the thin film electrolyte having a thickness of 25 μm in the fuel cell main body of the above example.

【0044】比較例として、薄膜電解質3を厚さ125
μmのナフィオン(登録商標)膜に置き換えて80℃の
飽和水蒸気による加湿を施したこと以外は実施例と同じ
条件の実験を行った。また、上記実施例の多孔質膜を用
いてグラフト処理を施すことなく界面活性処理した以外
は実施例と同じ条件の実験も行った。
As a comparative example, the thin film electrolyte 3 having a thickness of 125 is used.
An experiment was conducted under the same conditions as in the example except that the film was replaced with a Nafion (registered trademark) film having a thickness of μm and humidified with saturated steam at 80 ° C. Further, an experiment was conducted under the same conditions as in the examples except that the porous membranes of the above-mentioned examples were subjected to the surface active treatment without the graft treatment.

【0045】本発明と比較例の燃料電池の発電性能を比
較したグラフを図4及び図5に示す。図4から明らかな
ように、本発明による薄膜電解質を用いた燃料電池は、
フッ素樹脂系イオン交換膜ナフィオン(登録商標)によ
る従来の燃料電池よりも有意に高い出力密度を示した。
また、図5から明らかなように、親水基を含まない多孔
質膜を用いた薄膜電解質による燃料電池と比較して、グ
ラフト処理で親水基を導入した多孔質膜を用いた薄膜電
解質による燃料電池は、その出力密度が約2倍に向上し
た。また、上記実施例と同様にして、但し、電解質溶液
としてジプロピレングリコールジエチルエーテル(EP
H)8重量%とリン酸(85%水溶液92重量%とを含
むものを含浸した実施例2、さらに、電解質溶液として
ジプロピレングリコールジエチルエーテルを含まず、リ
ン酸溶液(85%水溶液)だけを含浸した実施例3を実
施した。そして、図4と同様に燃料電池の発電性能を評
価した。結果を図6に示す。
Graphs comparing the power generation performances of the fuel cell of the present invention and the comparative example are shown in FIGS. 4 and 5. As is clear from FIG. 4, the fuel cell using the thin film electrolyte according to the present invention is
It showed a significantly higher power density than the conventional fuel cell using the fluororesin ion exchange membrane Nafion (registered trademark).
Further, as is clear from FIG. 5, as compared with a fuel cell using a thin film electrolyte using a porous membrane that does not contain a hydrophilic group, a fuel cell using a thin film electrolyte using a porous membrane into which a hydrophilic group has been introduced by graft treatment is used. Has improved its power density about twice. Also, in the same manner as in the above Example, except that dipropylene glycol diethyl ether (EP
H) Example 2 impregnated with 8% by weight and phosphoric acid (92% by weight of 85% aqueous solution), and further, only diphosphoric acid solution (85% aqueous solution) without dipropylene glycol diethyl ether as an electrolyte solution. The impregnated Example 3 was carried out, and the power generation performance of the fuel cell was evaluated in the same manner as in Fig. 4. The results are shown in Fig. 6.

【0046】[0046]

【発明の効果】本発明による常温型燃料電池用薄膜電解
質は、高分子多孔質膜に親水基を導入したことにより、
従来必要であった電解質溶液含浸時の界面活性剤の使用
が不要になる上、フッ素樹脂系イオン交換膜よりも高い
常温発電性能を示す。
The thin film electrolyte for a room temperature fuel cell according to the present invention has a hydrophilic group introduced into a polymer porous membrane.
It does not require the use of a surfactant when impregnating an electrolyte solution, which was necessary in the past, and exhibits higher room temperature power generation performance than a fluororesin ion exchange membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜電解質用多孔質膜を模式的に示す
斜視図である。
FIG. 1 is a perspective view schematically showing a porous membrane for a thin film electrolyte of the present invention.

【図2】本発明の薄膜電解質を模式的に示す縦断面図で
ある。
FIG. 2 is a vertical sectional view schematically showing a thin film electrolyte of the present invention.

【図3】本発明の燃料電池本体の構成例を示す展開斜視
図である。
FIG. 3 is a developed perspective view showing a configuration example of a fuel cell body of the present invention.

【図4】本発明と比較例の燃料電池の発電性能を示すグ
ラフである。
FIG. 4 is a graph showing the power generation performance of fuel cells of the present invention and a comparative example.

【図5】本発明と比較例の燃料電池の発電性能を示すグ
ラフである。
FIG. 5 is a graph showing the power generation performance of the fuel cells of the present invention and the comparative example.

【図6】他の実施例の燃料電池の発電性能を示すグラフ
である。
FIG. 6 is a graph showing the power generation performance of fuel cells of other examples.

【符号の説明】[Explanation of symbols]

1…多孔質膜 2…空孔 3…薄膜電解質 4…電解質溶液 5…電極 6…集電材 7…ガスケット 8…アノード端子 9…カソード端子 10…水素供給口 11…水素排ガス口 12…酸素供給口 13…酸素排ガス口 14…支持部材 15、16…封止部材 DESCRIPTION OF SYMBOLS 1 ... Porous film 2 ... Porosity 3 ... Thin film electrolyte 4 ... Electrolyte solution 5 ... Electrode 6 ... Current collector 7 ... Gasket 8 ... Anode terminal 9 ... Cathode terminal 10 ... Hydrogen supply port 11 ... Hydrogen exhaust port 12 ... Oxygen supply port 13 ... Oxygen exhaust gas port 14 ... Support member 15, 16 ... Sealing member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 開米 教充 埼玉県入間郡大井町西鶴ヶ岡1丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaime Kyokusho 1-3-3 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リン酸又は硫酸を含む電解質溶液を親水
基を有する高分子多孔質膜の空孔中に含浸してなる常温
型燃料電池用薄膜電解質。
1. A thin film electrolyte for a room temperature fuel cell, which is obtained by impregnating pores of a polymer porous membrane having a hydrophilic group with an electrolyte solution containing phosphoric acid or sulfuric acid.
【請求項2】 請求項1記載の薄膜電解質を用いた常温
型燃料電池。
2. An ambient temperature fuel cell using the thin film electrolyte according to claim 1.
JP7220390A 1994-10-27 1995-08-29 Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell Pending JPH08180891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220390A JPH08180891A (en) 1994-10-27 1995-08-29 Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-263916 1994-10-27
JP26391694 1994-10-27
JP7220390A JPH08180891A (en) 1994-10-27 1995-08-29 Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell

Publications (1)

Publication Number Publication Date
JPH08180891A true JPH08180891A (en) 1996-07-12

Family

ID=26523692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220390A Pending JPH08180891A (en) 1994-10-27 1995-08-29 Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell

Country Status (1)

Country Link
JP (1) JPH08180891A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229936A (en) * 2000-02-16 2001-08-24 Toyota Central Res & Dev Lab Inc Electrolytic film and its production method
US6667128B2 (en) * 2000-06-01 2003-12-23 Idatech, Llc Fuel cells and fuel cell systems containing non-aqueous electrolytes
JP2004501492A (en) * 2000-05-08 2004-01-15 本田技研工業株式会社 Fuel cell
WO2004079844A1 (en) * 2003-03-06 2004-09-16 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte part, membrane electrode composite and polymer electrolyte type fuel cell
KR100622722B1 (en) * 2004-12-21 2006-09-19 현대자동차주식회사 Porous polymer electrolytes composition based on polyimide and manufacturing method of the same
JP2008016287A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Ion conductive electrolyte membrane, energy device and cell of fuel cell using this
JP2009146900A (en) * 2007-12-17 2009-07-02 Commiss Energ Atom Fuel cell equipped with flat assembly and simple seal
US8137852B2 (en) 2004-11-09 2012-03-20 Ube Industries, Ltd. Liquid electrolyte
US8455141B2 (en) 2003-06-25 2013-06-04 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2013520779A (en) * 2010-02-26 2013-06-06 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229936A (en) * 2000-02-16 2001-08-24 Toyota Central Res & Dev Lab Inc Electrolytic film and its production method
JP2004501492A (en) * 2000-05-08 2004-01-15 本田技研工業株式会社 Fuel cell
US6667128B2 (en) * 2000-06-01 2003-12-23 Idatech, Llc Fuel cells and fuel cell systems containing non-aqueous electrolytes
US7258946B2 (en) 2000-06-01 2007-08-21 Idatech, Llc Fuel cells and fuel cell systems containing non-aqueous electrolytes
WO2004079844A1 (en) * 2003-03-06 2004-09-16 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte part, membrane electrode composite and polymer electrolyte type fuel cell
US7713449B2 (en) 2003-03-06 2010-05-11 Toray Industries, Inc. Polymer electrolytic material, polymer electrolytic part, membrane electrode assembly, and polymer electrolyte fuel cell
US8455141B2 (en) 2003-06-25 2013-06-04 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
US8137852B2 (en) 2004-11-09 2012-03-20 Ube Industries, Ltd. Liquid electrolyte
KR100622722B1 (en) * 2004-12-21 2006-09-19 현대자동차주식회사 Porous polymer electrolytes composition based on polyimide and manufacturing method of the same
JP2008016287A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Ion conductive electrolyte membrane, energy device and cell of fuel cell using this
JP2009146900A (en) * 2007-12-17 2009-07-02 Commiss Energ Atom Fuel cell equipped with flat assembly and simple seal
JP2013520779A (en) * 2010-02-26 2013-06-06 ジョンソン、マッセイ、フュエル、セルズ、リミテッド Membrane

Similar Documents

Publication Publication Date Title
US5656386A (en) Electrochemical cell with a polymer electrolyte and process for producing these polymer electrolytes
EP1630890B1 (en) Polymer electrolyte membrane and fuel cell employing the same
JPH11135137A (en) Solid polyelectrolyte type methanol fuel cell
KR20020096302A (en) Composite Polymeric Electrolyte Membrane, Preparation Method Thereof and Fuel Cell Containing the Same
JP2007173196A (en) Polymer electrolyte membrane, method of manufacturing same, and fuel cell
JPS6134515B2 (en)
JP4463351B2 (en) Membrane for solid polymer electrolyte fuel cell
JP2001229936A (en) Electrolytic film and its production method
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JPH08180891A (en) Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell
JPWO2008120675A1 (en) Membrane for direct liquid fuel type fuel cell and method for producing the same
CN101578729B (en) Electrolyte membrane
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
KR100405671B1 (en) Method preparing for polymer fuel cells and polymer fuel cells manufactured by using same
JP2004186120A (en) Solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
JP4810726B2 (en) Method for producing solid polymer electrolyte
JPH07296634A (en) Compound electrolytic film
Gouda et al. Novel Ternary Polymer Blend Membranes Doped with SO4/PO4-TiO2 for Low Temperature Fuel Cells
JP5059256B2 (en) Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell
JP2004158270A (en) Electrolyte membrane for fuel cell
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090514

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

EXPY Cancellation because of completion of term