JPH08176756A - Production of r-fe-b alloy powder - Google Patents

Production of r-fe-b alloy powder

Info

Publication number
JPH08176756A
JPH08176756A JP6339025A JP33902594A JPH08176756A JP H08176756 A JPH08176756 A JP H08176756A JP 6339025 A JP6339025 A JP 6339025A JP 33902594 A JP33902594 A JP 33902594A JP H08176756 A JPH08176756 A JP H08176756A
Authority
JP
Japan
Prior art keywords
phase
alloy powder
rich phase
raw material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339025A
Other languages
Japanese (ja)
Inventor
Kaname Takeya
要 武谷
Katsuya Kase
克也 加瀬
Naoya Arao
直也 新穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6339025A priority Critical patent/JPH08176756A/en
Publication of JPH08176756A publication Critical patent/JPH08176756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Abstract

PURPOSE: To stably produce alloy powder having a high R2 Fe14 B phase content (R is a rare earth metal) by preparing stock alloy powder consisting of R, B and Fe in a specified ratio, consisting of an R2 Fe14 .B phase and an R-rich phase and not contg. an Fe phase and then removing R from the R-rich phase. CONSTITUTION: Stock alloy powder consisting of 11.8-14.0at.% R, 4.8-7.5at.% B and the balance Fe, consisting of an R2 Fe14 B phase and an R-rich phase and not practically contg. an Fe phase is prepd. and R is removed from the R-rich phase by treating the alloy powder with a leaching agent such as dil. acetic acid to obtain the objective R-Fe-B alloy powder contg. the R2 Fe14 B phase as the principal phase and excellent in acid resistance, shelf stability and handleability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類磁石の製造に用
いる、R2 Fe14B相(但し、Rは希土類金属を表す。
以下同じ)を主相として有するR−Fe−B系合金金粉
末の製造方法に関する。
The present invention relates to the R 2 Fe 14 B phase (where R represents a rare earth metal) used in the production of rare earth magnets.
The same shall apply hereinafter) as a main phase of the R-Fe-B alloy gold powder.

【0002】[0002]

【従来の技術】R−Fe−B系合金粉末は、主に、溶解
鋳造粉砕法や還元拡散法で製造され、焼結永久磁石の材
料として用いられる。溶解鋳造粉砕法は、合金を構成す
る希土類金属、及びその他の合金成分を混合し、これを
高周波溶解炉等で溶融した後、鋳型に鋳込み、冷却して
得られる合金塊を粉砕する方法である。還元拡散法は、
希土類金属の酸化物と、その他の合金成分と、金属カル
シウム等との混合物を、不活性ガス等の雰囲気下で加熱
し、当該希土類金属の酸化物をカルシウムで希土類金属
に還元するとともに、生成した希土類金属を他の合金成
分中に拡散させる方法である。
2. Description of the Related Art R-Fe-B alloy powders are mainly produced by a melt casting pulverization method or a reduction diffusion method and used as a material for a sintered permanent magnet. Melt casting pulverization method is a method of mixing rare earth metals constituting an alloy, and other alloy components, melting this in a high-frequency melting furnace or the like, then casting in a mold, and crushing an alloy ingot obtained by cooling. . The reduction diffusion method is
A mixture of a rare earth metal oxide, another alloy component, and metal calcium is heated in an atmosphere of an inert gas or the like to reduce the rare earth metal oxide with calcium to a rare earth metal and to generate the oxide. It is a method of diffusing a rare earth metal into other alloy components.

【0003】これらの方法で得られた合金粉末は、通
常、その粉末粒子中に、磁気特性を発現するR2 Fe14
Bからなる主相と、Rリッチ相と、Bリッチ相とを有す
る。該Rリッチ相は、合金粉末を液相焼結して永久磁石
を製造する際に、主相の微細組織を結合させるととも
に、保磁力の発現に関与する点で重要である。しかし、
Rで示される希土類金属は、酸化し易いため、例えば、
粉砕過程においても合金粒子中に形成されたRリッチ相
が減少し、その機能が十分に発揮されない。また、その
機能を発揮させるためには粒子中のRリッチ相の存在割
合を増加すればよいが、そうするとR2 Fe14Bからな
る主相の存在割合が減少するため、得られる合金粉末の
磁気特性が悪化する。
The alloy powder obtained by these methods usually has R 2 Fe 14 which exhibits magnetic properties in its powder particles.
It has a main phase composed of B, an R-rich phase, and a B-rich phase. The R-rich phase is important because it binds the fine structure of the main phase and contributes to the expression of coercive force when the alloy powder is liquid-phase sintered to produce a permanent magnet. But,
Since the rare earth metal represented by R is easily oxidized, for example,
Even in the pulverization process, the R-rich phase formed in the alloy particles is reduced, and the function thereof is not fully exhibited. Further, in order to exert its function, it is sufficient to increase the abundance ratio of the R-rich phase in the particles, but then the abundance ratio of the main phase composed of R 2 Fe 14 B decreases, so that the magnetic properties of the obtained alloy powder are reduced. The characteristics deteriorate.

【0004】一方、磁石化工程、即ち、微粉砕工程、圧
縮・成形工程及び焼結工程における耐酸化技術が向上す
るにともない、従来の方法において酸化損失したであろ
う分だけの合金原料中のR成分量を減少させ、合金粒子
中のRリッチ相の存在割合を低減させることにより、R
2 Fe14Bからなる主相の存在割合を増加させ、永久磁
石の磁気特性を向上させることが試みられている。
On the other hand, as the oxidation resistance technique in the magnetizing process, that is, the fine pulverizing process, the compression / molding process and the sintering process is improved, the amount of the alloy raw material that is likely to have been oxidized and lost in the conventional method is reduced. By reducing the amount of R component and reducing the proportion of the R-rich phase in the alloy particles, R
Attempts have been made to improve the magnetic properties of permanent magnets by increasing the proportion of the main phase composed of 2 Fe 14 B.

【0005】しかし、上記溶解鋳造粉砕法では、冷却時
に、合金粒子中にFe初晶が発生しやすいため、合金原
料中のR成分量を減少させてRリッチ相量を減少させよ
うとすると大量のFe初晶が発生し、Rリッチ相が大き
く偏析して組織不良になるという問題がある。特に工業
生産上、製造規模が大きくなるほど、Fe初晶発生の抑
制は困難になる。
However, in the above-mentioned melt-cast pulverization method, since Fe primary crystals are likely to occur in the alloy particles during cooling, a large amount of R-rich phase is attempted to be reduced by reducing the amount of R component in the alloy raw material. However, there is a problem that primary crystals of Fe occur and the R-rich phase is largely segregated, resulting in a poor structure. Particularly in industrial production, it becomes more difficult to suppress the generation of Fe primary crystals as the production scale increases.

【0006】また、熱処理によりFe初晶を消失させる
方法があるが、コストがかかる上、不十分である。
There is also a method of eliminating the primary Fe crystal by heat treatment, but this is costly and insufficient.

【0007】上記還元拡散法では、合金原料中のR成分
量を減少させると、Fe成分に対するR成分の拡散が不
十分になることからFe相が残存し、組織不良となる。
また、還元拡散法では、得られた合金粒子が、R2 Fe
14Bからなる主相の周囲をRリッチ相が取り囲んだ状態
になり、そして、溶解鋳造粉砕法で得られた合金粒子に
比べ、Rリッチ相がより分散しているため、上記磁石化
工程で酸化され易く、希土類元素が消耗されて磁石特性
のばらつきの原因となる。
In the above reduction diffusion method, when the amount of the R component in the alloy raw material is reduced, the diffusion of the R component with respect to the Fe component becomes insufficient, so that the Fe phase remains and the structure becomes defective.
In addition, in the reduction diffusion method, the obtained alloy particles are R 2 Fe.
Since the R-rich phase surrounds the main phase composed of 14 B, and the R-rich phase is more dispersed than the alloy particles obtained by the melt casting and pulverization method, the R-rich phase is dispersed in the magnetizing step. It is easily oxidized, and rare earth elements are consumed, which causes variations in magnet characteristics.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、Fe
相が存在せず、Rリッチ相が少なく、かつR2 Fe14
からなる主相量が多い合金粉末を、量産規模で製造しう
る方法を提供することにある。
The object of the present invention is to provide Fe
Phase does not exist, there are few R rich phases, and R 2 Fe 14 B
An object of the present invention is to provide a method capable of producing an alloy powder containing a large amount of a main phase on a mass production scale.

【0009】[0009]

【課題を解決するための手段】本発明は、R2 Fe14
相(但し、Rは希土類金属を表す)を主相として有する
R−Fe−B系合金粉末を製造する方法において、R2
Fe14B相及びRリッチ相(但し、Rは前記と同義であ
る)からなり、Fe相を実質的に含まない原料合金粉末
であって、該Rの含有率が11.8〜14.0原子%、
Bの含有率が4.8〜7.5原子%、残部がFeである
原料合金粉末を得た後、該原料合金粉末のRリッチ相か
ら、Rを溶出剤を用いて除去することを特徴とするR−
Fe−B系合金粉末を製造方法である。
SUMMARY OF THE INVENTION The present invention is directed to R 2 Fe 14 B
In a method for producing an R—Fe—B based alloy powder having a phase (where R represents a rare earth metal) as a main phase, R 2
A raw material alloy powder consisting of an Fe 14 B phase and an R rich phase (where R has the same meaning as described above) and substantially free of the Fe phase, wherein the R content is 11.8 to 14.0. atom%,
After obtaining a raw material alloy powder having a B content of 4.8 to 7.5 atomic% and the balance being Fe, R is removed from the R-rich phase of the raw material alloy powder by using an eluent. R-
This is a method for producing Fe-B alloy powder.

【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】原料合金粉末の製造 本発明に用いる原料合金粉末は、R2 Fe14B相及びR
リッチ相からなる。
Production of Raw Material Alloy Powder The raw material alloy powder used in the present invention is composed of R 2 Fe 14 B phase and R
It consists of a rich phase.

【0012】そして、前記原料合金粉末は、Rの含有率
が11.8〜14.0原子%、Bの含有率が4.8〜
7.5原子%、残部がFeである。なお、Rの含有率や
Bの含有率が少な過ぎると、Fe相が生じる場合があ
る。Rの含有率が多過ぎると、Rリッチ相が多くなり、
余計なR成分を要するだけでなく、後述する溶出剤の使
用量が増大する。Bの含有率が多過ぎると、Bリッチ相
が多くなり、主相量の低下を招くため望ましくない。
In the raw material alloy powder, the R content is 11.8 to 14.0 atomic%, and the B content is 4.8 to.
7.5 atomic% and the balance being Fe. If the R content or the B content is too low, an Fe phase may occur. If the R content is too high, the R rich phase increases,
Not only the extra R component is required, but also the amount of the eluent described below increases. When the content ratio of B is too high, the B-rich phase increases and the amount of the main phase decreases, which is not desirable.

【0013】このような原料合金粉末の製造方法として
は、特に制限はなく、公知のR−Fe−B系合金粉末製
造方法でよいが、好ましくは、溶解鋳造粉砕法、還元拡
散法であり、さらに好ましくは、還元拡散法である。
The method for producing such a raw material alloy powder is not particularly limited, and a known R-Fe-B based alloy powder production method may be used, but a melt casting pulverization method and a reduction diffusion method are preferable, The reduction diffusion method is more preferable.

【0014】溶解鋳造粉砕法による原料合金粉末の製造
例としては、例えば、次のような方法が挙げられる。
As an example of producing the raw material alloy powder by the melt casting pulverization method, the following method can be mentioned, for example.

【0015】合金粉末の原料となる純希土類金属
(R)、Fe−R系合金、電解鉄等の純鉄及びフェロボ
ン等のFe−B系合金をルツボにいれ真空加熱や高周波
加熱等により溶解し、溶体をルツボ中で対流させて組成
を均一にする。これらの合金粉末の配合量は、用いるF
e−R系合金及びFe−B系合金の種類により、一概に
決定できないが、通常、R量の損失を考慮して、目的物
の組成中のR量に対して2〜5重量%過剰量となるよう
に、各合金粉末を配合する。加熱温度は、特に制限はな
いが、1250〜1350℃が好ましい。そして、これ
を水冷用銅製又は鉄製の鋳型に鋳込み、冷却して鋳塊と
した後、粉砕する。粉砕は、先ずジョークラッシャー等
を用いて粗粉砕した後、微粉砕するのが好ましい。
Pure rare earth metal (R) as a raw material of alloy powder, pure iron such as Fe-R alloy, electrolytic iron and Fe-B alloy such as ferrobon are put in a crucible and melted by vacuum heating or high frequency heating. , The solution is convected in the crucible to make the composition uniform. The blending amount of these alloy powders is F
Although it cannot be unconditionally determined depending on the types of the e-R alloy and the Fe-B alloy, it is usually 2 to 5% by weight excess with respect to the R amount in the composition of the object in consideration of the loss of the R amount. Each alloy powder is blended so that The heating temperature is not particularly limited, but is preferably 1250 to 1350 ° C. Then, this is cast into a water-cooling copper or iron mold, cooled to form an ingot, and then crushed. The crushing is preferably carried out by coarsely crushing using a jaw crusher or the like and then finely crushing.

【0016】還元拡散法による原料合金粉末の製造例と
しては、例えば、次のような方法が挙げられる。
Examples of the production of the raw material alloy powder by the reduction diffusion method include the following methods.

【0017】合金粉末の原料となるR2 3 、Fe粉及
びFeB粉と、還元剤としての粒状CaとをV字型ブレ
ンダー、S字型ブレンダー等を用いて混合する。R2
3 、Fe粉及びFeB粉の配合量は、目的組成に応じて
仕込まれるが、通常、R量の損失を考慮して、目的物の
組成中のR量に対して2〜5重量%過剰量となるよう
に、各合金粉末を配合する。粒状Caの配合量は、通
常、R2 3 の還元反応の化学量論量の1.1〜1.8
倍量用いられる。次に、これをステンレス容器内に配置
し、容器内にアルゴンガス等の不活性ガスを供給しなが
ら熱処理する。不活性ガスの該容器内への流量は容器内
の圧力が大気圧になるような量に設定するのが好まし
い。熱処理は、900〜1100℃で2〜8時間加熱す
るのが好ましい。次に、得られた熱処理物を冷却した
後、水洗し、熱処理物に含まれる余剰のCa及びCaO
を除去する。そして、含まれる水分をアルコールで置換
した後、乾燥して還元拡散粉を得、これを微粉砕するも
のである。
R 2 O 3 , which is a raw material of the alloy powder, Fe powder and FeB powder, and granular Ca as a reducing agent are mixed using a V-shaped blender, an S-shaped blender or the like. R 2 O
3 , Fe powder and FeB powder are blended according to the target composition, but in consideration of the loss of the R content, 2 to 5% by weight is excessive with respect to the R content in the target composition. Each alloy powder is blended so that The blending amount of the granular Ca is usually 1.1 to 1.8 which is the stoichiometric amount of the reduction reaction of R 2 O 3.
Used in double dose. Next, this is placed in a stainless steel container and heat-treated while supplying an inert gas such as argon gas into the container. The flow rate of the inert gas into the container is preferably set so that the pressure in the container becomes atmospheric pressure. The heat treatment is preferably heating at 900 to 1100 ° C. for 2 to 8 hours. Next, after cooling the obtained heat-treated product, it is washed with water to remove excess Ca and CaO contained in the heat-treated product.
Is removed. Then, after replacing the contained water with alcohol, it is dried to obtain a reduced diffusion powder, which is finely pulverized.

【0018】Rの溶出除去工程 本発明においては、上記原料合金粉末のRリッチ相か
ら、Rを溶出剤を用いて除去する。
R Elution Removal Step In the present invention, R is removed from the R-rich phase of the raw material alloy powder using an eluent.

【0019】本発明に用いる溶出剤としては、Rリッチ
相からRを除去できれば油性、水性のいずれでもよい
が、溶出処理後の合金粉末の洗浄容易性、コスト等を考
慮すれば酸が好ましい。
The eluent used in the present invention may be either oily or aqueous as long as R can be removed from the R-rich phase, but an acid is preferable in consideration of the ease of cleaning the alloy powder after the elution treatment, cost and the like.

【0020】油性溶出剤としては、例えば、カルボン酸
や有機リン酸等の酸性抽出剤を挙げることができる。
Examples of oily eluents include acidic extractants such as carboxylic acids and organic phosphoric acids.

【0021】水性溶出剤としては、例えば、希塩酸、希
酢酸等の希酸が好ましく、中でも希酢酸は、pHコント
ロールが容易であり、所定のpHを維持するために追加
する量が少量でよく、また、その使用量により、容易に
R溶出反応の終点を判断することができるので、特に好
ましい。
As the aqueous eluent, for example, a dilute acid such as dilute hydrochloric acid or dilute acetic acid is preferable. Of these, dilute acetic acid is easy to control the pH, and a small amount may be added to maintain a predetermined pH. Moreover, the end point of the R elution reaction can be easily determined by the amount used, which is particularly preferable.

【0022】Rの溶出除去は、このような溶出剤と上記
原料合金粉末とを接触させて行う。例えば、水洗後の合
金スラリーに再び多量の水を加え、これを攪拌しなが
ら、これに希酢酸を、好ましくはpH4.5〜6に属す
る任意の一定pH値に維持しながら、pH値が変動しな
くなるまで滴下して行う。なお、このようにして希酢酸
を滴下する場合、上記一定のpH値を任意の時間維持し
た後、一旦、合金スラリーを水洗し、その後同様に希酢
酸を一定pH値に維持しながら滴下する操作を繰り返し
て行うのが好ましい。このような操作を繰り返すことに
より、各操作でpH維持に要した希酢酸の量が一定にな
ったときを、R溶出反応終点の判断目安とすることがで
きる。
The elution of R is carried out by bringing such an eluent into contact with the raw material alloy powder. For example, a large amount of water is added again to the alloy slurry after washing with water, and while stirring this, dilute acetic acid is added thereto, preferably while maintaining an arbitrary constant pH value belonging to pH 4.5 to 6, the pH value changes. Drip until no more. When the dilute acetic acid is added dropwise in this manner, after the above-mentioned constant pH value is maintained for an arbitrary time, the alloy slurry is once washed with water, and then similarly dilute acetic acid is added dropwise while maintaining the constant pH value. Is preferably repeated. By repeating such an operation, when the amount of dilute acetic acid required to maintain the pH in each operation becomes constant, it can be used as a criterion for determining the end point of the R elution reaction.

【0023】このような上記原料合金粉末のRリッチ相
から、Rを溶出除去する工程において、上記還元拡散法
により製造された原料合金粉末は、Rリッチ相が合金表
面に分散性よく存在しているため、溶出剤との反応性が
よい点でより好ましい。
In the step of eluting and removing R from the R-rich phase of the raw material alloy powder, the raw material alloy powder produced by the reduction diffusion method has the R-rich phase on the alloy surface with good dispersibility. Therefore, it is more preferable because it has good reactivity with the eluent.

【0024】また、還元拡散法では、その湿式工程から
連続してRリッチ相の溶出処理を行うことができるた
め、製造工程を簡略化できる点でも好ましい。
Further, in the reduction diffusion method, since the R-rich phase elution treatment can be continuously performed from the wet process, it is preferable in that the manufacturing process can be simplified.

【0025】[0025]

【実施例】以下、実施例により、さらに具体的に説明す
る。 [実施例1]純度95%以上のNd31.9重量部、B
1.0重量部及び電解鉄67.1重量部を混合し、これ
を高周波溶解炉等で溶融した後、冷却し、合金塊を得、
次いで、これを1100℃で20時間、均質化のための
熱処理を行った。
EXAMPLES The present invention will be described in more detail below with reference to examples. [Example 1] 31.9 parts by weight of Nd having a purity of 95% or more, B
1.0 parts by weight and 67.1 parts by weight of electrolytic iron were mixed, and this was melted in a high-frequency melting furnace or the like and then cooled to obtain an alloy lump,
Then, this was heat-treated at 1100 ° C. for 20 hours for homogenization.

【0026】次に、この合金塊をスタンプミルで粒径5
00μm以下に粉砕し、Nd30.1重量%、B0.9
7重量%、残部がFeである原料合金粉末を得た。
Next, this alloy ingot was subjected to a stamp mill with a grain size of 5
Crushed to a size of less than 00 μm, Nd 30.1% by weight, B0.9
A raw material alloy powder having 7% by weight and the balance being Fe was obtained.

【0027】得られた原料合金粉末の粒子の断面を、X
線マイクロアナライザー(以下、EPMAという)で観
察した結果、Nd2Fe14B相を主相とし、Bリッチ相
と、部分的に厚さ約10μm程度の層状をなすNdリッ
チ相とが認められた。Fe初晶は認められなかった。
The cross section of the particles of the obtained raw material alloy powder was taken as X
As a result of observation with a line microanalyzer (hereinafter referred to as EPMA), a Nd 2 Fe 14 B phase as a main phase, a B-rich phase, and a layered Nd-rich phase partially having a thickness of about 10 μm were observed. . No primary Fe crystal was observed.

【0028】得られた原料合金粉末における、上記相の
存在割合を算出したところ、Nd2Fe14B相は、9
4.8重量%、Ndリッチ相は、4.9重量%、Bリッ
チ相(Nd1.1Fe44相)は0.3重量%であった。
なお、Ndリッチ相は、Ndを95重量%、Feを5重
量%含有するものとして算出した。
When the abundance ratio of the above phases in the obtained raw material alloy powder was calculated, the Nd 2 Fe 14 B phase was found to be 9
4.8 wt%, Nd-rich phase, 4.9 wt%, B-rich phase (Nd 1.1 Fe 4 B 4 phase) was 0.3 wt%.
The Nd-rich phase was calculated as containing 95% by weight of Nd and 5% by weight of Fe.

【0029】なお、得られた原料合金粉末のNd含有率
は、13.6原子%であり、B含有率は、5.9原子%
であり、Fe含有率は、80.5原子%であった。
The raw material alloy powder thus obtained had an Nd content of 13.6 atom%, and a B content of 5.9 atom%.
And the Fe content was 80.5 atom%.

【0030】次に、この原料合金粉末200gを1リッ
トルの純水中に投入し、これに10倍希釈の酢酸水溶液
を、反応液のpHが5になるように維持しながら攪拌し
つつ添加し、3分間Ndの溶出処理を行った。この溶出
処理に使用した酢酸水溶液は、64mlであった。次
に、レパルプ洗浄を1回行ない、同じ溶出処理をくりか
えしたところ、溶出処理に使用した酢酸量は徐々に減少
し、10回目では12ml、11回目では13ml、1
2回目では12mlとなり、酢酸使用量が安定した。そ
して、溶出処理を終了し、5回の純水レパルプ洗浄を行
い、純水をアルコールで置換した後、これを、真空乾燥
機で、40℃で8時間乾燥し、室温まで冷却して合金粉
末を得た。得られた合金粉末は、193.7gであり、
成分分析の結果、Ndは28.1重量%、Bは0.99
重量%であった(Nd:12.5原子%、B:5.9原
子%、Fe:81.6原子%)。また、EPMAによ
り、合金粉末断面を観察した結果、Nd2Fe14B相の
表面近傍のNdリッチ相は消失し、合金内部に、層状の
Ndリッチ相が部分的に存在していた。なお、Fe初晶
は、溶出処理前と同様に認められなかった。この合金粉
末における、上記相の存在割合を算出したところ、Nd
2Fe14B相は、97.9%、Ndリッチ相は、2.0
%、Bリッチ相(Nd1.1Fe44相)は0.1重量%
であった。なお、Ndリッチ相は、Ndを95重量%、
Feを5重量%含有するものとして算出した。 [実施例2]Nd23(純度99.%)1846g、B
含有量19.1%のFe−B粉末319g、Fe粉末
(純度99%)3287g、Ca粒(純度99%)99
0g、及び無水CaCl2 162gを十分混合して、ス
テンレス容器内に投入し、これらをAr気流下に105
0℃で7時間反応させた。
Next, 200 g of this raw material alloy powder was put into 1 liter of pure water, and a 10-fold diluted aqueous acetic acid solution was added thereto with stirring while maintaining the pH of the reaction solution at 5. Nd elution treatment was performed for 3 minutes. The acetic acid aqueous solution used for this elution treatment was 64 ml. Next, when the repulp was washed once and the same elution treatment was repeated, the amount of acetic acid used in the elution treatment gradually decreased, and 12 ml was used for the 10th time, 13 ml was used for the 11th time, and 1 ml was used.
The second time was 12 ml, and the amount of acetic acid used was stable. Then, after the elution treatment was completed, the pure water repulp was washed 5 times, and the pure water was replaced with alcohol, which was then dried at 40 ° C. for 8 hours in a vacuum dryer and cooled to room temperature to obtain the alloy powder. Got The obtained alloy powder weighs 193.7 g,
As a result of component analysis, Nd was 28.1% by weight, and B was 0.99.
% (Nd: 12.5 atomic%, B: 5.9 atomic%, Fe: 81.6 atomic%). Further, as a result of observing the cross section of the alloy powder by EPMA, the Nd rich phase near the surface of the Nd 2 Fe 14 B phase disappeared and the layered Nd rich phase was partially present inside the alloy. Note that Fe primary crystals were not observed as in the case before the elution treatment. When the existence ratio of the above phase in this alloy powder was calculated, Nd was calculated.
2 Fe 14 B phase is 97.9%, Nd rich phase is 2.0
%, B-rich phase (Nd 1.1 Fe 4 B 4 phase) is 0.1% by weight
Met. The Nd-rich phase contains 95% by weight of Nd,
It was calculated as containing 5% by weight of Fe. [Example 2] Nd 2 O 3 (purity 99.%) 1846 g, B
319 g of Fe-B powder with a content of 19.1%, Fe powder (purity 99%) 3287 g, Ca grains (purity 99%) 99
0 g and 162 g of anhydrous CaCl 2 were sufficiently mixed and put into a stainless steel container, and these were placed under Ar stream to 105
The reaction was carried out at 0 ° C for 7 hours.

【0031】温度が室温になるまで十分に冷却後、反応
物を取り出して粗砕し、これを水中崩壊させ、常法によ
りCa分を除去した。次いで、アルコール置換後、これ
を真空乾燥機を用いて、40℃で8時間乾燥した後、室
温まで冷却し、原料合金粉末を得た。得られた原料合金
粉末は、4998gであった。
After the temperature was sufficiently cooled to room temperature, the reaction product was taken out and coarsely crushed, and this was disintegrated in water, and the Ca content was removed by a conventional method. Then, after alcohol substitution, this was dried at 40 ° C. for 8 hours using a vacuum dryer, and then cooled to room temperature to obtain a raw material alloy powder. The obtained raw material alloy powder was 4998 g.

【0032】得られた原料合金粉末の粒子の断面を、E
PMAで観察した結果、Nd2Fe14B相を主相とし、
Bリッチ相と、合金粒子表面から該主相の粒界にそって
部分的に存在するNdリッチ相とが認められた。Fe初
晶は認められなかった。
The cross section of the particles of the obtained raw material alloy powder was taken as E
As a result of observation with PMA, the Nd 2 Fe 14 B phase was the main phase,
A B-rich phase and an Nd-rich phase partially present along the grain boundaries of the main phase from the surface of the alloy particles were recognized. No primary Fe crystal was observed.

【0033】得られた原料合金粉末における、上記相の
存在割合を算出したところ、Nd2Fe14B相は、9
7.9重量%、Ndリッチ相は、1.9重量%、Bリッ
チ相(Nd1.1Fe44相)は0.2重量%であった。
なお、Ndリッチ相は、Ndを95重量%、Feを5重
量%含有するものとして算出した。
When the abundance ratio of the above phases in the obtained raw material alloy powder was calculated, the Nd 2 Fe 14 B phase was found to be 9
7.9 wt%, Nd-rich phase, 1.9 wt%, B-rich phase (Nd 1.1 Fe 4 B 4 phase) was 0.2 wt%.
The Nd-rich phase was calculated as containing 95% by weight of Nd and 5% by weight of Fe.

【0034】また、得られた原料合金粉末におけるNd
の含有率は、28.4重量%であり、Bの含有率は、
1.00重量%であり、そして、不可避不純物としてC
aが28.4重量%であり、酸素が0.13重量%であ
り、残部はFeであった(Nd:12.7原子%、B:
5.9原子%、Fe:81.4原子%)。
Further, Nd in the obtained raw material alloy powder
The content of B is 28.4% by weight, and the content of B is
1.00% by weight, and C as an unavoidable impurity
a was 28.4% by weight, oxygen was 0.13% by weight, and the balance was Fe (Nd: 12.7 atomic%, B:
5.9 atomic%, Fe: 81.4 atomic%).

【0035】次に、この原料合金粉末200gを1リッ
トルの純水中に投入し、実施例1と同様にして溶出処理
を行った。なお、1回目の溶出処理に使用した酢酸水溶
液の量は、34mlであり、2回目は22ml、3回目
は13ml、4回目は11mlは、5回目は11ml、
8回目は11mlとなって、使用量が安定した。
Next, 200 g of this raw material alloy powder was put into 1 liter of pure water and an elution treatment was carried out in the same manner as in Example 1. The amount of acetic acid aqueous solution used for the first elution treatment was 34 ml, the second was 22 ml, the third was 13 ml, the fourth was 11 ml, the fifth was 11 ml,
The 8th time became 11 ml, and the usage amount became stable.

【0036】溶出処理時の、酢酸使用量の安定値が、実
施例1に比べて小さいのは、十分にNdリッチ相が溶出
したためと考えられる。実施例1の場合は、EPMA観
察や、成分組成から算出されるように、Ndリッチ相が
合金内に残存しており、これが、徐々に酢酸と反応して
いるために、酢酸使用量が本実施例より多い量で安定し
ているものと考えられる。
The stable value of the amount of acetic acid used during the elution treatment was smaller than that in Example 1, probably because the Nd-rich phase was sufficiently eluted. In the case of Example 1, the Nd-rich phase remained in the alloy as calculated from EPMA observation and the component composition, and this was gradually reacting with acetic acid. It is considered to be stable in a larger amount than the examples.

【0037】得られた合金粉末は、196.2ggであ
り、成分分析の結果、Ndは26.8重量%、Bは1.
00重量%、そして不可避不純物としての酸素は0.0
8重量%、Caは0.03重量%であった(Nd:1
1.8原子%、B:5.9原子%、Fe:82.3原子
%)。また、EPMAにより、合金粉末断面を観察した
結果、酸処理前と同様にFe初晶は観察されず、またN
dリッチ相も観察されなかった。この合金粉末におけ
る、上記相の存在割合を算出したところ、Nd2Fe14
B相は、99.8重量%、Ndリッチ相は、0.2重量
%、Bリッチ相(Nd1.1Fe44相)は0重量%であ
った。なお、Ndリッチ相は、Ndを95重量%、Fe
を5重量%含有するものとして算出した。 [実施例3]実施例2と同様にして、直接還元拡散法で
合金を製造し、実施例2において、アルコール置換後、
乾燥工程前の合金粉末4998gを含むスラリーを、2
5リットルの純水中に投入した外は、実施例2と同様に
溶出処理を行なった。
The obtained alloy powder was 196.2 gg, and as a result of compositional analysis, Nd was 26.8 wt% and B was 1.
00% by weight, and oxygen as an unavoidable impurity is 0.0
8% by weight and 0.03% by weight of Ca (Nd: 1
1.8 atomic%, B: 5.9 atomic%, Fe: 82.3 atomic%). As a result of observing the cross section of the alloy powder by EPMA, no Fe primary crystal was observed as in the case before the acid treatment, and N
No d-rich phase was also observed. The proportion of the above phases present in this alloy powder was calculated to be Nd 2 Fe 14
B phase, 99.8 wt%, Nd-rich phase, 0.2 wt%, B-rich phase (Nd 1.1 Fe 4 B 4 phase) was 0 wt%. The Nd-rich phase contains 95% by weight of Nd and Fe.
Was calculated as containing 5% by weight. [Example 3] An alloy was produced by the direct reduction diffusion method in the same manner as in Example 2, and in Example 2, after alcohol substitution,
The slurry containing 4998 g of the alloy powder before the drying step was mixed with 2
The elution treatment was performed in the same manner as in Example 2 except that the solution was poured into 5 liters of pure water.

【0038】なお、1回目の溶出処理に使用した酢酸水
溶液の量は、873mlであり、2回目は558ml、
3回目は311ml、4回目は293mlは、5回目は
278ml、8回目は284mlとなって、使用量が安
定した。
The amount of the acetic acid aqueous solution used in the first elution treatment was 873 ml, and the second was 558 ml.
The 3rd time was 311 ml, the 4th time was 293 ml, the 5th time was 278 ml, and the 8th time was 284 ml.

【0039】得られた合金粉末は、4912gであり、
成分分析の結果、Ndは26.9重量%、Bは1.00
重量%、そして不可避不純物としての酸素は0.09重
量%、Caは0.03重量%であった。また、EPMA
により、合金粉末断面を観察した結果、酸処理前と同様
にFe初晶は観察されず、またNdリッチ相も観察され
なかった。この合金粉末における、上記相の存在割合を
算出したところ、Nd2Fe14B相は、99.7重量
%、Ndリッチ相は、0重量%、Bリッチ相(Nd1.1
Fe44相)は0.3重量%であった。なお、Ndリッ
チ相は、Ndを95重量%、Feを5重量%含有するも
のとして算出した。
The obtained alloy powder weighed 4912 g,
As a result of component analysis, Nd was 26.9% by weight and B was 1.00.
% By weight, oxygen as unavoidable impurities was 0.09% by weight, and Ca was 0.03% by weight. Also, EPMA
As a result of observing the cross section of the alloy powder, no Fe primary crystal was observed and no Nd-rich phase was observed as in the case before the acid treatment. When the abundance ratios of the phases in this alloy powder were calculated, the Nd 2 Fe 14 B phase was 99.7 wt%, the Nd rich phase was 0 wt%, and the B rich phase (Nd 1.1
Fe 4 B 4 phase) was 0.3% by weight. The Nd-rich phase was calculated as containing 95% by weight of Nd and 5% by weight of Fe.

【0040】[0040]

【発明の効果】本発明によると、R−FeーB系合金に
おいて、磁石設計上、期待されているR2 Fe14B相の
存在量が高い合金粉末を安定して、かつ経済的に製造す
ることができ、しかも、Rリッチ相がきわめて少ないた
め、耐酸化性、貯蔵安定性、及び取扱性が優れた合金粉
末を得ることができる。
According to the present invention, in the R-Fe-B system alloy, alloy powder having a high abundance of the R 2 Fe 14 B phase, which is expected in magnet design, can be produced stably and economically. Moreover, since the R-rich phase is extremely small, it is possible to obtain an alloy powder having excellent oxidation resistance, storage stability, and handleability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R2 Fe14B相(但し、Rは希土類金属
を表す)を主相として有するR−Fe−B系合金粉末を
製造する方法において、 R2 Fe14B相及びRリッチ相(但し、Rは前記と同義
である)からなり、Fe相を実質的に含まない原料合金
粉末であって、該Rの含有率が11.8〜14.0原子
%、Bの含有率が4.8〜7.5原子%、残部がFeで
ある原料合金粉末を得た後、該原料合金粉末のRリッチ
相から、Rを溶出剤を用いて除去することを特徴とする
R−Fe−B系合金粉末を製造方法。
1. A method for producing an R—Fe—B alloy powder having an R 2 Fe 14 B phase (wherein R represents a rare earth metal) as a main phase, which comprises a R 2 Fe 14 B phase and an R rich phase. (Provided that R has the same meaning as described above), and the raw material alloy powder does not substantially contain the Fe phase, and the content of R is 11.8 to 14.0 atomic% and the content of B is R-Fe, characterized in that after obtaining a raw material alloy powder having 4.8 to 7.5 atomic% and the balance being Fe, R is removed from the R-rich phase of the raw material alloy powder by using an eluent. -A method for producing a B-based alloy powder.
【請求項2】 前記原料合金粉末が、還元拡散法により
得た合金粉末である請求項1に記載の製造方法。
2. The manufacturing method according to claim 1, wherein the raw material alloy powder is an alloy powder obtained by a reduction diffusion method.
【請求項3】 前記原料合金粉末が、スラリー状である
請求項2に記載の製造方法。
3. The manufacturing method according to claim 2, wherein the raw material alloy powder is in the form of a slurry.
JP6339025A 1994-12-28 1994-12-28 Production of r-fe-b alloy powder Pending JPH08176756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339025A JPH08176756A (en) 1994-12-28 1994-12-28 Production of r-fe-b alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6339025A JPH08176756A (en) 1994-12-28 1994-12-28 Production of r-fe-b alloy powder

Publications (1)

Publication Number Publication Date
JPH08176756A true JPH08176756A (en) 1996-07-09

Family

ID=18323564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339025A Pending JPH08176756A (en) 1994-12-28 1994-12-28 Production of r-fe-b alloy powder

Country Status (1)

Country Link
JP (1) JPH08176756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222966A (en) * 2010-03-24 2011-11-04 Tdk Corp Rare-earth magnetic alloy and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222966A (en) * 2010-03-24 2011-11-04 Tdk Corp Rare-earth magnetic alloy and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4767450A (en) Process for producing the rare earth alloy powders
EP0237587B1 (en) Method for producing a rare earth alloy and rare earth alloy
JPH06340902A (en) Production of sintered rare earth base permanent magnet
US4898613A (en) Rare earth alloy powder used in production of permanent magnets
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPH08176756A (en) Production of r-fe-b alloy powder
JPH0457724B2 (en)
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JPH0745413A (en) Manufacture of raw material powder for r-fe-b permanent magnet and alloy powder for adjusting raw material powder
JPS6160801A (en) Rare earth alloy powder
JPH0582442B2 (en)
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS627831A (en) Manufacture of permanent magnet material
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS6263645A (en) Production of permanent magnet material
JPS624806A (en) Production of alloy powder for rare earth magnet
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet
JPS61270304A (en) Rare earth-containing alloy powder
JPS61270303A (en) Rare earth-containing alloy powder
JPH0582443B2 (en)
JPH0732200A (en) Production of sn-containing ndfeb sintered magnet having excellent corrosion resistance
JPH04318102A (en) Rare-earth alloy powder and its production