JPH04318102A - Rare-earth alloy powder and its production - Google Patents

Rare-earth alloy powder and its production

Info

Publication number
JPH04318102A
JPH04318102A JP3108322A JP10832291A JPH04318102A JP H04318102 A JPH04318102 A JP H04318102A JP 3108322 A JP3108322 A JP 3108322A JP 10832291 A JP10832291 A JP 10832291A JP H04318102 A JPH04318102 A JP H04318102A
Authority
JP
Japan
Prior art keywords
powder
rare earth
alloy powder
alloy
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3108322A
Other languages
Japanese (ja)
Inventor
Yukiko Ozaki
由紀子 尾崎
Michio Shimotomai
道夫 下斗米
Yasutaka Fukuda
泰隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3108322A priority Critical patent/JPH04318102A/en
Publication of JPH04318102A publication Critical patent/JPH04318102A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth-transition metal-based alloy powder on an industrial scale at a low cost and micronize the powder by hydrogen-embrittling the alloy. CONSTITUTION:Metallic calcium and/or calcium hydride and calcium chloride are mixed into a raw powder obtained by mixing one or >=2 kinds of RE oxides and a TM powder, the obtained mixture is heated and reduced in an inert atmosphere to accelerate its diffusion reaction, the obtained reaction product is brought into contact with water and/or alcohol to elute the water solubles contained in the reaction product, and the obtained RE-TM powder, if necessary, is further dried in an inert gas contg. hydrogen, embrittled and then crushed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、磁気特性に優れるだ
けでなく、耐食性および温度特性にも優れる希土類−遷
移金属系磁石用の原料合金粉末およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy powder for rare earth-transition metal magnets that has not only excellent magnetic properties but also excellent corrosion resistance and temperature characteristics, and a method for producing the same.

【0002】0002

【従来の技術】現在、製造されている代表的な永久磁石
材料としては、アルニコ磁石、フェライト磁石及び希土
類磁石などが挙げられる。アルニコ磁石は歴史的に古い
が、安価なフェライト磁石あるいはさらにより高い磁気
特性を持つ希土類磁石の開発により、需要は低下しつつ
ある。一方フェライト磁石は、酸化物を主原料としてい
ることから化学的に安定で、かつ低コストであるため、
現在でも磁石材料の主流を占めているが、最大エネルギ
ー積が小さいという欠点があった。
2. Description of the Related Art Typical permanent magnet materials currently manufactured include alnico magnets, ferrite magnets, and rare earth magnets. Alnico magnets have a long history, but demand is declining due to the development of cheaper ferrite magnets or even rare earth magnets with even higher magnetic properties. On the other hand, ferrite magnets are chemically stable and low cost because they are made of oxide as the main raw material.
Although it still occupies the mainstream of magnetic materials today, it has the drawback of having a small maximum energy product.

【0003】その後、希土類イオンの持つ磁気異方性と
遷移金属元素の持つ磁気モーメントとを組合わせたSm
−Co系磁石が出現し、従来の最大エネルギー積を大幅
に更新した。しかしながら、Sm−Co系磁石は資源的
に乏しいSmとCoを主成分としているために高価な磁
石とならざるを得なかった。
[0003] After that, Sm, which combines the magnetic anisotropy of rare earth ions and the magnetic moment of transition metal elements, was developed.
-Co-based magnets have appeared and have significantly updated the conventional maximum energy product. However, since Sm--Co magnets mainly contain Sm and Co, which are scarce in terms of resources, they have had to be expensive magnets.

【0004】そこでSm−Co系磁石に代わる、安価で
かつ高磁気特性を有する磁石合金の開発が進められ、そ
の結果佐川らは、焼結法により三元系で安定なNd−F
e−B系磁石(特公昭61−34242号公報および特
開昭59−132104号公報) を開発し、その最大
エネルギー積はSm−Co系磁石のそれを超えるもので
ある。しかしながらNd−Fe−B系磁石は、成分とし
て非常に活性の高いNdなどの軽希土類元素及び錆び易
いFeに富むことから、耐食性に劣り、その結果、磁気
特性が劣化して工業材料としての信頼性に欠けるという
欠点があった。
[0004] Therefore, development of a magnet alloy that is inexpensive and has high magnetic properties to replace the Sm-Co magnet has been progressed, and as a result, Sagawa et al.
We have developed e-B magnets (Japanese Patent Publication No. 61-34242 and Japanese Unexamined Patent Publication No. 59-132104), whose maximum energy product exceeds that of Sm-Co magnets. However, Nd-Fe-B magnets have poor corrosion resistance because they are rich in light rare earth elements such as Nd, which is highly active, and Fe, which rusts easily.As a result, their magnetic properties deteriorate, making them unreliable as industrial materials. It had the disadvantage of lacking sex.

【0005】従って耐食性の改善のために、たとえば焼
結磁石については表面処理(特開昭63−77103号
公報)を施すなどの対策が講じられているが、いずれも
長期間にわたって有効な防錆処理とはいえず、また処理
のためコスト高となり、さらには保護膜による磁束のロ
スなどの問題もあった。
[0005] Therefore, measures have been taken to improve corrosion resistance, such as applying surface treatment to sintered magnets (Japanese Patent Application Laid-open No. 77103/1983), but none of these measures are effective against corrosion over a long period of time. It cannot be said that it is a treatment, and the cost is high due to the treatment.Furthermore, there are problems such as loss of magnetic flux due to the protective film.

【0006】上記の問題の解決策として、発明者らは先
に特開平2−4939号公報において、Nd−Fe−B
系磁石のFeをCoおよびNiで高濃度に複合置換した
希土類−遷移金属−ボロン系磁石合金を提案し、表面処
理を施さずとも耐食性に優れ、しかもキュリー点の高い
永久磁石を実現した。
As a solution to the above problem, the inventors previously proposed Nd-Fe-B in Japanese Unexamined Patent Publication No. 2-4939.
We proposed a rare earth-transition metal-boron-based magnet alloy in which Fe in the system magnet was replaced with Co and Ni at a high concentration, and achieved a permanent magnet with excellent corrosion resistance and a high Curie point without surface treatment.

【0007】さらに発明者らは、上記のNd−(Fe,
 Co, Ni)−B系磁石を発展させ、残留磁束密度
の高い RE2TM14B1相(以下主相と略す。なお
TMは、Fe, Co及びNiのうちから選んだ一種ま
たは二種以上)を主体とする粉末と、焼結性を上げ、ま
た主相粒界のクリーニング作用を持ち、さらには電気化
学的にも貴な組成になる低融点のRE−TM相(ここで
TMは、Ni又は (Ni+Fe) 又は (Ni+C
o) )を主体とする粉末とを出発材料として、両粉末
を混合した後、成形、液相焼結を行って得られる二相混
合組織になる耐食性希土類−遷移金属系永久磁石を開発
し、特願平2−269635号明細書において開示した
Furthermore, the inventors discovered that the above Nd-(Fe,
Co, Ni)-B system magnet is developed, and the RE2TM14B1 phase (hereinafter abbreviated as main phase) with high residual magnetic flux density (TM is one or more selected from Fe, Co, and Ni) is the main component. powder and a low-melting-point RE-TM phase (here TM is Ni or (Ni+Fe)) that improves sinterability, has a cleaning effect on the main phase grain boundaries, and has an electrochemically noble composition. or (Ni+C
We have developed a corrosion-resistant rare earth-transition metal based permanent magnet that has a two-phase mixed structure obtained by mixing both powders, molding and liquid phase sintering, using powder mainly consisting of o) ). This was disclosed in Japanese Patent Application No. 2-269635.

【0008】[0008]

【発明が解決しようとする課題】上記した二相混合磁石
の原料として有用な低融点RE−TM系合金は、通常、
熱還元法、電解法などにより精製された純度99.5%
以上の希土類金属と純度99.9%以上の電解ニッケル
、電解コバルト、電解鉄などの高純度の原料を用いて作
製されるが、これらのうち特に希土類金属原料の分離精
製は高度な技術を要するため、工業原料としては極めて
高価なものとなっている。
[Problems to be Solved by the Invention] The low melting point RE-TM alloy useful as a raw material for the above-mentioned two-phase mixed magnet is usually
Purity 99.5% purified by thermal reduction method, electrolytic method, etc.
It is manufactured using the above rare earth metals and high purity raw materials such as electrolytic nickel, electrolytic cobalt, and electrolytic iron with a purity of 99.9% or more, but the separation and purification of rare earth metal raw materials requires particularly advanced technology. Therefore, it is extremely expensive as an industrial raw material.

【0009】また、粉末冶金原料として考えた場合、R
E−TM系合金は概して剪断強度が大きく、微粉化が困
難という問題を抱えている。
[0009] Furthermore, when considered as a raw material for powder metallurgy, R
E-TM alloys generally have a problem of high shear strength and difficulty in pulverization.

【0010】この発明は、上記の問題を有利に解決する
もので、安価な希土類酸化物とTM粉末とを原料として
、これらを還元剤と共に加熱し、還元・拡散反応によっ
て、工業的規模でのRE−TM合金を安価ならしめると
共に、得られたRE−TM合金粉末を水素脆化後、粉砕
することによって、RE−TM合金の微粉化も容易なら
しめた希土類合金粉末およびその製造方法を提案するこ
とを目的とする。
[0010] This invention advantageously solves the above-mentioned problems, and uses inexpensive rare earth oxides and TM powder as raw materials, heats them together with a reducing agent, and performs a reduction/diffusion reaction on an industrial scale. We propose a rare earth alloy powder that makes RE-TM alloy less expensive and also makes it easier to pulverize the RE-TM alloy by crushing the obtained RE-TM alloy powder after hydrogen embrittlement, and a method for producing the same. The purpose is to

【0011】[0011]

【課題を解決するための手段】この発明の要旨構成は次
のとおりである。 1)        RE:15at%以上、90at
%以下、ここでRE:Y,Scおよびランタノイドのう
ちから選んだ一種または二種以上 を含み、残部は実質的にTM(ただしTMは、Ni又は
NiとFeもしくはCoとの混合物)になる、RE−T
M系金属間化合物又はRE−TM系共晶組成の合金から
なる希土類合金粉末(第1発明)。
[Means for Solving the Problems] The gist of the present invention is as follows. 1) RE: 15at% or more, 90at
% or less, where RE: contains one or more selected from Y, Sc and lanthanoids, and the remainder is substantially TM (however, TM is Ni or a mixture of Ni and Fe or Co). RE-T
A rare earth alloy powder comprising an M-based intermetallic compound or an alloy having a RE-TM eutectic composition (first invention).

【0012】2)一種又は二種以上のREの酸化物とT
M粉末とを混合した原料粉末に、金属カルシウム及び/
又は水素化カルシウムと塩化カルシウムとを混合したの
ち、不活性雰囲気において加熱して還元・拡散反応を進
行させ、ついで得られた反応生成物を水及び/又はアル
コールと接触させ、該反応生成物中に含有される水溶性
物質を溶出させることにより、RE−TM粉末を採取す
ることからなる希土類合金粉末の製造方法(第2発明)
2) One or more RE oxides and T
Metallic calcium and/or
Alternatively, after mixing calcium hydride and calcium chloride, the mixture is heated in an inert atmosphere to advance the reduction/diffusion reaction, and then the resulting reaction product is brought into contact with water and/or alcohol. A method for producing rare earth alloy powder (second invention) comprising collecting RE-TM powder by eluting water-soluble substances contained in
.

【0013】3)上記した第2発明によって製造したR
E−TM粉末を、水素を含む不活性ガス中で乾燥・脆化
したのち、粉砕することからなる希土類合金粉末の製造
方法(第3発明)。
3) R produced according to the second invention described above
A method for producing rare earth alloy powder (third invention), which comprises drying and embrittling E-TM powder in an inert gas containing hydrogen, and then pulverizing it.

【0014】さて上記合金粉末は、以下の工程で得られ
る。すなわち希土類酸化物とTM粉末を所望の組成にな
るように混合し、この混合粉に、還元剤としてモル比に
して酸化物の還元に必要な量の2〜3倍の金属カルシウ
ム及び/又は水素化カルシウムと、還元反応の促進剤と
して塩化カルシウムとを添加し、ついで不活性雰囲気中
において 860〜1100℃程度の温度で1〜3時間
程度の還元・拡散処理を施したのち、室温まで冷却する
。ついで好ましくはハンマークラッシャー等で10mm
以下の粒子に粉砕したのち、水及び/又はアルコール中
に入れ、不活性雰囲気中で2〜3時間程度混合すること
により、還元反応生成物であるCaO, CaO・2C
aCl2及びCa(OH)2 あるいは未反応で残存す
る金属Caなどを溶出させ、除去する。その後、合金粉
末をとり出し、不活性ガスと水素ガスとの混合ガス中で
室温〜350 ℃で1〜10時間程度の乾燥・脆化処理
を施す。そして得られた乾燥粗粉を、シクロヘキサン中
でボールミルやジェットミル等により微粉砕するのであ
る。
The above-mentioned alloy powder can be obtained through the following steps. That is, a rare earth oxide and TM powder are mixed to have a desired composition, and metallic calcium and/or hydrogen are added as a reducing agent to the mixed powder in an amount 2 to 3 times the molar ratio required for reducing the oxide. Calcium chloride and calcium chloride as a reduction reaction accelerator are added, and then reduction/diffusion treatment is performed in an inert atmosphere at a temperature of about 860 to 1100°C for about 1 to 3 hours, and then cooled to room temperature. . Then, preferably with a hammer crusher etc., 10 mm
After pulverizing into the following particles, they are placed in water and/or alcohol and mixed for about 2 to 3 hours in an inert atmosphere to produce the reduction reaction products CaO, CaO・2C.
aCl2 and Ca(OH)2, unreacted remaining metal Ca, etc. are eluted and removed. Thereafter, the alloy powder is taken out and subjected to drying and embrittlement treatment for about 1 to 10 hours at room temperature to 350° C. in a mixed gas of inert gas and hydrogen gas. Then, the obtained dry coarse powder is pulverized in cyclohexane using a ball mill, jet mill, etc.

【0015】[0015]

【作用】まず第1発明において、RE−TM合金の成分
組成を上記の範囲に限定した理由について説明する。二
相混合磁石の焼結助剤として有効な第1発明に係る合金
粉末は、RE:15at%以上、90at%以下を含み
、残部は、TMから成るRE−TM合金粉末である。こ
こにREは、Y,Scおよびランタノイドのうちから選
んだ一種または二種以上であり、かかるREが15at
%に満たないと、形成されるRE−TM相は、融点が高
く、二相混合磁石の焼結助剤として不適当であり、一方
REが90at%を超えるとRE−TM相はREに富み
すぎ、これを原料とした二相混合磁石では耐食性が著し
く劣化するので、REは15〜90at%の範囲に限定
した。またTMは、Ni又は (Ni+Fe) 又は 
(Ni+Co) であり、ここにFe, Coの含有量
はTM中、 92 at%以下程度とするのが好ましい
。なおTM中のNiの効果は、RE−TM相の融点を下
げ、二相磁石の焼結助剤としての効果を向上させると共
に、耐食性の改善に有効に作用することである。
[Operation] First, in the first invention, the reason why the composition of the RE-TM alloy is limited to the above range will be explained. The alloy powder according to the first invention, which is effective as a sintering aid for a two-phase mixed magnet, is an RE-TM alloy powder containing RE: 15 at% or more and 90 at% or less, and the remainder being TM. Here, RE is one or more selected from Y, Sc and lanthanoids, and such RE is 15at
If the RE is less than 90 at%, the RE-TM phase formed has a high melting point and is unsuitable as a sintering aid for a two-phase mixed magnet. On the other hand, if the RE exceeds 90 at%, the RE-TM phase is rich in RE. RE is limited to a range of 15 to 90 at% because the corrosion resistance of a two-phase mixed magnet using this as a raw material deteriorates significantly. Moreover, TM is Ni or (Ni+Fe) or
(Ni+Co), where the content of Fe and Co in the TM is preferably about 92 at% or less. Note that the effect of Ni in TM is to lower the melting point of the RE-TM phase, improve the effect as a sintering aid for a two-phase magnet, and work effectively to improve corrosion resistance.

【0016】次に、第2発明における、還元剤、反応促
進剤の効果を述べる。還元剤として加える金属カルシウ
ム(融点 851℃)又は水素化カルシウム(融点 8
17℃)は、 860〜1100℃に加熱されることに
よって溶融し、希土類酸化物及び原料TM粉を包み込み
、まず酸化物を還元すると共に、TM粉表面を活性にし
、速かにRE−TM化合物と酸化カルシウム(CaO)
 等を生成する。なお加熱温度が 860℃に満たない
と上記の反応が速かに進まず、一方1100℃を超える
と生成したRE−TMの多くは気化し、最終的な収量の
減少を招くので、加熱温度は 860〜1100℃程度
とするのが好ましい。またCaCl2 を加えるのは、
生成したCaO にこれを配位結合させ CaO・2C
aCl2とし、後続の水中及び/又はアルコール中での
分解を一層速かにするためである。ここに還元生成物の
分解は、水中及び/又はアルコール中で行うことができ
るが、とくにアルコールを50 vol%以上添加した
水中で行うことが望ましい。 というのはかかる混合液での処理が、未反応の金属カル
シウムの分解を穏かに進める上で効果的だからである。
Next, the effects of the reducing agent and reaction accelerator in the second invention will be described. Calcium metal (melting point 851℃) or calcium hydride (melting point 851℃) added as a reducing agent
(17℃) is heated to 860-1100℃, melts it, envelops the rare earth oxide and the raw TM powder, first reduces the oxide, activates the TM powder surface, and quickly converts the RE-TM compound. and calcium oxide (CaO)
etc. Note that if the heating temperature is less than 860°C, the above reaction will not proceed quickly, while if it exceeds 1100°C, much of the RE-TM produced will vaporize, resulting in a decrease in the final yield, so the heating temperature should be adjusted accordingly. The temperature is preferably about 860 to 1100°C. Also, adding CaCl2 is
Coordinate this to the generated CaO and CaO・2C
This is to make the subsequent decomposition in water and/or alcohol more rapid. The reduction product can be decomposed in water and/or alcohol, but it is particularly desirable to decompose it in water to which 50 vol% or more of alcohol has been added. This is because treatment with such a mixed solution is effective in gently progressing the decomposition of unreacted metallic calcium.

【0017】さらに粉末冶金原料として微粉化が必要な
場合、第3発明に従い、生成したRE−TM粉を、不活
性ガス及び水素の混合ガス中に曝し、乾燥・脆化させる
。二相混合磁石の焼結助剤として効果のあるRE−TM
相は、概して剪断応力が大きく、微粉化が困難であるが
、予め水素を吸収させ脆化させておくと、粉末冶金初期
工程の微粉化が容易になる。
Furthermore, when pulverization is required as a raw material for powder metallurgy, according to the third invention, the produced RE-TM powder is exposed to a mixed gas of an inert gas and hydrogen to dry and embrittle it. RE-TM is effective as a sintering aid for two-phase mixed magnets
Phases generally have large shear stress and are difficult to pulverize, but if they are made brittle by absorbing hydrogen in advance, pulverization in the initial step of powder metallurgy becomes easier.

【0018】上記の工程で得られた乾燥・脆化済みのR
E−TM粉は、ボールミル、ジェットミル等で粉砕する
ことにより、5μm 以下に容易に微粉化される。そし
てかかる微粉を他の方法で製造され粉砕されたRE2T
M14B1 粉末と混合すれば、より均一に混合される
ため、焼結時に、RE−TM液相が効果的にRE2TM
14B1 粒間に回り込み、焼結性が向上するので、高
磁気特性の二相混合磁石が得られるのである。
[0018] The dried and embrittled R obtained in the above process
E-TM powder can be easily pulverized to 5 μm or less by pulverization using a ball mill, jet mill, or the like. and RE2T produced by other methods and pulverized from such fine powder.
When mixed with M14B1 powder, the RE-TM liquid phase is effectively mixed with RE2TM during sintering because it is mixed more uniformly.
14B1 wraps around between the grains and improves sinterability, making it possible to obtain a two-phase mixed magnet with high magnetic properties.

【0019】[0019]

【実施例】【Example】

実施例1 RE2O3, TM, 金属Ca及びCaCl2 を表
1に示す割合で混合し、Ar雰囲気の密閉容器中にて 
860℃で2時間加熱したのち、室温にまで冷却した。 ついでハンマークラッシャーにて5mm以下に粉砕した
のち、過剰の50 vol%エタノール水溶液中に投入
し、1時間の撹拌後、エタノール溶液を交換し、同じ操
作を2回繰り返した。次に得られたスラリーをろ過し、
Arガス中にて室温で6時間乾燥させ、さらにボールミ
ルで微粉砕してRE−TM粉末を得た。 これとは別に RE2TM14B1合金を高周波溶解に
より作製したのち、均一化熱処理−ハンマークラッシャ
ーによる粗粉砕処理−ボールミルによる微粉砕処理を施
してRE2TM14B1 粉末を得た。
Example 1 RE2O3, TM, metallic Ca and CaCl2 were mixed in the proportions shown in Table 1, and the mixture was heated in a closed container in an Ar atmosphere.
After heating at 860°C for 2 hours, it was cooled to room temperature. Next, the mixture was crushed to 5 mm or less using a hammer crusher, and then poured into an excess 50 vol% ethanol aqueous solution. After stirring for 1 hour, the ethanol solution was replaced, and the same operation was repeated twice. The resulting slurry was then filtered and
It was dried in Ar gas at room temperature for 6 hours and further pulverized in a ball mill to obtain RE-TM powder. Separately, RE2TM14B1 alloy was produced by high-frequency melting, and then subjected to homogenization heat treatment, coarse crushing with a hammer crusher, and fine crushing with a ball mill to obtain RE2TM14B1 powder.

【0020】ついで得られたRE−TM粉末及び RE
2TM14B1粉末を表1に示す種々の割合で混合した
のち、磁場中プレス、焼結を経て永久磁石とした。かく
して得られた希土類−遷移金属系磁石の磁気特性及び耐
食性について調べた結果を表1に示す。ここに耐食性は
、温度:70℃、湿度:95%の環境に48h曝した後
における発錆面積率で評価した。なお比較のため、純R
Eと電解TMを出発原料として、これらを高周波溶解に
より溶解RE−TM合金とした場合についての調査結果
を表1に併せて示す。
[0020] Then, the obtained RE-TM powder and RE
After mixing 2TM14B1 powder in various proportions shown in Table 1, the mixture was pressed in a magnetic field and sintered to form a permanent magnet. Table 1 shows the results of investigating the magnetic properties and corrosion resistance of the rare earth-transition metal magnet thus obtained. Corrosion resistance was evaluated by the rusted area ratio after being exposed to an environment of temperature: 70° C. and humidity: 95% for 48 hours. For comparison, pure R
Table 1 also shows the results of an investigation in which E and electrolytic TM were used as starting materials to form a melted RE-TM alloy by high-frequency melting.

【0021】[0021]

【表1】[Table 1]

【0022】同表より明らかなように、この発明に従う
RE−TM粉を用いた場合でも、磁気特性、耐食性とも
従来より優れた結果が得られた。従ってRE酸化物を出
発原料とする本法は、高純度REを出発原料とする従来
法に比べてコスト的に有利となる。
As is clear from the same table, even when the RE-TM powder according to the present invention was used, results superior to the conventional ones in both magnetic properties and corrosion resistance were obtained. Therefore, the present method using RE oxide as a starting material is more cost-effective than the conventional method using high-purity RE as a starting material.

【0023】実施例2 Nd2O3, Dy2O3とNiとを、Nd+DyとN
iの原子比にして3:1の割合で混合し、式量比で N
d2O3とDy2O3 の総量の6倍の金属水素カルシ
ウムと、0.25倍のCaCl2 を添加したのち、A
rガス中において 860℃で2時間加熱し、引き続き
室温まで冷却したのち、ハンマークラッシャーで5mm
以下に粗粉砕した。ついで過剰の50 vol%エタノ
ール水溶液中に投入し、不活性雰囲気中にて1時間の撹
拌後、エタノール水溶液を交換し、同じ操作を2回繰り
返した。次に得られた合金粉に、10vol%H2+A
r混合ガス中にて室温で3時間、 300℃で2時間の
乾燥・脆化処理を施したのち、真空中で 450℃, 
1時間の加熱処理を施すことによって合金中の水素を排
気したのち、室温に戻してからシクロヘキサン中にてボ
ールミルで12時間粉砕した。
Example 2 Nd2O3, Dy2O3 and Ni, Nd+Dy and N
The atomic ratio of i is mixed at a ratio of 3:1, and the formula weight ratio is N
After adding 6 times the total amount of d2O3 and Dy2O3 and 0.25 times the amount of CaCl2, A
After heating at 860℃ for 2 hours in R gas and cooling to room temperature, it was crushed into 5mm pieces using a hammer crusher.
It was coarsely ground as below. Then, it was poured into an excess 50 vol% ethanol aqueous solution, and after stirring for 1 hour in an inert atmosphere, the ethanol aqueous solution was exchanged, and the same operation was repeated twice. Next, add 10 vol% H2+A to the obtained alloy powder.
After drying and embrittlement treatment in a mixed gas at room temperature for 3 hours and at 300℃ for 2 hours, it was dried at 450℃ in vacuum.
After heating the alloy for 1 hour to exhaust the hydrogen in the alloy, the alloy was returned to room temperature and then ground in cyclohexane in a ball mill for 12 hours.

【0024】ボールミルでの粉砕時間と平均粒度との関
係について調べた結果を、図1に示す。なお比較のため
、上記のエタノール水溶液で処理して得られた合金粉を
、Ar中で6時間乾燥したのち、シクロヘキサン中にて
ボールミルで12時間粉砕したときの粉砕時間と平均粒
度との関係について調べた結果も、図1に併せて示す。
FIG. 1 shows the results of an investigation into the relationship between the milling time in a ball mill and the average particle size. For comparison, the relationship between the grinding time and average particle size when the alloy powder obtained by processing with the above ethanol aqueous solution was dried in Ar for 6 hours and then ground in cyclohexane in a ball mill for 12 hours. The results of the investigation are also shown in Figure 1.

【0025】同図より明らかなように、予め水素・アル
ゴン混合ガス中で脆化させたものの方が微粉化が顕著で
あり、また所要時間も短時間で済んだ。
[0025] As is clear from the figure, the powder that had been embrittled in advance in a hydrogen/argon mixed gas was more conspicuously pulverized and required a shorter time.

【0026】[0026]

【発明の効果】かくしてこの発明によれば、工業的規模
で安価に、希土類−遷移金属系合金粉末を得ることがで
き、さらに水素脆化させることにより、粉末の微粉化が
一層容易になる。
Thus, according to the present invention, rare earth-transition metal alloy powder can be obtained on an industrial scale at low cost, and further, by hydrogen embrittlement, the powder can be further easily pulverized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ボールミルでの粉砕時間と平均粒度との関係を
示したグラフである。
FIG. 1 is a graph showing the relationship between milling time in a ball mill and average particle size.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  RE:15at%以上、90at%以
下、ここでRE:Y,Scおよびランタノイドのうちか
ら選んだ一種または二種以上 を含み、残部は実質的にTM(ただしTMは、Ni又は
NiとFeもしくはCoとの混合物)になる、RE−T
M系金属間化合物又はRE−TM系共晶組成の合金から
なることを特徴とする希土類合金粉末。
Claim 1: RE: 15 at% or more and 90 at% or less, where RE: contains one or more selected from Y, Sc and lanthanoids, and the remainder is substantially TM (however, TM is Ni or RE-T (a mixture of Ni and Fe or Co)
A rare earth alloy powder comprising an M-based intermetallic compound or an alloy having a RE-TM-based eutectic composition.
【請求項2】  一種又は二種以上のREの酸化物とT
M粉末とを混合した原料粉末に、金属カルシウム及び/
又は水素化カルシウムと塩化カルシウムとを混合したの
ち、不活性雰囲気において加熱して還元・拡散反応を進
行させ、ついで得られた反応生成物を水及び/又はアル
コールと接触させ、該反応生成物中に含有される水溶性
物質を溶出させることにより、RE−TM粉末を採取す
ることを特徴とする希土類合金粉末の製造方法。
[Claim 2] One or more RE oxides and T
Metallic calcium and/or
Alternatively, after mixing calcium hydride and calcium chloride, the mixture is heated in an inert atmosphere to advance the reduction/diffusion reaction, and then the resulting reaction product is brought into contact with water and/or alcohol. 1. A method for producing rare earth alloy powder, which comprises collecting RE-TM powder by eluting water-soluble substances contained in the powder.
【請求項3】  請求項2に記載の方法で製造したRE
−TM粉末を、水素を含む不活性ガス中で乾燥・脆化し
たのち、粉砕することを特徴とする希土類合金粉末の製
造方法。
[Claim 3] RE produced by the method according to claim 2
- A method for producing rare earth alloy powder, which comprises drying and embrittling TM powder in an inert gas containing hydrogen, and then pulverizing it.
JP3108322A 1991-04-15 1991-04-15 Rare-earth alloy powder and its production Pending JPH04318102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108322A JPH04318102A (en) 1991-04-15 1991-04-15 Rare-earth alloy powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108322A JPH04318102A (en) 1991-04-15 1991-04-15 Rare-earth alloy powder and its production

Publications (1)

Publication Number Publication Date
JPH04318102A true JPH04318102A (en) 1992-11-09

Family

ID=14481773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108322A Pending JPH04318102A (en) 1991-04-15 1991-04-15 Rare-earth alloy powder and its production

Country Status (1)

Country Link
JP (1) JPH04318102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183010A (en) * 2017-12-14 2018-06-19 浙江大学 Method that is a kind of while improving neodymium ferrocerium boron sintered magnet magnetic property and corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183010A (en) * 2017-12-14 2018-06-19 浙江大学 Method that is a kind of while improving neodymium ferrocerium boron sintered magnet magnetic property and corrosion resistance

Similar Documents

Publication Publication Date Title
CN101521068B (en) Rare earth permanent magnet and method of manufacturing the same
EP3410446B1 (en) Making method of rare earth sintered magnet
KR101451430B1 (en) Rare earth permanent magnet and its preparation
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JPH0551656B2 (en)
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP2675430B2 (en) Corrosion resistant rare earth-transition metal magnet and method of manufacturing the same
CN109509628A (en) A kind of preparation method of sintered NdFeB composite powder
JPH04318102A (en) Rare-earth alloy powder and its production
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0745412A (en) R-fe-b permanent magnet material
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPS627831A (en) Manufacture of permanent magnet material
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH04240703A (en) Manufacture of permanent magnet
JPS624806A (en) Production of alloy powder for rare earth magnet
JP2004244702A (en) Method of producing rare earth permanent magnet
JPS62227061A (en) Manufacture of permanent magnet material
JPS61270313A (en) Production of rare earth alloy powder
JPS62274002A (en) Rare earth element-iron-boron type magnetic powder and its production