JPH08176615A - Closed powder forging - Google Patents

Closed powder forging

Info

Publication number
JPH08176615A
JPH08176615A JP32699294A JP32699294A JPH08176615A JP H08176615 A JPH08176615 A JP H08176615A JP 32699294 A JP32699294 A JP 32699294A JP 32699294 A JP32699294 A JP 32699294A JP H08176615 A JPH08176615 A JP H08176615A
Authority
JP
Japan
Prior art keywords
powder
nickel
aluminum
preform
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32699294A
Other languages
Japanese (ja)
Other versions
JP3110637B2 (en
Inventor
Shoichi Yoshino
彰一 吉野
Toshio Tani
登志夫 谷
Kazuo Osada
和男 長田
Hisashi Koyanagi
恒 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP06326992A priority Critical patent/JP3110637B2/en
Publication of JPH08176615A publication Critical patent/JPH08176615A/en
Application granted granted Critical
Publication of JP3110637B2 publication Critical patent/JP3110637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

PURPOSE: To obtain a lightweight compact high in bending strength and resistant to wear by inserting the preform of the mixed powder contg. nickel powder and aluminum powder into a mold of specified shape and uniaxially hot-forging the mixture. CONSTITUTION: A mixed powder contg. at least nickel powder and aluminum or aluminum alloy powder is compacted and extruded. The preform 11 thus obtained is inserted into a die 2 having a hole 21 with a larger cross-sectional area than the preform 11 and uniaxially hot-forged. The preform 11 is vertically compressed to generate shear and slip obliquely and vertically, hence the cross- sectional area in the horizontal direction is increased by 1.5 to 7.0 times, and the preform is formed. The nickel powder and aluminum-base powder are sintered by the hot forging, and a nickel reaction phase due to the mutual solid-phase diffusion of the nickel powder and aluminum-base powder is formed around the fibrous layer of the nickel powder to surround the nickel powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、予備成形体を鍛造する
金属粉末の成形法に関するものであって、特に軽量で、
曲げ強さが強く、耐摩耗性があり、ローターディスク、
ピストン、シリンダーライナー、タービンブレード、ギ
ヤー、コネクティングロッド等の金属成形体を得る密閉
粉末鍛造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a metal powder for forging a preformed body, which is particularly lightweight,
Strong bending strength, wear resistance, rotor disc,
The present invention relates to a hermetic powder forging method for obtaining metal compacts such as pistons, cylinder liners, turbine blades, gears and connecting rods.

【0002】[0002]

【従来の技術】従来、合金粉末の成形方法として、熱間
圧縮成形が実施されている。熱間圧縮成形とは、例え
ば、粒径略5μmのニッケル粉末(12)と、粒径略200μm
であって重量比85:15のAl−Fe合金粉末(13)とを、
重量比略25:75で混合した混合粉末を、室温で圧粉成形
又は押出成形して予備成形体を形成し、図8に示す如
く、予備成形体の横断面積と略同一の断面積の口径の型
孔(51)を有する成形金型(5)に、該予備成形体を挿入す
る。その後、成形温度略873K、成形圧力略150N/mm2
て後述する一軸熱間鍛造を行ない、成形体(4)を作製し
ている。
2. Description of the Related Art Conventionally, hot compression molding has been carried out as a method for molding alloy powder. Hot compression molding is, for example, nickel powder (12) with a particle size of about 5 μm and particle size of about 200 μm.
And an Al-Fe alloy powder (13) having a weight ratio of 85:15,
A mixed powder mixed in a weight ratio of about 25:75 is compacted or extruded at room temperature to form a preform, and as shown in FIG. 8, the cross-sectional area of the preform is approximately the same as the cross-sectional area of the preform. The preform is inserted into the molding die (5) having the die hole (51). After that, uniaxial hot forging described later is performed at a molding temperature of about 873 K and a molding pressure of about 150 N / mm 2 to produce a molded body (4).

【0003】一軸熱間鍛造とは、予備成形体を一方向か
らの熱間鍛造により瞬間に一打で金型内に充満させて最
終形状とするものであり、鍛造による加工効果及び高温
の成形温度による焼結により、気孔が殆どなく、寸法精
度もよい部品成形方法である。
Uniaxial hot forging is a process in which a preform is hot-forged from one direction to fill the mold with a single stroke at a moment to obtain a final shape. It is a method of molding parts that has few pores due to temperature-dependent sintering and has good dimensional accuracy.

【0004】上記熱間圧縮成形により加工された成形体
(4)を切断して、粗さ1μmの研磨材により研磨したも
のを100倍に拡大した拡大顕微鏡写真を図9に示す。
尚、図9中の黒い部分は、Al−Fe合金粉末(13)の焼
結部分を示し、白い部分は、ニッケル粉末(12)の焼結部
分を示す。
Molded body processed by the hot compression molding
FIG. 9 shows a magnified micrograph obtained by cutting (4) and polishing it with an abrasive having a roughness of 1 μm by 100 times.
The black part in FIG. 9 shows the sintered part of the Al—Fe alloy powder (13), and the white part shows the sintered part of the nickel powder (12).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
熱間圧縮成形は、予備成形体の横断面積と成形金型(5)
の型孔(51)の口径が略同一であるため、予備成形体は、
縦方向に圧縮を受けるが、斜め及び横方向には、せん断
及びすべり成形されず、又、横断面積も拡大しないた
め、図9に示す如く、成形体(4)のニッケル粉末(12)の
分布状態について、凝集はしているが、その凝集には一
定の方向性がない。従って、鍛造効果等の組織的効果が
小さく、アルミニウム合金の場合、成形体(4)の機械的
強度が不足する。
However, in the conventional hot compression molding, the cross-sectional area of the preform and the molding die (5) are used.
Since the diameters of the mold holes (51) of are almost the same,
Although it is compressed in the longitudinal direction, it is not sheared and slip-formed in the diagonal and lateral directions, and the cross-sectional area does not expand, so as shown in FIG. 9, the distribution of the nickel powder (12) in the compact (4) Regarding the state, although they are aggregated, there is no certain direction for the aggregation. Therefore, the structural effect such as the forging effect is small, and in the case of the aluminum alloy, the mechanical strength of the molded body (4) is insufficient.

【0006】本発明の目的は、ニッケル粉末(12)及び、
アルミニウム又はアルミニウム合金を少なくとも含む混
合粉末の予備成形体(11)を一軸熱間鍛造することによ
り、軽量で曲げ強さが強く、耐摩耗性のある金属の成形
体(1)を提供することである。
The object of the present invention is to obtain nickel powder (12) and
A uniaxial hot forging of a preformed body (11) of a mixed powder containing at least aluminum or an aluminum alloy to provide a metal formed body (1) that is lightweight, has a high bending strength, and has wear resistance. is there.

【0007】[0007]

【課題を解決する為の手段】上記課題を解決するため
に、本発明の密閉粉末鍛造法に於ては、少なくとも、ニ
ッケル粉末(12)と、アルミニウム又はアルミニウム合金
の粉末(以下「アルミニウム系粉末」という)とを含む混
合粉末を圧粉成形又は押出成形してなる予備成形体(11)
を、該予備成形体(11)の横断面積よりも大きい断面積の
口径の型孔(21)を有する金型(2)に挿入し、一軸熱間鍛
造により、予備成形体(11)を縦方向に圧縮し、斜め及び
縦方向にせん断及びすべりが生じ、横方向の断面積が1.
5倍から7.0倍に拡大して成形され、ニッケルと、アルミ
ニウム又はアルミニウム合金とを層状に積層させ、ニッ
ケルの周囲をニッケル反応相(14)により包囲する。
In order to solve the above problems, in the closed powder forging method of the present invention, at least nickel powder (12) and aluminum or aluminum alloy powder (hereinafter referred to as "aluminum-based powder"). A preform obtained by compacting or extruding a mixed powder containing (11)
Is inserted into a die (2) having a die hole (21) having a cross-sectional area larger than the cross-sectional area of the preform (11), and the preform (11) is vertically lengthened by uniaxial hot forging. Compressive in the direction, shear and slip occur in the diagonal and longitudinal directions, and the cross-sectional area in the lateral direction is 1.
Molded by expanding from 5 times to 7.0 times, nickel and aluminum or aluminum alloy are laminated in layers, and nickel is surrounded by a nickel reaction phase (14).

【0008】[0008]

【作用】ニッケル粉末(12)と、アルミニウム系粉末とを
少なくとも含む混合粉末の予備成形体(11)を、該予備成
形体(11)の断面積よりも大きい断面積の型孔(21)を有す
る金型(2)に挿入して、一軸熱間鍛造を行なうことによ
り、予備成形体(11)が圧縮せん断拡大成形される。アル
ミニウム系粉末よりもニッケル粉末(12)の方が硬い。従
って、圧縮せん断拡大成形を行なうと、ニッケル粉末(1
2)同士のすべりを起こし、該すべりの力によりアルミニ
ウム系粉末が鍛造効果を受ける。この現象は、熱間で行
なわれるため、アルミニウム系粉末とニッケル粉末(12)
との間で、焼結及び相互固相拡散が起こり、ニッケル反
応相(14)が形成される。
[Function] A preform (11) of a mixed powder containing at least nickel powder (12) and an aluminum-based powder is formed in a mold cavity (21) having a cross-sectional area larger than that of the preform (11). The preform (11) is compression-shear-expanded by inserting it into the mold (2) and carrying out uniaxial hot forging. Nickel powder (12) is harder than aluminum-based powder. Therefore, when compression shear expansion molding is performed, nickel powder (1
2) Slip between them causes the aluminum-based powder to undergo a forging effect due to the force of the slip. Since this phenomenon occurs hot, aluminum powder and nickel powder (12)
Sintering and mutual solid phase diffusion occur between and to form a nickel reaction phase (14).

【0009】又、混合粉末に於ける各粉末の分布状態
は、予備成形体時には、アルミニウム系粉末の間にニッ
ケル粉末(12)が凝集している。一軸熱間鍛造を行なった
後には、ニッケル粉末(12)がすべりにより、繊維状に絡
み合うように層状に配列されて鍛造され、アルミニウム
系粉末は、ニッケル粉末(12)により形成される繊維状の
層と略平行な鍛流線を形成する。更に、ニッケル粉末(1
2)とアルミニウム系粉末は熱間で行なわれる鍛造により
焼結され、ニッケル粉末(12)の繊維状の層の周囲にニッ
ケル粉末(12)とアルミニウム系粉末の相互固相拡散によ
るニッケル反応相(14)がニッケル粉末(12)を包囲して形
成される。
Further, regarding the distribution state of each powder in the mixed powder, the nickel powder (12) is agglomerated between the aluminum-based powders at the time of preforming. After performing the uniaxial hot forging, the nickel powder (12) is slipped and forged by being arranged in a layered manner so as to be entangled in a fibrous shape, and the aluminum-based powder is a fibrous material formed by the nickel powder (12). Form grain flows that are substantially parallel to the layers. In addition, nickel powder (1
2) and the aluminum-based powder are sintered by hot forging, and the nickel reaction phase (2) due to mutual solid phase diffusion of the nickel powder (12) and the aluminum-based powder around the fibrous layer of the nickel powder (12) ( 14) is formed surrounding the nickel powder (12).

【0010】[0010]

【発明の効果】アルミニウム系粉末、ニッケル粉末(12)
及びニッケル反応相(14)の順に曲げ強さが強くなる。
又、成形体(1)の金属構造は、ニッケル粉末(12)が鍛造
されて繊維状の層を形成し、該ニッケル粉末(12)の層の
周囲をニッケル反応相(14)が包囲し、ニッケル粉末(14)
の層と略平行にアルミニウム系粉末が鍛流線を形成して
いる。前記構成の成形体(1)は、アルミニウム系合金の
鍛流線及びニッケル粉末(12)の層の積層面に対して垂直
な方向からの曲げ強さ等の機械的強度が、従来の成形法
による成形体(4)に比べて優れている。従って、本発明
の成形体(1)は、従来の熱間圧縮成形を行なった成形体
(4)よりも曲げ強さ等の機械的強度が大きい。
EFFECTS OF THE INVENTION Aluminum powder, nickel powder (12)
The bending strength increases in the order of the nickel reaction phase (14).
Further, the metal structure of the molded body (1) is formed by forging the nickel powder (12) to form a fibrous layer, and the nickel reaction phase (14) surrounds the layer of the nickel powder (12). Nickel powder (14)
The aluminum-based powder forms grain flows almost in parallel with the layer. The molded body (1) having the above-mentioned constitution has a mechanical strength such as bending strength from a direction perpendicular to the laminating line of the aluminum-based alloy and the layer surface of the layer of the nickel powder (12), which is obtained by the conventional molding method. It is superior to the molded product (4) according to. Therefore, the molded body (1) of the present invention is a molded body that has been subjected to conventional hot compression molding.
Mechanical strength such as bending strength is greater than (4).

【0011】[0011]

【実施例】以下、本発明の一実施例につき、図面に沿っ
て詳述する。尚、本実施例中で説明に用いる図面代用写
真図5、図6及び図7は、密閉粉末鍛造法を用いて作製
された成形体(1)を切断して、粒度1μmの研磨材にて
表面を研磨したものの拡大顕微鏡写真であって、長さの
倍率は、夫々、図5が100倍、図6が650倍、図7が6000
倍であり、図5、図6及び図7中の黒い部分は、Al−
Fe合金粉末(13)の焼結部分を示し、白い部分は、ニッ
ケル粉末(12)の焼結部分、又、図6及び図7の黒い部分
と白い部分との間に形成される灰色部分は、ニッケル反
応相(14)を示す。尚、従来例の図面代用写真図9につい
ては、前述した通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In addition, the drawings-substituting photographs used in the description of this embodiment, FIGS. 5, 6 and 7 show a molded body (1) produced by the closed powder forging method, which was cut with an abrasive having a grain size of 1 μm. FIG. 5 is a magnified micrograph of a polished surface, and the magnification of length is 100 times in FIG. 5, 650 times in FIG. 6, and 6000 in FIG.
The black part in FIGS. 5, 6 and 7 is Al-
The sintered portion of the Fe alloy powder (13) is shown, the white portion is the sintered portion of the nickel powder (12), and the gray portion formed between the black portion and the white portion in FIGS. , Showing the nickel reaction phase (14). The drawing substitute photograph FIG. 9 of the conventional example is as described above.

【0012】又、本実施例で用いる予備成形金型(3)及
び鍛造金型(2)の型孔の内径は、夫々45mm、65mmであっ
て、断面積の比は、略1:2.1である。従って、以下で
述べる密閉粉末鍛造法により、予備成形体(11)から成形
体(1)に成形されることにより、予備成形体(11)の横断
面積は、略2.1倍に拡大される(拡大率:2.1倍)。尚、本
実施例に於ては、成形体の横断面積を予備成形体(11)の
横断面積で割った値を拡大率とする。
Further, the inner diameters of the die holes of the preforming die (3) and the forging die (2) used in this embodiment are 45 mm and 65 mm, respectively, and the cross-sectional area ratio is approximately 1: 2.1. is there. Therefore, the cross-sectional area of the preform (11) is increased by about 2.1 times by molding the preform (11) into the compact (1) by the closed powder forging method described below (enlarge Rate: 2.1 times). In this example, the value obtained by dividing the cross-sectional area of the compact by the cross-sectional area of the preform (11) is taken as the enlargement ratio.

【0013】本実施例で用いた混合粉末は、粒子径略5
μmのニッケル粉末(12)と、アルミニウム系粉末とし
て、粒子径略200μmであって重量比85:15のAl−Fe
合金粉末(13)とを、重量比略25:75で混合してなる。A
l−Fe合金粉末(13)は、溶融Al−Fe合金を流動冷
水中に噴霧して急冷する超急冷アトマイズ法を利用して
作製された粉末である。
The mixed powder used in this example has a particle size of about 5
μm nickel powder (12) and aluminum-based powder, Al-Fe having a particle size of about 200 μm and a weight ratio of 85:15.
The alloy powder (13) is mixed in a weight ratio of about 25:75. A
The 1-Fe alloy powder (13) is a powder produced by using a super-quenching atomization method in which molten Al-Fe alloy is sprayed into flowing cold water to quench it.

【0014】前記混合粉末70gを、図4に示す如く、内
径略45mmの型孔(31)を有する予備成形金型(3)に充填す
る。型孔(31)に打込むパンチ(32)の押圧面(33)の外径
は、型孔(31)に対応している。パンチ(32)の側面には、
周知のエア逃し溝(図示せず)が開設されている。パンチ
(32)により、略298K(室温)の予備成形温度、略150N/mm
2の予備成形圧で予備成形を行なう。予備成形により、
予備成形体(11)は直径略45mm、高さ略20mmの円柱形に加
工される。
70 g of the mixed powder is filled in a preforming die (3) having a die hole (31) with an inner diameter of about 45 mm as shown in FIG. The outer diameter of the pressing surface (33) of the punch (32) driven into the die hole (31) corresponds to the die hole (31). On the side of the punch (32),
A well-known air escape groove (not shown) is provided. punch
By (32), preforming temperature of about 298K (room temperature), about 150N / mm
Preforming is performed at a preforming pressure of 2. By preforming,
The preform (11) is processed into a cylindrical shape having a diameter of about 45 mm and a height of about 20 mm.

【0015】予備成形体(11)を、図1に示す如く、予備
成形金型(3)の型孔(31)よりも大径である内径略65mmの
型孔(21)を有する金型(2)に充填する。型孔(21)に打込
むパンチ(22)の押圧面(23)の外径は、型孔(21)に対応し
ている。パンチ(22)の側面には、周知のエア逃し溝(図
示せず)が開設されている。パンチ(22)により、略873K
の成形温度、略150N/mm2の一定成形圧により、瞬間に一
打にて一軸熱間鍛造を行なう。一軸熱間鍛造により、予
備成形体(11)は、縦方向に圧縮を受け、斜め(図2の矢
印Aの方向)及び横方向に、せん断及びすべりが生じ
て、予備成形体(11)の横断面積は拡大して成形される。
熱間に於ける圧縮、せん断及びすべり変形により、混合
粉末は焼結及び鍛造されて、図3に示す如く、直径略65
mm、高さ略7mmの円板形に加工される。
As shown in FIG. 1, the preform (11) has a die (21) having an inner diameter of about 65 mm, which is larger than the die cavity (31) of the preform die (3). Fill 2). The outer diameter of the pressing surface (23) of the punch (22) driven into the die hole (21) corresponds to the die hole (21). A well-known air escape groove (not shown) is formed on the side surface of the punch (22). About 873K by punch (22)
Uniaxial hot forging is carried out with one shot at a constant molding temperature and a constant molding pressure of approximately 150 N / mm 2 . Due to the uniaxial hot forging, the preform (11) is compressed in the longitudinal direction, and shearing and slippage occur diagonally (in the direction of arrow A in FIG. 2) and in the lateral direction, so that the preform (11) The cross-sectional area is enlarged and formed.
The mixed powder is sintered and forged by compression, shearing and sliding deformation in the hot state, and as shown in FIG.
It is processed into a disc shape with a height of 7 mm and a height of 7 mm.

【0016】加工後の成形体(1)の切断面は、図5に示
す如く、成形体(1)に含まれるニッケル粉末(12)が繊維
状に絡み合った層状の配列となる。又、Al−Fe合金
粉末(13)は、ニッケル粉末(12)の層状の配列と平行し
て、鍛流線を描いている(アスペクト比1/10〜1/20)。予
備成形体(11)から成形体(1)に、成形される際のニッケ
ル粉末(12)のすべりの力で、Al−Fe合金粉末(13)が
鍛造される。前記鍛造は、熱間で行なわれるため、アル
ミニウム系粉末とニッケル粉末(12)との間で、焼結及び
相互固相拡散が起こり、ニッケル反応相(14)が形成され
る。該ニッケル反応相(14)は、図6のニッケル粉末(12)
の部分を更に拡大することによって図7に示す如く、ニ
ッケル粉末(12)の層の周囲を包囲する部分、即ち、ニッ
ケル粉末(12)とAl−Fe合金粉末(13)の接触部分に形
成されているのが観察される。
As shown in FIG. 5, the cut surface of the molded body (1) after processing has a layered arrangement in which the nickel powder (12) contained in the molded body (1) is entangled in a fibrous shape. Further, the Al-Fe alloy powder (13) draws grain flows in parallel with the layered arrangement of the nickel powder (12) (aspect ratio 1/10 to 1/20). The Al—Fe alloy powder (13) is forged by the sliding force of the nickel powder (12) when the preform (11) is molded into the compact (1). Since the forging is performed hot, sintering and mutual solid phase diffusion occur between the aluminum-based powder and the nickel powder (12) to form the nickel reaction phase (14). The nickel reaction phase (14) is the nickel powder (12) of FIG.
As shown in FIG. 7, by further enlarging the portion of the nickel powder (12), it is formed in the portion surrounding the layer of the nickel powder (12), that is, the contact portion of the nickel powder (12) and the Al-Fe alloy powder (13). Is observed.

【0017】ニッケル反応相(14)は、ニッケル粉末(12)
よりも硬く、又、ニッケル反応相(14)が形成されること
によってニッケル粉末(12)とAl−Fe合金粉末(13)と
の粒界の結合度が強化し、成形体(1)の機械的強度が向
上する。更に、図5に示す如く、ニッケル粉末(12)の鍛
造された繊維状の層及び該層と平行なAl−Fe合金粉
末(13)の鍛流線により、ニッケル粉末(12)の層及びAl
−Fe合金粉末(13)の鍛流線に垂直な方向(図5の矢印
B)に対する曲げ強さ等の機械的強度が改善される。密
閉粉末鍛造法による成形体(1)の拡大顕微鏡写真(図5)
と、従来の熱間圧縮成形による成形体(4)の拡大顕微鏡
写真(図9)を比較すると明らかな通り、密閉粉末鍛造法
による成形体(1)は、ニッケル粉末(12)の層が緻密であ
って、一定方向に平行に積層されており、ニッケル粉末
(12)の紙面に垂直な平面内にある層を包囲するAl−F
e合金粉末(13)の鍛流線も、一定方向に平行に積層され
ているが、従来の熱間圧縮成形による成形体(4)のニッ
ケル粉末(12)の層については、層と層との間隔が広く、
又、層の方向も一定方向に積層されていない。
The nickel reaction phase (14) is a nickel powder (12).
It is harder than the above, and the degree of grain boundary bonding between the nickel powder (12) and the Al-Fe alloy powder (13) is strengthened by the formation of the nickel reaction phase (14). Strength is improved. Further, as shown in FIG. 5, the forged fibrous layer of the nickel powder (12) and the grain line of the Al-Fe alloy powder (13) parallel to the layer were used to form the layer of the nickel powder (12) and the Al powder.
Mechanical strength such as bending strength of the —Fe alloy powder (13) in a direction perpendicular to the grain flow line (arrow B in FIG. 5) is improved. Enlarged photomicrograph of compact (1) by closed powder forging method (Fig. 5)
As is clear from a comparison of the enlarged micrograph (FIG. 9) of the compact (4) by the conventional hot compression molding, the compact (1) by the closed powder forging method has a dense nickel powder (12) layer. And are stacked in parallel in a certain direction, and the nickel powder
Al-F surrounding the layer lying in the plane perpendicular to the paper surface of (12)
The grain flows of the e-alloy powder (13) are also laminated parallel to each other in a certain direction, but the layers of the nickel powder (12) of the conventional compact (4) by hot compression molding are Wide spacing,
Also, the layers are not laminated in a fixed direction.

【0018】比較試験を行なうために、次の3種類の材
料から夫々供試片を作成した。 ニッケル粉末(12)と、超急冷アトマイズ法により作成
されたAl−Fe合金粉末(13)とを25:75で混合した混
合粉末を本発明の密閉粉末鍛造法の実施例と同様の条件
で成形した成形体(1) ニッケル粉末(12)とAl−Fe合金粉末(13)を従来技
術と同様の粒径及び成分比で混合し、成形温度略873
K、成形圧力略150N/mm2にて従来の熱間圧縮成形で成形
した成形体(4) JIS規格FC-250のねずみ鋳鉄
In order to perform a comparative test, test pieces were prepared from the following three kinds of materials. A nickel powder (12) and an Al-Fe alloy powder (13) prepared by the ultra-quenching atomization method were mixed at 25:75 to form a mixed powder under the same conditions as in the example of the closed powder forging method of the present invention. Molded compact (1) Nickel powder (12) and Al-Fe alloy powder (13) were mixed in the same particle size and composition ratio as in the prior art, and the molding temperature was about 873.
Molded product formed by conventional hot compression molding at K, molding pressure of approximately 150 N / mm 2 (4) JIS standard FC-250 gray cast iron

【0019】夫々3mm×4mm、長さ40mmの略矩形とし、
供試片をスパンが30mmとなるように2個の支持台に載
せ、その中央部に押し金具を当て、徐々に荷重を加え
て、供試片の三点曲げ試験を、293K、573K、673Kの
温度にて行なった。〜の夫々の供試片の重量を表1
に、又、各供試片の各温度での曲げ強さを表1及び図1
0に示す。
Each has a substantially rectangular shape of 3 mm × 4 mm and a length of 40 mm,
Place the test piece on two support bases with a span of 30 mm, press a metal fitting on the center part, apply a load gradually, and perform a three-point bending test of the test piece at 293K, 573K, 673K. Was carried out at the temperature of. Table 1 shows the weight of each test piece of
Table 1 and Fig. 1 show the bending strength of each test piece at each temperature.
0 is shown.

【0020】[0020]

【表1】 [Table 1]

【0021】表1及び図10に示される通り、の本発
明の密閉粉末鍛造法による成形体(1)は、の従来の成
形体(4)と比較して、略1.02倍から略2.14倍以上の曲げ
強さを有し、のねずみ鋳鉄と比較して、略1.7倍から
略2.14倍以上の曲げ強さを有している。又、表1に示す
如く、同一体積の場合、の密閉粉末鍛造法による成形
体(1)の重量は、のねずみ鋳鉄の重量の略42%と軽量
である。従って、本比較試験からも解る通り、密閉粉末
鍛造法により、軽量で曲げ強さの強い成形体を提供する
ことが出来る。
As shown in Table 1 and FIG. 10, the compact (1) produced by the closed powder forging method of the present invention is approximately 1.02 times to approximately 2.14 times or more as compared with the conventional compact (4). It has a bending strength of about 1.7 times to about 2.14 times or more as compared with gray cast iron. Further, as shown in Table 1, in the case of the same volume, the weight of the molded body (1) by the closed powder forging method is as light as 42% of the weight of gray cast iron. Therefore, as can be seen from this comparative test, it is possible to provide a molded body that is lightweight and has a high bending strength by the closed powder forging method.

【0022】尚、上記実施例に於ては、予備成形体(11)
の成分として、ニッケル粉末(12)と、超急冷アトマイズ
法により作製されたAl−Fe合金粉末(13)を用いてい
るが、予備成形体(11)の成分として、ニッケル粉末(12)
と、アルミニウム粉末又はアルミニウム系合金のアルミ
ニウム系粉末を少なくとも含有していれば、Si、C等
の金属粉末を加えた混合粉末にも、本方法を適用するこ
とが出来る。又、アルミニウム系粉末の製法は、超急冷
アトマイズ法に限定されず、通常の粉砕等で行なうこと
も出来る。更に、混合粉末に於ける各成分の重量比は、
ニッケル粉末(12)が略5重量%から40重量%、残部がア
ルミニウム系粉末であることが望ましいが、ニッケル粉
末(12)を略5重量%から40重量%、アルミニウム系粉末
55重量%から90重量%として、残部にSi、C等の粉末
を加えて混合粉末を作製することも出来る。 又、最も
望ましくは、ニッケル粉末(12)が略5重量%から40重量
%、アルミニウム系粉末55重量%から90重量%として、
混合粉末の95重量%となるようにし、残部5重量%にS
i、C等の粉末を加えて混合粉末を作製することも出来
る。
In the above embodiment, the preform (11)
The nickel powder (12) and the Al-Fe alloy powder (13) produced by the ultra-quenching atomization method are used as components of the nickel powder (12) as the components of the preform (11).
And at least aluminum powder or aluminum-based powder of aluminum-based alloy, the present method can be applied to a mixed powder to which a metal powder such as Si or C is added. Further, the method for producing the aluminum-based powder is not limited to the ultra-quenching atomization method, and it may be carried out by usual pulverization or the like. Furthermore, the weight ratio of each component in the mixed powder is
It is desirable that the nickel powder (12) is approximately 5% by weight to 40% by weight, and the balance is aluminum-based powder, but the nickel powder (12) is approximately 5% by weight-40% by weight, aluminum-based powder.
It is also possible to prepare a mixed powder by adding powders of Si, C, etc. to the rest at 55 to 90% by weight. Most preferably, the nickel powder (12) is approximately 5% to 40% by weight, and the aluminum powder 55% to 90% by weight.
Make up 95% by weight of the mixed powder, and balance the remaining 5% by weight with S
A powder mixture such as i and C can be added to prepare a mixed powder.

【0023】又、上記実施例において、予備成形体(11)
の横断面積は、密閉粉末鍛造法により、略2.1倍に拡大
されているが、拡大率(成形体(1)の横断面積を予備成
形体(11)の横断面積で割った値)は、上記実施例に限定
されず、1.5倍から7.0倍の範囲内が適当である。
Further, in the above embodiment, the preform (11)
The cross-sectional area of is expanded by about 2.1 times by the closed powder forging method, but the expansion ratio (the value obtained by dividing the cross-sectional area of the compact (1) by the cross-sectional area of the preform (11)) is The present invention is not limited to the examples, and a range of 1.5 times to 7.0 times is suitable.

【0024】更に、一軸熱間鍛造による成形圧は、50N/
mm2から300N/mm2が望ましい。更に、一軸熱間鍛造によ
る成形温度は、823Kから913Kが適当であるが、成形温
度の低限は、アルミニウム系粉末が軟化、焼結する最低
温度であり、上限はアルミニウム系粉末の融点の範囲内
であることが望ましい。
Furthermore, the forming pressure by uniaxial hot forging is 50 N /
mm 2 to 300 N / mm 2 is desirable. Further, the molding temperature by uniaxial hot forging is appropriately 823K to 913K, but the lower limit of the molding temperature is the lowest temperature at which the aluminum-based powder softens and sinters, and the upper limit is the melting point of the aluminum-based powder. It is desirable to be within.

【0025】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉粉末鍛造法の金型の断面図である。FIG. 1 is a cross-sectional view of a mold for a closed powder forging method.

【図2】密閉粉末鍛造法に於て、予備成形体に生じるせ
ん断すべりを示す断面図である。
FIG. 2 is a cross-sectional view showing shear slip that occurs in a preform in the closed powder forging method.

【図3】密閉粉末鍛造法により焼結、鍛造された成形体
と、金型の断面図である。
FIG. 3 is a cross-sectional view of a molded body that is sintered and forged by a closed powder forging method, and a die.

【図4】予備成形金型の断面図である。FIG. 4 is a cross-sectional view of a preforming die.

【図5】密閉粉末鍛造法による成形体の金属組織を示す
図面代用顕微鏡写真(×100)である。
FIG. 5 is a drawing-substituting micrograph (× 100) showing a metal structure of a molded body by the closed powder forging method.

【図6】密閉粉末鍛造法による成形体の金属組織を示す
図面代用顕微鏡写真(×650)である。
FIG. 6 is a drawing-substituting micrograph (× 650) showing the metal structure of a molded body obtained by the closed powder forging method.

【図7】密閉粉末鍛造法による成形体の金属組織を示す
図面代用顕微鏡写真(×6000)である。
FIG. 7 is a drawing-substituting micrograph (× 6000) showing a metal structure of a molded body by the closed powder forging method.

【図8】従来の熱間圧縮成形の金型の断面図である。FIG. 8 is a cross-sectional view of a conventional hot compression molding die.

【図9】熱間圧縮成形による成形体の金属組織を示す図
面代用顕微鏡写真(×100)である。
FIG. 9 is a drawing-substitute photomicrograph (× 100) showing a metal structure of a molded body obtained by hot compression molding.

【図10】各供試片の三点曲げ試験結果を示すグラフで
ある。
FIG. 10 is a graph showing the results of the three-point bending test of each test piece.

【符号の説明】[Explanation of symbols]

(1) 成形体 (11) 予備成形体 (2) 金型 (21) 型孔 (1) Molded body (11) Preformed body (2) Mold (21) Mold cavity

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柳 恒 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Koyanagi 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、ニッケル粉末(12)と、アル
ミニウム又はアルミニウム合金の粉末とを含む混合粉末
を圧粉成形又は押出成形してなる予備成形体(11)を、該
予備成形体(11)の横断面積よりも大きい断面積の型孔(2
1)を有する金型(2)に挿入し、一軸熱間鍛造により、予
備成形体(11)を縦方向に圧縮し、斜め及び縦方向にせん
断及びすべりが生じて、横方向の断面積が1.5倍から7.0
倍に拡大して成形され、ニッケルとアルミニウム又はア
ルミニウム合金を層状に積層し、ニッケルの周囲をニッ
ケル反応相(14)により包囲することを特徴とする密閉粉
末鍛造法。
1. A preform (11) obtained by compacting or extruding a mixed powder containing at least nickel powder (12) and aluminum or aluminum alloy powder. A die with a cross-sectional area larger than the cross-sectional area of
It is inserted into the mold (2) having 1) and the uniaxial hot forging compresses the preform (11) in the longitudinal direction, causing shearing and slipping in the oblique and longitudinal directions, resulting in a cross-sectional area in the lateral direction. 1.5 times to 7.0
A closed powder forging method, which is characterized in that it is doubled in size and formed, and nickel and aluminum or an aluminum alloy are laminated in layers, and the periphery of nickel is surrounded by a nickel reaction phase (14).
JP06326992A 1994-12-28 1994-12-28 Closed powder forging method Expired - Fee Related JP3110637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06326992A JP3110637B2 (en) 1994-12-28 1994-12-28 Closed powder forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06326992A JP3110637B2 (en) 1994-12-28 1994-12-28 Closed powder forging method

Publications (2)

Publication Number Publication Date
JPH08176615A true JPH08176615A (en) 1996-07-09
JP3110637B2 JP3110637B2 (en) 2000-11-20

Family

ID=18194102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06326992A Expired - Fee Related JP3110637B2 (en) 1994-12-28 1994-12-28 Closed powder forging method

Country Status (1)

Country Link
JP (1) JP3110637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510024A (en) * 2009-10-30 2012-04-26 マン・ディーゼル・アンド・ターボ,フィリアル・アフ・マン・ディーゼル・アンド・ターボ・エスイー,ティスクランド Diesel engine fuel valve nozzle
WO2015050855A1 (en) * 2013-10-01 2015-04-09 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
JP2015139812A (en) * 2014-01-29 2015-08-03 大同特殊鋼株式会社 HOT FORGING METHOD FOR Si-CONTAINING STEEL MATERIAL
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510024A (en) * 2009-10-30 2012-04-26 マン・ディーゼル・アンド・ターボ,フィリアル・アフ・マン・ディーゼル・アンド・ターボ・エスイー,ティスクランド Diesel engine fuel valve nozzle
WO2015050855A1 (en) * 2013-10-01 2015-04-09 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
JP2015139812A (en) * 2014-01-29 2015-08-03 大同特殊鋼株式会社 HOT FORGING METHOD FOR Si-CONTAINING STEEL MATERIAL
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks

Also Published As

Publication number Publication date
JP3110637B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
JP3489177B2 (en) Manufacturing method of plastic processed molded products
US5878323A (en) Process for producing split type mechanical part
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US9796020B2 (en) Method for the manufacture of a metal part
JP2004520483A (en) Method for producing metal foam or metal composite with improved shock, heat and sound absorption properties
JP3389590B2 (en) Manufacturing method of connecting rod
JPS63169340A (en) Production of ceramic dispersion strengthened aluminum alloy
JP3110637B2 (en) Closed powder forging method
JP2921030B2 (en) Vane pump vane material and manufacturing method thereof
JPS6096746A (en) Composite material and preparation thereof
JP2017171964A (en) Magnesium alloy sinter billet and manufacturing method therefor
JP3199809B2 (en) Manufacturing method of composite extruded member
JPH08170107A (en) Metallic porous body
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63247321A (en) Formation of ti-al intermetallic compound member
JP3457761B2 (en) Manufacturing method of connecting rod with dipper
JP3271454B2 (en) Manufacturing method of oil pump rotor made of Al alloy
JP3006263B2 (en) Method for producing metal powder sintered body
JPH07268406A (en) Production of piston and device therefor
JPS6312121B2 (en)
RU2147973C1 (en) Method of production of semifinished items from composite material on base of metal matrix
JPH059506A (en) Powder forging method for aluminum alloy
JP2000144210A (en) Forging method of metallic powder
JPH03120301A (en) Powder metallurgical method for aluminum alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

LAPS Cancellation because of no payment of annual fees