JPH03120301A - Powder metallurgical method for aluminum alloy - Google Patents

Powder metallurgical method for aluminum alloy

Info

Publication number
JPH03120301A
JPH03120301A JP25817289A JP25817289A JPH03120301A JP H03120301 A JPH03120301 A JP H03120301A JP 25817289 A JP25817289 A JP 25817289A JP 25817289 A JP25817289 A JP 25817289A JP H03120301 A JPH03120301 A JP H03120301A
Authority
JP
Japan
Prior art keywords
preform
temperature
aluminum alloy
alloy powder
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25817289A
Other languages
Japanese (ja)
Inventor
Shuntaro Sudo
俊太郎 須藤
Akira Manabe
明 真鍋
Hiroshi Hamamoto
弘 浜本
Mikio Kondo
幹夫 近藤
Kazuhiko Ito
一彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP25817289A priority Critical patent/JPH03120301A/en
Publication of JPH03120301A publication Critical patent/JPH03120301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a green compact made of Al alloy powder having high strength at a low cost by compacting the Al alloy powder having comparatively small spherical degree in a metallic mold to make this a preform and then, making the actual form under the specific temp. condition. CONSTITUTION:The Al alloy powder having <=0.7 spherical degree is packed into the metallic mold for preforming and compacted at the temp. more than room temp. As the spherical degree is comparatively small, this is compacted with low pressure to make the preformed body having 0.70-0.85 ratio of apparent density to true density without damaging the metallic mold. This preformed body is heated at >=350 deg.C in the range of temp. at which sintering is not started, charged into the actual forming metallic die having temp. 0.75-1.25 times the preformed body temp. and pressurized for 5-30sec to manufacture the Al alloy green compact having high strength and >=0.97 ratio of the apparent density to true density without surface porosity at good yield of the powder raw material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミニウム合金の粉末冶金法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to powder metallurgy of aluminum alloys.

[従来の技術] 各種の合金元素からなり、かつ急冷凝固法によって得た
アルミニウム合金粉末を原料として、従来の溶解鋳造法
では得ることができない高い強度、高い耐摩耗性および
優れた高温強度を有する成形体を、粉末冶金法によって
製造する研究が、近年盛んに行われている。
[Prior art] Made from aluminum alloy powder made of various alloying elements and obtained by rapid solidification, it has high strength, high wear resistance, and excellent high-temperature strength that cannot be obtained by conventional melting and casting methods. In recent years, much research has been conducted on producing molded bodies by powder metallurgy.

かかる研究においては、−殻内に熱間押出し法や熱間静
水圧法によって成形体を成形している。
In such research, a molded body is formed into a shell by hot extrusion or hot isostatic pressing.

なぜならば、通常の粉末成形工程と焼結工程からなる成
形方法によると、粉末表面に酸化アルミニウム被膜が生
じ、この酸化アルミニウム被膜が成形体に悪影響を及ぼ
し、所望の強度の成形体を得ることができないためであ
る。
This is because, according to the conventional molding method consisting of a powder molding process and a sintering process, an aluminum oxide film is formed on the powder surface, and this aluminum oxide film has a negative effect on the molded product, making it impossible to obtain a molded product with the desired strength. This is because it cannot be done.

[発明が解決しようとする課題] しかしながら、熱間押出し法は材料歩留りが悪い上に工
程が複雑であるため、製造原価が高くなるという問題点
がある。また、熱間静水圧法は設備費がかさむ上に生産
性も悪いため、この方法も製造原価が高くなるという問
題点がある。
[Problems to be Solved by the Invention] However, the hot extrusion method has a problem in that the material yield is poor and the process is complicated, resulting in high manufacturing costs. Furthermore, since the hot isostatic pressure method requires high equipment costs and poor productivity, this method also has the problem of high manufacturing costs.

かかる問題点を解決するものとして、焼結鍛造法によっ
てアルミニウム合金粉末から成形体を成形し、生産性を
向上させようとする試みが、特開昭63−190102
号公報に記載されている。
In order to solve this problem, an attempt was made to improve productivity by forming compacts from aluminum alloy powder using a sinter forging method, as disclosed in Japanese Patent Laid-Open No. 190102/1983.
It is stated in the No.

しかしながら、特開昭63−190102号公報に記載
の成形方法では、同公報にも記載のとおり、アルミニウ
ム合金粉末からなる高強度の鍛造成形体を得るためには
、8トン/Cm”以上の鍛造圧力を必要とする。このよ
うに高い鍛造圧力では、鍛造金型の寿命が短くなるとい
う問題点がある。
However, in the forming method described in JP-A-63-190102, as described in the same publication, in order to obtain a high-strength forged compact made of aluminum alloy powder, it is necessary to forge at least 8 tons/Cm". Such high forging pressure has the problem of shortening the life of the forging die.

また、このように高い鍛造圧力で成形しても、第10図
に示すアルミニウム合金粉末の鍛造成形体の金属組織の
光学顕微鏡写真からも明らかなように、その鍛造成形体
の表面には無数の細孔(以下、ポロシティ−という。)
が発生し、その表面からポロシティ−を切削によって除
去しない限り、材料としての信頼性を確保できないとい
う問題点もある。なお、第10図の光学顕微鏡写真の倍
率は100倍である。
Furthermore, even when formed at such a high forging pressure, as is clear from the optical micrograph of the metal structure of the forged body of aluminum alloy powder shown in Fig. 10, there are numerous particles on the surface of the forged body. Pores (hereinafter referred to as porosity)
There is also the problem that reliability as a material cannot be ensured unless the porosity is removed from the surface by cutting. In addition, the magnification of the optical microscope photograph of FIG. 10 is 100 times.

本発明は上記の問題点を解決し、安価な製造原価かつ高
い生産性で、ポロシティ−などの欠陥のないアルミニウ
ム合金粉末の成形体を成形することができるアルミニウ
ム合金の粉末冶金法を提供することを目的とする。
The present invention solves the above problems and provides an aluminum alloy powder metallurgy method that can form aluminum alloy powder compacts free of defects such as porosity at low manufacturing costs and high productivity. With the goal.

[課題を解決するための手段] 本発明のアルミニウム合金の粉末冶金法は、球状化度0
.7以下のアルミニウム合金粉末を室温以上の温度で予
備成形金型で加圧成形して、みかけの密度と真密度との
比が0.70−0.85の予備成形体を得る第1工程と
、 該予備成形体を350℃以上で焼結が開始しない温度以
下の温度とし、かつ本成形金型の温度を該予備成形体の
温度の0.75以上の温度に保持した状態で該予備成形
体を該本成形金型で5〜30秒間加圧成形して、みかけ
の密度と真密度との比が0.97以上の成形体を得る第
2工程と、からなることを特徴とするアルミニウム合金
の粉末冶金法である。
[Means for solving the problem] The powder metallurgy method for aluminum alloy of the present invention has a degree of spheroidization of 0.
.. A first step of obtaining a preformed body having a ratio of apparent density to true density of 0.70 to 0.85 by press-forming aluminum alloy powder of 7 or less in a preforming mold at a temperature higher than room temperature; , The preform is heated to a temperature of 350° C. or higher but below a temperature at which sintering does not start, and the temperature of the main mold is maintained at a temperature of 0.75 or more of the temperature of the preform. a second step of press-molding the body in the main mold for 5 to 30 seconds to obtain a molded body having a ratio of apparent density to true density of 0.97 or more. It is a powder metallurgy method for alloys.

アルミニウム合金粉末の球状化度とは、アルミニウム合
金粉末の投影図の投影面積をその投影図の周長の二乗で
除した値と、真球のに値との比の値(以下、球状化度A
という。)である。
The degree of spheroidization of an aluminum alloy powder is the ratio of the projected area of the projected image of the aluminum alloy powder divided by the square of the circumference of that projection to the value of a true sphere (hereinafter referred to as the degree of spheroidization). A
That's what it means. ).

ここで、真球のに値とは、真球の断面積を真球の周長の
二乗で除した値である。すなわち、真球の半径をrとす
ると、その断面積(S)はπr2となり、その周長(5
2)は2πrとなる。したがって、真球のに値は、 K=S/Q 2 =πr2/ (2πp)2 =1/4π=0.0796、と計算で きる。
Here, the value of the true sphere is the value obtained by dividing the cross-sectional area of the true sphere by the square of the circumference of the true sphere. That is, if the radius of a true sphere is r, its cross-sectional area (S) is πr2, and its circumference (5
2) becomes 2πr. Therefore, the value of the true sphere can be calculated as follows: K=S/Q 2 =πr2/ (2πp)2 = 1/4π=0.0796.

したがって、アルミニウム合金粉末の投影図の投影面積
をその投影図の周長の二乗で除した値をKaとすれば、
球状化度Aは、次の式で求めることができる。すなわち
、 A=Ka /に =Ka10.0796、と計算できる。
Therefore, if Ka is the value obtained by dividing the projected area of the projected diagram of the aluminum alloy powder by the square of the circumference of the projected diagram, then
The degree of spheroidization A can be determined by the following formula. That is, it can be calculated as A=Ka/to=Ka10.0796.

この球状化度Aが0.7を越える場合、得られたアルミ
ニウム合金粉末の形状が真球に近くなる。
When the degree of spheroidization A exceeds 0.7, the shape of the obtained aluminum alloy powder becomes close to a true sphere.

このような球状化度Aを有するアルミニウム合金粉末を
用いて成形体を成形すると、アルミニウム合金粉末同士
の絡み合いが少ないため、成形体の表面に層状組織(以
下、ラミネーションという。)が発生し易くなる。した
がって、アルミニウム合金粉末の球状化度Aの値は好ま
しくは0.7以下である。また、球状化度Aを0.7以
下とすることによって、比較的低い成形圧力かつ室温で
も予備成形体を成形することが可能となり、予備成形金
型の寿命も向上する。
When a compact is formed using aluminum alloy powder having such a degree of spheroidization A, since there is little entanglement between the aluminum alloy powders, a layered structure (hereinafter referred to as lamination) is likely to occur on the surface of the compact. . Therefore, the value of the degree of spheroidization A of the aluminum alloy powder is preferably 0.7 or less. Further, by setting the degree of spheroidization A to 0.7 or less, it becomes possible to mold the preform at a relatively low molding pressure and at room temperature, and the life of the preform mold is also improved.

本発明の第1工程において予備成形体の成形温度は、室
温以上であればよい。しかし、本発明の発明者らは鋭意
研究の結果、複雑な形状を有する予備成形体を成形する
にあたっては、150℃未満の成形温度に予備成形金型
およびアルミニウム合金粉末を加熱することが好ましい
ことを見出だした。すなわち、第1表に示すとおり成形
温度が150℃以上となると、予備成形体が予備成形金
型に凝着し易くなって、予備成形金型から予備成形体を
扱出す際の後出し荷重が著しく大きくなり、好ましくな
いからである。
In the first step of the present invention, the molding temperature of the preform may be at least room temperature. However, as a result of intensive research, the inventors of the present invention have found that it is preferable to heat the preform mold and aluminum alloy powder to a molding temperature of less than 150°C when molding a preform having a complicated shape. I found out. In other words, as shown in Table 1, when the molding temperature is 150°C or higher, the preform tends to adhere to the preform mold, and the subsequent load when handling the preform from the preform mold increases. This is because it becomes significantly larger, which is not desirable.

成形条件:JSPM標準引張り強度試験片成形圧力5ト
ン/cm2 予備成形体のみかけの密度と真密度との比(以下、予備
成形体密度比という。)は、0.70〜0.85の範囲
にあることが好ましい。予備成形体密度比が0.70未
満の予備成形体の強度は充分なものでないので、かかる
予備成形体をその後の工程において取扱う際にその角部
が欠けるなどの問題を生じる。また、予備成形体密度比
が0゜85を越える予備成形体を冑ようとすると、高い
成形圧力で成形しなければならないので、予備成形金型
の寿命が短くなる上、予備成形体の表面に気泡(以下、
ブリスターという。)が発生するなどの問題を生じる。
Molding conditions: JSPM standard tensile strength test piece molding pressure 5 tons/cm2 The ratio between the apparent density and true density of the preform (hereinafter referred to as preform density ratio) is in the range of 0.70 to 0.85. It is preferable that the Since a preform having a preform density ratio of less than 0.70 does not have sufficient strength, problems such as chipping of the corners occur when such a preform is handled in subsequent steps. Furthermore, if a preform with a preform density ratio exceeding 0°85 is to be molded, it must be molded at a high molding pressure, which shortens the life of the preform mold and causes damage to the surface of the preform. Bubbles (hereinafter referred to as
It's called a blister. ) may occur.

これは、予備成形体密度比が0.85を越える予備成形
体を得ようとすると、成形圧力を高めなければならず、
また成形圧力を高めると予備成形体内に生じる細孔がす
べて閉細孔となり、アルミニウム合金粉末表面の酸化ア
ルミニウム(AQ 203・3H20)被膜から生じる
水素ガスが捕えられるために、ブリスターが発生し易く
なるからである。
This means that in order to obtain a preform with a preform density ratio exceeding 0.85, the molding pressure must be increased.
In addition, when the compacting pressure is increased, all the pores created in the preform become closed pores, and hydrogen gas generated from the aluminum oxide (AQ 203/3H20) film on the surface of the aluminum alloy powder is trapped, making it easier for blisters to occur. It is from.

本発明の第2工程において、予備成形体を加熱する温度
は、350℃以上で焼結が開始しない温度以下の温度で
あることが好ましい。これは、350℃未満の温度に加
熱した予備成形体を所定の成形体に成形するには、第2
工程での成形圧力を高めなければならず、このように成
形圧力を高めると本成形金型の寿命が短くなるため好ま
しくないからである。
In the second step of the present invention, the temperature at which the preform is heated is preferably 350° C. or higher and lower than the temperature at which sintering does not start. In order to mold a preform heated to a temperature below 350°C into a predetermined molded product, the second
This is because the molding pressure in the process must be increased, and increasing the molding pressure in this way shortens the life of the mold, which is not preferable.

なお、本発明の発明者らは各加熱温度にあ【プる予備成
形体の寸法変化と引張り強度を調べた結果、第2表に示
すように焼結が開始する温度は、はぼ540℃であり、
焼結が開始した後は引張り強度に大きな向上は認められ
ないことが判った。
The inventors of the present invention investigated the dimensional changes and tensile strength of the preform under various heating temperatures, and as shown in Table 2, the temperature at which sintering starts is approximately 540°C. and
It was found that no significant improvement in tensile strength was observed after sintering had begun.

第  2  表 加熱雰囲気:窒素(800Torr) 加熱時間 260分 また、第2図から第4図に示す各加熱温度における予備
成形体の金属組織の光学顕微鏡写真から明らかなように
、焼結が開始すると金属組織中の初晶のケイ素が著しく
粗大化していることが判る。
Table 2 Heating atmosphere: Nitrogen (800 Torr) Heating time: 260 minutes Also, as is clear from the optical micrographs of the metal structure of the preform at each heating temperature shown in Figures 2 to 4, once sintering starts It can be seen that the primary crystal silicon in the metal structure has become significantly coarsened.

このように初晶のケイ素が粗大化することは、成形後の
成形体の強度を著しく低下させる。したがって、かかる
強度低下を防止するためにも、予備成形体の加熱温度を
350℃以上で焼結が開始しない温度以下とすることが
好ましいことが判る。
This coarsening of primary silicon significantly reduces the strength of the molded product after molding. Therefore, it can be seen that in order to prevent such a decrease in strength, it is preferable to set the heating temperature of the preform to 350° C. or higher and a temperature at which sintering does not start.

なお、第2図から第4図の光学顕微鏡写真の倍率は10
00倍である。
The magnification of the optical micrographs in Figures 2 to 4 is 10.
00 times.

ざらに、本発明の第2工程において、本成形金型の温度
を予備成形体の温度に対して、0.75以上1.2以下
の温度に保持した状態とすることが好ましい。このよう
に本成形金型の温度を保持することによって、成形体の
表面にポロシティ−などの欠陥がない健全な成形体を得
ることができる。かかる事実は、本発明の発明者らが本
成形金型の温度を予備成形体の温度に対して0.23.
0.73.0.80に保持して鍛造成形した各鍛造成形
体の成形パンチ側表面の金属組織を、光学顕微鏡で躍影
した写真を解析することによって明らかになったもので
ある。
Roughly speaking, in the second step of the present invention, it is preferable that the temperature of the main mold is maintained at a temperature of 0.75 or more and 1.2 or less with respect to the temperature of the preform. By maintaining the temperature of the mold in this way, it is possible to obtain a healthy molded product with no defects such as porosity on the surface of the molded product. This fact indicates that the inventors of the present invention set the temperature of the molding die to 0.23% relative to the temperature of the preform.
The metal structure of the punch-side surface of each forged body formed by forging while maintaining the temperature at 0.73 and 0.80 was clarified by analyzing photographs taken with an optical microscope.

この@造成形体の表面の金属組織の光学顕微鏡写真を第
5図から第7図に示す。第5図および第6図から明らか
なように、本成形金型の温度を予備成形体の温度に対し
て0.75未満とした場合には、鍛造成形体の表面にポ
ロシティ−が生じていることが判る。ポロシティ−が鍛
造成形体に存在する場合、鍛造成形体の材料としての信
頼性が著しく低下するので、切削などによってかかるホ
ーロシティ−を除去しなければならない。このため、材
料の歩留りが著しく低下してしまう。なお、第7図に示
すように、本成形金型の温度を予備成形体の温度に対し
て0.80とした場合には、得られた鍛造成形体はポロ
シティ−の発生がない健全な鍛造成形体であることが判
る。なお、第5図から第7図の光学顕微鏡写真の倍率は
400倍である。なお、本成形金型の温度を予備成形体
の温度に対して1.2以下とすることが好ましい。1゜
2を越えても鍛造成形体の特性が変化しないばかりでは
なく、本成形金型を加熱するための電力または火力が相
当必要になり、製造原価が高くなるため好ましくない。
Optical micrographs of the metallographic structure of the surface of this molded body are shown in FIGS. 5 to 7. As is clear from FIGS. 5 and 6, when the temperature of the main molding die is less than 0.75 with respect to the temperature of the preform, porosity occurs on the surface of the forged product. I understand that. If porosity exists in the forged body, the reliability of the forged body as a material is significantly reduced, so such porosity must be removed by cutting or the like. For this reason, the yield of the material decreases significantly. As shown in Fig. 7, when the temperature of the main mold is set to 0.80 with respect to the temperature of the preform, the obtained forged body is a sound forged body with no porosity. It can be seen that it is a molded object. Note that the magnification of the optical micrographs in FIGS. 5 to 7 is 400 times. Note that it is preferable that the temperature of the main molding die be 1.2 or less with respect to the temperature of the preform. Even if it exceeds 1°2, not only the characteristics of the forged compact will not change, but also a considerable amount of electric power or thermal power will be required to heat the mold, which will increase the manufacturing cost, which is not preferable.

第2工程の成形における成形時間は、5〜30秒間とす
ることが好ましい。これは、成形時間を5秒未満とする
と、予備成形体中のアルミニウム合金粉末間でアルミニ
ウム原子が充分に拡散することができず、充分な強度を
有する成形体を得ることができないためであり、また成
形時間を30秒を越えるものとしても、30秒を越えて
延長した成形時間に比例して成形体の強度が向上しない
ためである。
The molding time in the second step is preferably 5 to 30 seconds. This is because if the molding time is less than 5 seconds, aluminum atoms cannot sufficiently diffuse between the aluminum alloy powders in the preform, making it impossible to obtain a molded product with sufficient strength. Further, even if the molding time exceeds 30 seconds, the strength of the molded product does not improve in proportion to the molding time extended beyond 30 seconds.

成形体のみかけの密度と真密度との比(以下、成形体密
度比という。)は、0.97以上とすることが好ましい
。これは、第8図に示す押出し成形体の成形体密度比と
引張り強度との関係から、本発明の第2工程で得られる
成形体に押出し成形体と同等の引張り強度を付与するた
めには、この成形体の成形体密度比を0.97以上とし
なければならないことが、本発明の発明者らの研究の結
果判明したからである。なお、成形体密度比が0゜97
未満の場合、成形体内にポロシティ−が発生し、アルミ
ニウム合金粉末同士が充分に結合していないために、成
形体の強度が低下する。
The ratio between the apparent density and the true density of the molded body (hereinafter referred to as molded body density ratio) is preferably 0.97 or more. This is because, from the relationship between the density ratio and tensile strength of the extruded body shown in FIG. This is because, as a result of research conducted by the inventors of the present invention, it has been found that the compact density ratio of this compact must be 0.97 or more. In addition, the density ratio of the compact is 0°97
If it is less than 20%, porosity occurs in the molded body and the aluminum alloy powders are not sufficiently bonded to each other, resulting in a decrease in the strength of the molded body.

本発明の第2工程においては、その成形条件、すなわち
予備成形体の加熱温度、本成形金型の予備成形体に対す
る温度および成形時間を上記で詳述したように限定した
ので、第9図に示すように、比較的低い成形圧力でポロ
シティ−などの欠陥のない高密度の成形体を得ることが
できる。
In the second step of the present invention, the molding conditions, that is, the heating temperature of the preform, the temperature of the main mold for the preform, and the molding time were limited as detailed above. As shown, a high-density molded product free from defects such as porosity can be obtained at a relatively low molding pressure.

また、成形体の耐摩耗性を向上させるために耐摩耗粒子
を添加しても良い。この耐摩耗粒子の硬度はごッカース
硬度(HV)で400以上であるのが好ましい。耐摩耗
粒子の硬度が400未満であっては、耐摩耗粒子として
の機能を充分に果たすことができない。なお、耐摩耗粒
子の粒径は、100μm以下でおるのが好ましい。なぜ
ならば、耐摩耗粒子の粒径が100μmを越えると、第
1工程における予備成形体の成形性が低下し、かつ10
0μmを越える粒径を有する耐摩耗粒子を添加しても、
成形体の耐摩耗性はほとんど向上しないからである。
Furthermore, wear-resistant particles may be added to improve the wear resistance of the molded article. The hardness of the wear-resistant particles is preferably 400 or more on Gokkers hardness (HV). If the hardness of the wear-resistant particles is less than 400, they cannot sufficiently function as wear-resistant particles. Note that the particle size of the wear-resistant particles is preferably 100 μm or less. This is because when the particle size of the wear-resistant particles exceeds 100 μm, the formability of the preform in the first step decreases, and
Even if wear-resistant particles with a particle size exceeding 0 μm are added,
This is because the abrasion resistance of the molded body is hardly improved.

[発明の作用および効果] 本発明のアルミニウム合金の粉末冶金法の第1工程にお
いては、原料となるアルミニウム合金粉末の球状化度A
を0.7以下としたので、ラミネーションやブリスター
などの欠陥のない高密度の予備成形体を比較的低い成形
圧力かつ室温で成形することができる。
[Operations and Effects of the Invention] In the first step of the powder metallurgy method for aluminum alloy of the present invention, the spheroidization degree A of the aluminum alloy powder serving as the raw material is
Since it is set to 0.7 or less, a high-density preform without defects such as laminations and blisters can be molded at a relatively low molding pressure and at room temperature.

また、本発明のアルミニウム合金の粉末冶金法の第2工
程においては、予備成形体を加熱する温度は350℃以
上で焼結が開始しない温度以下の温度とし、本成形金型
の温度を予備成形体の温度に対して0.75以上の温度
に保持した状態とし、かつ成形時間を5〜30秒間とす
ることによって、第2工程における成形を比較的低い成
形圧力で行うことができる上、かかる低い成形圧力で成
形を行ってもポロシティ−などの欠陥のない高密度の成
形体を効率良く生産することができる。
In addition, in the second step of the powder metallurgy method for aluminum alloys of the present invention, the temperature at which the preform is heated is 350°C or higher and the temperature at which sintering does not start, and the temperature of the main mold is set to By maintaining the temperature at 0.75 or higher relative to the body temperature and by setting the molding time to 5 to 30 seconds, the molding in the second step can be performed at a relatively low molding pressure, and Even when molding is performed at low molding pressure, a high-density molded product free from defects such as porosity can be efficiently produced.

したがって、本発明のアルミニウム合金の粉末冶金法に
よれば、複雑な工程からなる熱間押出し法や設備費がか
さむ熱間静水圧法を採用することなく、比較的低い成形
圧力で成形体を成形することができ、金型の寿命も大き
く向上する。ざらに、得られた成形体はポロシティ−な
どの欠陥がないので、切削によって欠陥部を除去する必
要がない。
Therefore, according to the powder metallurgy method for aluminum alloys of the present invention, compacts can be formed at a relatively low compacting pressure without using hot extrusion methods that involve complicated processes or hot isostatic pressing methods that increase equipment costs. This greatly improves the life of the mold. In general, since the obtained molded body has no defects such as porosity, there is no need to remove defective portions by cutting.

したがって、材料歩留りが向上する。このように、本発
明のアルミニウム合金の粉末冶金法によれば、安価な製
造原価かつ高い生産性で、アルミニウム合金粉末から高
強度の成形体を成形することができる。
Therefore, material yield is improved. As described above, according to the aluminum alloy powder metallurgy method of the present invention, a high-strength compact can be formed from aluminum alloy powder at low manufacturing cost and high productivity.

[実施例] 以下、本発明のアルミニウム合金の粉末冶金法を実施例
に基づき説明する。
[Examples] Hereinafter, the powder metallurgy method for aluminum alloys of the present invention will be explained based on Examples.

(第1実施例) 第3表の第1実施例に示すような組成となるように、S
l、Fe、Cu、MCJ、MrlおよびA9を配合した
。この後、この組成物を高周波加熱炉内で加熱してアル
ミニウム合金溶湯を調製した。
(First Example) S
1, Fe, Cu, MCJ, Mrl and A9 were blended. Thereafter, this composition was heated in a high frequency heating furnace to prepare a molten aluminum alloy.

次に、このアルミニウム合金溶湯を1150℃に加熱し
ノズル径5mmのノズルから落下させ、落下中のアルミ
ニウム合金溶湯に空気を吹きか【プでアトマイズした。
Next, this molten aluminum alloy was heated to 1150° C. and dropped from a nozzle with a nozzle diameter of 5 mm, and the falling molten aluminum alloy was atomized by blowing air.

このようにして得たアルミニウム合金粉末をプレパラー
ト上に分散させて光学顕微鏡で写真囮影し、この光学顕
微鏡写真を画像解析装置で分析してアルミニウム合金粉
末の投影図の投影面積およびその投影図の周長を測定し
、アルミニウム合金粉末の球状化度Aを求めた。第1実
施例のアルミニウム合金粉末の球状化度Aは、0.63
でめった。
The aluminum alloy powder obtained in this way is dispersed on a preparation plate and photographed using an optical microscope, and this optical microscope photograph is analyzed with an image analyzer to determine the projected area of the aluminum alloy powder and its projected diagram. The circumferential length was measured, and the degree of spheroidization A of the aluminum alloy powder was determined. The degree of spheroidization A of the aluminum alloy powder of the first example is 0.63
I failed.

このアルミニウム合金粉末をアミドワックス系の潤滑剤
を塗布した予備成形金型内に供給し、成形圧力4トン/
cm”で室温にて、JSPM標準引張り強度試験片(長
さ96.5mm、平行部の巾5.70mm)の形状を有
する予備成形体に成形した。なお、得られた予備成形体
の予備成形体密度比は、0.80であった。
This aluminum alloy powder was supplied into a preforming mold coated with an amide wax-based lubricant, and the molding pressure was 4 tons/min.
cm'' at room temperature to form a preform having the shape of a JSPM standard tensile strength test piece (length 96.5 mm, width of parallel part 5.70 mm). The body density ratio was 0.80.

次に、この予備成形体を800Torrの窒素雰囲気中
500℃で1時間加熱した。このように加熱した予備成
形体を、水に分散した黒鉛を塗布した後に800TOr
rの窒素雰囲気中で400℃に加熱した本成形金型に供
給した。そして、本成形金型内で予備成形体を4トン/
Cm2の鍛造圧力で15秒間加圧して鍛造成形体を得た
。なお、この鍛造成形の際、本成形金型の温度を、予備
成形体の温度の0.77〜0.80の温度に保持した。
Next, this preform was heated at 500° C. for 1 hour in a nitrogen atmosphere of 800 Torr. The thus heated preform was coated with graphite dispersed in water and heated to 800 Torr.
The sample was supplied to a main mold which was heated to 400° C. in a nitrogen atmosphere of 30°C. Then, in the main mold, 4 tons/of the preformed body was
A forged compact was obtained by pressing at a forging pressure of Cm2 for 15 seconds. During this forging, the temperature of the main mold was maintained at 0.77 to 0.80 of the temperature of the preform.

このようにして得た鍛造成形体の成形体密度比を水浸漬
法によって求めたところ、1.0であった。ざらに、万
能試験機を使用してこの鍛造成形体の引張り強度を測定
したところ、54.2kgf/mm”  (531MP
a)でa5t)、所望の引張り強度を有するものであっ
た。なお、この測定は、歪み速度1mm/分で室温にて
行った。
The compact density ratio of the forged compact thus obtained was determined by a water immersion method and was found to be 1.0. When the tensile strength of this forged body was measured using a universal testing machine, it was found to be 54.2 kgf/mm" (531 MP
In a), a5t) had the desired tensile strength. Note that this measurement was performed at room temperature at a strain rate of 1 mm/min.

また、第1図に上記のように成形した第1実施例の鍛造
成形体の金属組織の光学顕微鏡写真を示す。第・1図か
ら明らかなように、第1実施例の鍛造成形体はその表面
部にポロシティ−などの欠陥がない健全な鍛造成形体で
あることが判る。なお、この光学顕微鏡写真の倍率は1
00倍である。
Further, FIG. 1 shows an optical micrograph of the metal structure of the forged compact of the first example formed as described above. As is clear from FIG. 1, the forged body of the first example is a sound forged body without defects such as porosity on its surface. The magnification of this optical microscope photo is 1
00 times.

(第2実施例) 第3表の第2実施例に示すような組成となるように、s
r 、 Fe、cu、 Mcr、 MnおよびA52を
配合した。この後、この組成物を第1実施例と同様の方
法でアトマイズした。
(Second Example) S
r, Fe, cu, Mcr, Mn and A52 were blended. Thereafter, this composition was atomized in the same manner as in the first example.

このようにして得たアルミニウム合金粉末を第1実施例
と同様の方法で球状化度Aを測定した。
The degree of spheroidization A of the aluminum alloy powder thus obtained was measured in the same manner as in the first example.

第2実施例のアルミニウム合金粉末の球状化度Aは、0
.61であった。
The degree of spheroidization A of the aluminum alloy powder of the second example is 0.
.. It was 61.

第2実施例においては、このアルミニウム合金粉末に、
ざらに平均粒径が10μmでビッカース硬度(HV)が
2500の炭化ケイ素粒子を8重量%添加してよく混合
した後、第1実施例と同様の方法で、第1実施例と同一
の予備成形体を成形した。ただし、第2実施例において
は、成形温度は130℃、成形圧力は5トン/Cm2で
予備成形体の成形を行った。なお、得られた予備成形体
の予備成形体密度比は、0.72であった。
In the second embodiment, this aluminum alloy powder contains
After adding 8% by weight of silicon carbide particles having a rough average particle diameter of 10 μm and a Vickers hardness (HV) of 2500 and mixing well, the same preforming as in the first example was carried out in the same manner as in the first example. molded the body. However, in the second example, the preform was molded at a molding temperature of 130°C and a molding pressure of 5 tons/cm2. Note that the preform density ratio of the obtained preform was 0.72.

次に、この予備成形体を第1実施例と同様に加熱した。Next, this preform was heated in the same manner as in the first example.

ただし、第2実施例においては、予備成形体の加熱温度
は520’Cであった。このように加熱した予備成形体
を、第1実施例と同様の処理を施しかつ第1実施例と同
様に加熱した本成形金型に供給した。そして、本成形金
型内で予備成形体を5トン/cm2の鍛造圧力で20秒
間加圧して鍛造成形体を得た。なお、この鍛造成形の際
、本成形金型の温度を、予備成形体の温度の0.76〜
0.80の温度に保持した。このようにして得た鍛造成
形体の成形体密度比を、第1実施例と同様に求めたとこ
ろ、0.99であった。ざらに、第1実施例と同様にこ
の鍛造成形体の引張り強度を測定したところ、53.5
kgf/mm’  (524MPa)であり、所望の引
張り強度を有するものであった。
However, in the second example, the heating temperature of the preform was 520'C. The thus heated preform was supplied to the main mold which was subjected to the same treatment as in the first example and heated in the same manner as in the first example. Then, the preform was pressed in the main mold at a forging pressure of 5 tons/cm2 for 20 seconds to obtain a forged molded body. In addition, during this forging, the temperature of the main mold is set to 0.76 to 0.76 of the temperature of the preform.
The temperature was maintained at 0.80. The compact density ratio of the forged compact thus obtained was determined in the same manner as in the first example, and was found to be 0.99. Roughly, the tensile strength of this forged body was measured in the same manner as in the first example, and it was found to be 53.5.
kgf/mm' (524 MPa), and had the desired tensile strength.

(比較例1) 第3表の比較例1に示すような組成となるよう1こ、S
 i 、Fe、Cu、Mに7、MnおよびAQを配合し
た。この後、この組成物を第1実施例と同様の方法でア
トマイズした。ただし、比較例1においては、落下中の
アルミニウム合金溶湯に窒素を吹きかけてアトマイズし
た。
(Comparative Example 1) To obtain a composition as shown in Comparative Example 1 in Table 3,
i, Fe, Cu, and M were mixed with 7, Mn, and AQ. Thereafter, this composition was atomized in the same manner as in the first example. However, in Comparative Example 1, nitrogen was sprayed onto the falling molten aluminum alloy to atomize it.

このようにして得たアルミニウム合金粉末を第1実施例
と同様の方法で球状化度Aを測定した。
The degree of spheroidization A of the aluminum alloy powder thus obtained was measured in the same manner as in the first example.

比較例1のアルミニウム合金粉末の球状化度Aは、0.
89であった。
The degree of spheroidization A of the aluminum alloy powder of Comparative Example 1 was 0.
It was 89.

そして、このアルミニウム合金粉末を用いて第1実施例
と同様の方法で、第1実施例と同一の予備成形体を成形
したところ、予備成形体密度比が0.65の予備成形体
が得られた。しかしながら、この予備成形体の側面には
ラミネーションが発生しており、以降の鍛造成形体の成
形には不適当なものであった。したがって、比較例1で
は以降の鍛造成形を行わなかった。
Then, when a preform identical to that of the first example was molded using this aluminum alloy powder in the same manner as in the first example, a preform with a preform density ratio of 0.65 was obtained. Ta. However, lamination occurred on the side surface of this preform, making it unsuitable for subsequent forming of a forged product. Therefore, in Comparative Example 1, subsequent forging was not performed.

(比較例2) 第3表の比較例2に示すような組成となるように、S 
i 、Fe、Cu、MQ、MnおよびAQを配合した。
(Comparative Example 2) S
i, Fe, Cu, MQ, Mn and AQ were blended.

この後、この組成物を第1実施例と同様の方法でアトマ
イズした。
Thereafter, this composition was atomized in the same manner as in the first example.

このようにして得たアルミニウム合金粉末を第1実施例
と同様の方法で球状化度Aを測定した。
The degree of spheroidization A of the aluminum alloy powder thus obtained was measured in the same manner as in the first example.

比較例2のアルミニウム合金粉末の球状化度Aは、0.
63であった。
The degree of spheroidization A of the aluminum alloy powder of Comparative Example 2 is 0.
It was 63.

このアルミニウム合金粉末を用いて、第1実施例と同様
の方法で、第1実施例と同一の予備成形体を成形した。
Using this aluminum alloy powder, the same preform as in the first example was molded in the same manner as in the first example.

なお、得られた予備成形体の予備成形体密度比は、O,
SOであった。
Note that the preform density ratio of the obtained preform is O,
It was SO.

次に、この予備成形体を第1実施例と同様に加熱した。Next, this preform was heated in the same manner as in the first example.

この加熱した予備成形体を、第1実施例と同様の処理を
施しかつ第1実施例と同様の雰囲気中で220℃に加熱
した本成形金型に供給した。
This heated preform was subjected to the same treatment as in the first example and was supplied to the main mold which was heated to 220° C. in the same atmosphere as in the first example.

そして、第1実施例と同様の鍛造成形条件、すなわち、
4トン/Cm2の鍛造圧力で15秒間加圧して鍛造成形
体を得た。なお、この鍛造成形の際、本成形金型の温度
を、予備成形体の温度の0.50〜0.55の温度に保
持した。このようにして得た鍛造成形体の成形体密度比
を、第1実施例と同様に求めたところ、0.95であっ
た。さらに、第1実施例と同様にこの鍛造成形体の引張
り強度を測定したところ、50.1kgf/mm2 (
491MPa)であり、所望の引張り強度を有するもの
ではなかった。
Then, the same forging conditions as in the first example were applied, namely,
A forged compact was obtained by applying a forging pressure of 4 tons/Cm2 for 15 seconds. During this forging, the temperature of the main mold was maintained at 0.50 to 0.55 of the temperature of the preform. The compact density ratio of the forged compact thus obtained was determined in the same manner as in the first example, and was found to be 0.95. Furthermore, when the tensile strength of this forged compact was measured in the same manner as in the first example, it was found to be 50.1 kgf/mm2 (
491 MPa), which did not have the desired tensile strength.

(比較例3) 第3表の比較例3に示すような組成となるように、S 
i 、Fe、Cu、Mg、MnおよびAQを配合した。
(Comparative Example 3) S
i, Fe, Cu, Mg, Mn and AQ were blended.

この後、この組成物を第1実施例と同様の方法で7トマ
イズした。
Thereafter, this composition was totomized 7 times in the same manner as in the first example.

このようにして得たアルミニウム合金粉末を第1実施例
と同様の方法で球状化度Aを測定した。
The degree of spheroidization A of the aluminum alloy powder thus obtained was measured in the same manner as in the first example.

比較例3のアルミニウム合金粉末の球状化度Aは、0.
63であった。
The degree of spheroidization A of the aluminum alloy powder of Comparative Example 3 is 0.
It was 63.

このアルミニウム合金粉末を用いて、第1実施例と同様
の方法で、第1実施例と同一の予備成形体を成形した。
Using this aluminum alloy powder, the same preform as in the first example was molded in the same manner as in the first example.

なお、得られた予備成形体の予備成形体密度比は、0.
80であった。
Note that the preform density ratio of the obtained preform was 0.
It was 80.

次に、この予備成形体を第1実施例と同様に加熱した。Next, this preform was heated in the same manner as in the first example.

この加熱した予備成形体を、第1実施例と同様の処理を
施しかつ第1実施例と同様の雰囲気中で120℃に加熱
した本成形金型に供給した。
This heated preform was subjected to the same treatment as in the first example and was supplied to the main mold which was heated to 120° C. in the same atmosphere as in the first example.

そして、8トン/cm’の鍛造圧力で2秒間加圧する鍛
造成形を行って鍛造成形体を得た。なお、この鍛造成形
の際、本成形金型の温度を、予備成形体の温度の0.2
5〜0.30の温度に保持した。このようにして得た鍛
造成形体の成形体密度比を、第1実施例と同様に求めた
ところ、0.95であった。さらに、第1実施例と同様
にこの鍛造成形体の引張り強度を測定したところ、50
゜0kof/mm2 (490MPa)であり、所望の
引張り強度を有するものではなかった。
Then, forging was performed at a forging pressure of 8 tons/cm' for 2 seconds to obtain a forged compact. In addition, during this forging, the temperature of the main mold is set to 0.2 of the temperature of the preform.
The temperature was maintained between 5 and 0.30. The compact density ratio of the forged compact thus obtained was determined in the same manner as in the first example, and was found to be 0.95. Furthermore, when the tensile strength of this forged compact was measured in the same manner as in the first example, it was found to be 50.
0 kof/mm2 (490 MPa), and did not have the desired tensile strength.

また、第10図に上記のように成形した比較例3の鍛造
成形体の金属組織の光学顕微鏡写真を示す。第10図か
ら明らかなように、比較例3の鍛造成形体は、8トン/
Crrl”という高い鍛造圧力にもかかわらず、その表
面部に鍛造圧力不足に起因するとみられるポロシティ−
などの欠陥が発生している。したがって、比較例3の鍛
造成形体は、材料としての信頼性に劣り、この欠陥を切
削によって取除かなければならないので材料歩留りが良
くない。なお、この光学顕微鏡写真の倍率は100倍で
ある。
Moreover, FIG. 10 shows an optical micrograph of the metal structure of the forged compact of Comparative Example 3 formed as described above. As is clear from Fig. 10, the forged body of Comparative Example 3 was 8 tons/
Despite the high forging pressure of
Defects such as: Therefore, the forged body of Comparative Example 3 has poor reliability as a material, and since the defects must be removed by cutting, the material yield is poor. Note that the magnification of this optical microscope photograph is 100 times.

本発明の第1および第2実施例のようなアルミニウム合
金の粉末冶金法によって得られた鍛造成形体と、比較例
1.2および3のようなアルミニウム合金の粉末冶金法
によって得られた鍛造成形体との比較から明らかなよう
に、本発明のアルミニウム合金の粉末冶金法においては
、4トン/Cm2なる低い成形圧力かつ室温にて、所望
の予備成形体を製造することができ、さらに4トン/C
m2ないし5トン/cm2なる低い鍛造圧力かつ15〜
20秒という短時間で、所望の強度を有する鍛造成形体
を成形することができる。
Forged compacts obtained by powder metallurgy of aluminum alloys as in the first and second embodiments of the present invention, and forged compacts obtained by powder metallurgy of aluminum alloys as in Comparative Examples 1.2 and 3. As is clear from the comparison with the aluminum alloy powder metallurgy method of the present invention, the desired preform can be produced at a low compacting pressure of 4 tons/Cm2 at room temperature, and a further 4 tons/Cm2 /C
Low forging pressure of m2 to 5 tons/cm2 and 15~
A forged molded body having desired strength can be formed in a short time of 20 seconds.

また、このようにして得た第1および第2実施例の鍛造
成形体にはポロシティ−などの欠陥がないので、第1お
よび第2実施例の鍛造成形体の材料としての信頼性や材
料歩留りは著しく向上していることが判る。
Furthermore, since the forged compacts of the first and second embodiments obtained in this manner do not have defects such as porosity, the reliability and material yield of the forged compacts of the first and second embodiments are improved. It can be seen that there has been a marked improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアルミニウム合金の粉末冶金法の第1
実施例によって成形した鍛造成形体の金属組織の光学顕
微鏡写真である。第2図から第4図は各加熱温度におけ
る予備成形体の金属組織の光学顕微鏡写真である。第5
図から第7図は本成形金型の加熱温度と予備成形体の加
熱温度との温度比を種々に変更して鍛造成形した各鍛造
成形体の金属組織の光学顕微鏡写真である。第8図は押
出し成形体の成形体密度比と引張り強度との関係を示す
散布図である。第9図は所定の成形体密度比の成形体を
成形するための本成形金型の温度と成形圧力との関係を
示す線図である。第10図は従来のアルミニウム合金の
粉末冶金法に基づき成形した比較例3の@造成形体の金
属組織の光学顕微鏡写真である。 第1図 (予備成形体加熱温度=500°C) (予備成形体加熱温度:540 に2 第8図 5 9697 98 99 成形体密度比 00 本成形金型温度(°C) (本成彫金ff!温度/T−備成形体温度・0.23 
> (本成形金型温度/予備成形体温度: O,aO> 第10図
Figure 1 shows the first method of powder metallurgy of aluminum alloy according to the present invention.
It is an optical micrograph of the metal structure of the forged compact formed by Example. FIGS. 2 to 4 are optical micrographs of the metal structure of the preform at each heating temperature. Fifth
FIGS. 7 to 7 are optical micrographs of the metal structure of each forged body formed by forging with various temperature ratios between the heating temperature of the main mold and the heating temperature of the preform. FIG. 8 is a scatter diagram showing the relationship between the compact density ratio and the tensile strength of an extruded compact. FIG. 9 is a diagram showing the relationship between the temperature of the molding die and the molding pressure for molding a molded body having a predetermined molded body density ratio. FIG. 10 is an optical micrograph of the metallographic structure of a molded body of Comparative Example 3 molded based on the conventional powder metallurgy method of an aluminum alloy. Fig. 1 (Preform heating temperature = 500°C) (Preform heating temperature: 540 to 2 Fig. 8 5 9697 98 99 Molding density ratio 00 Main mold temperature (°C) (Main carving ff !Temperature/T-prepared molded body temperature・0.23
> (Main molding mold temperature/preformed body temperature: O, aO> Fig. 10

Claims (1)

【特許請求の範囲】[Claims] (1)球状化度0.7以下のアルミニウム合金粉末を室
温以上の温度で予備成形金型で加圧成形して、みかけの
密度と真密度との比が0.70〜0.85の予備成形体
を得る第1工程と、 該予備成形体を350℃以上で焼結が開始しない温度以
下の温度とし、かつ本成形金型の温度を該予備成形体の
温度の0.75以上の温度に保持した状態で該予備成形
体を該本成形金型で5〜30秒間加圧成形して、みかけ
の密度と真密度との比が0.97以上の成形体を得る第
2工程と、からなることを特徴とするアルミニウム合金
の粉末冶金法。
(1) Preliminary aluminum alloy powder with a degree of spheroidization of 0.7 or less is pressure-formed in a preforming mold at a temperature higher than room temperature, and the ratio of apparent density to true density is 0.70 to 0.85. A first step of obtaining a molded body; The temperature of the preform is set to 350°C or higher, a temperature at which sintering does not start, and the temperature of the main mold is set to a temperature of 0.75 or more of the temperature of the preform. a second step in which the preform is pressure-molded in the main mold for 5 to 30 seconds while the preform is held in a state where the preform is held in a state where the preform is held in a state where the molded product has a ratio of apparent density to true density of 0.97 or more; A powder metallurgy method for aluminum alloys, characterized by comprising:
JP25817289A 1989-10-03 1989-10-03 Powder metallurgical method for aluminum alloy Pending JPH03120301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25817289A JPH03120301A (en) 1989-10-03 1989-10-03 Powder metallurgical method for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25817289A JPH03120301A (en) 1989-10-03 1989-10-03 Powder metallurgical method for aluminum alloy

Publications (1)

Publication Number Publication Date
JPH03120301A true JPH03120301A (en) 1991-05-22

Family

ID=17316527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25817289A Pending JPH03120301A (en) 1989-10-03 1989-10-03 Powder metallurgical method for aluminum alloy

Country Status (1)

Country Link
JP (1) JPH03120301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183488A1 (en) 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
US9140366B2 (en) 2014-01-10 2015-09-22 Flowserve Management Company Bearing isolator seal for rotating shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145349A (en) * 1984-01-07 1985-07-31 Sumitomo Electric Ind Ltd Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPS6475634A (en) * 1987-09-16 1989-03-22 Honda Motor Co Ltd Powder molding method for aluminum alloy
JPS6483630A (en) * 1987-09-25 1989-03-29 Aluminum Powder Met Res Ass Production of aluminum alloy material having excellent high-temperature strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145349A (en) * 1984-01-07 1985-07-31 Sumitomo Electric Ind Ltd Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPS6475634A (en) * 1987-09-16 1989-03-22 Honda Motor Co Ltd Powder molding method for aluminum alloy
JPS6483630A (en) * 1987-09-25 1989-03-29 Aluminum Powder Met Res Ass Production of aluminum alloy material having excellent high-temperature strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183488A1 (en) 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
US9140366B2 (en) 2014-01-10 2015-09-22 Flowserve Management Company Bearing isolator seal for rotating shaft

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US5306463A (en) Process for producing structural member of amorphous alloy
EP0535593B1 (en) Method of manufacturing sintered aluminum alloy parts
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US4244738A (en) Method of and apparatus for hot pressing particulates
JPH04325648A (en) Production of sintered aluminum alloy
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
US3522020A (en) Stainless steels
JPH03120301A (en) Powder metallurgical method for aluminum alloy
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
US4832760A (en) Method for refining microstructures of prealloyed titanium powder compacts
JP3326072B2 (en) Iron-based mixture for powder metallurgy and method for producing the same
JPH0610284B2 (en) Sintered member manufacturing method
JPH029099B2 (en)
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JP2000087194A (en) Alloy for electromagnet and its manufacture
JPH0257121B2 (en)
JPH01127608A (en) Manufacture of aluminum based alloy rapidly cooled solidified powder
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPH05202441A (en) Aluminum type composite sliding material and its production
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPS63277728A (en) Manufacture of aluminum-base composite material