JPH08174738A - Porous tetrafluoroethylene resin laminate and production thereof - Google Patents

Porous tetrafluoroethylene resin laminate and production thereof

Info

Publication number
JPH08174738A
JPH08174738A JP33553394A JP33553394A JPH08174738A JP H08174738 A JPH08174738 A JP H08174738A JP 33553394 A JP33553394 A JP 33553394A JP 33553394 A JP33553394 A JP 33553394A JP H08174738 A JPH08174738 A JP H08174738A
Authority
JP
Japan
Prior art keywords
porous
laminate
ptfe
tetrafluoroethylene resin
particle removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33553394A
Other languages
Japanese (ja)
Other versions
JP3456284B2 (en
Inventor
Atsushi Uno
敦史 宇野
Shinichi Kanazawa
進一 金澤
Toshihiko Takiguchi
敏彦 滝口
Akira Nishimura
昭 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33553394A priority Critical patent/JP3456284B2/en
Publication of JPH08174738A publication Critical patent/JPH08174738A/en
Application granted granted Critical
Publication of JP3456284B2 publication Critical patent/JP3456284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To use a laminate in the application to a semiconductor, a partition film in the field related to a biotechnology, and the field of a dissepiment of an artificial lung by a method wherein in the laminate made of a two-layer tetrafluoroethylene resin porous body, specific particles can be removed at a specific particle removal ratio, and a flow rate measured using isopropyl alcohol at a specific differential pressure is determined to a specific value. CONSTITUTION: In a laminate at least made of a two-layer tetrafluoroethylene resin porous body, particles of 0.109μm particle diameter can be removed at a particle removal ratio of 90% or more (in the measurement method for a particle removal ratio, a specimen film is blanked to a ϕ47mm diameter circle, the blank is set to a holder, 32cm<3> of water solution containing uniform polyethylene latex particle of 0.109μm particle diameter in a ratio of 1.4×10<10> /cm<3> is filtered at a pressure of 0.42kg/cm<2> , and a particle removal ratio at this time is measured at a wavelength of 310nm using a spectrophotometer for ultraviolet and visible region). A flow rate (IPA flow rate) measured using isopropyl alcohol at a differential pressure of 0.95kg/cm<2> is not less than 0.7 ml/cm<2> /mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質四弗化エチレン
樹脂積層体とその製造方法に関し、さらに詳しくは、微
細な孔を有し、かつ、気孔率の高い多孔質四弗化エチレ
ン樹脂積層体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous tetrafluoroethylene resin laminate and a method for producing the same, more specifically, a porous tetrafluoroethylene resin having fine pores and high porosity. The present invention relates to a laminate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】四弗化エチレン樹脂(以下、PTFEと
略記)を素材とする多孔質体は、燃料電池、メンブラン
フィルター、電線、分析装置、人工血管などの広範な分
野で使用されている。ところで、近年、精密濾過フィル
ターや高機能分離膜、人工肺隔膜等の用途において、小
孔径で透過性に優れたPTFE多孔質体が求められてい
る。そのためには、微細な孔と高い気孔率を有するPT
FE多孔質体が必要となる。しかし、従来、微細な孔と
高い気孔率とを兼備し、優れた透過性を有するPTFE
多孔質体を製造することは、非常に困難であった。
2. Description of the Related Art Porous materials made of tetrafluoroethylene resin (hereinafter abbreviated as PTFE) are used in a wide range of fields such as fuel cells, membrane filters, electric wires, analyzers and artificial blood vessels. By the way, in recent years, there has been a demand for a PTFE porous body having a small pore size and excellent permeability in applications such as microfiltration filters, high-performance separation membranes, and artificial lung diaphragms. To that end, PT with fine pores and high porosity
A FE porous body is required. However, conventionally, PTFE having both fine pores and high porosity and excellent permeability
It was very difficult to manufacture a porous body.

【0003】従来、PTFE多孔質体を製造する方法と
して、PTFEのペースト押出により得られた未焼結成
形体を融点以下の温度で延伸し、次いで、焼結する方法
が知られている(特公昭42−13560号公報)。こ
の未焼結成形体を延伸する方法によれば、種々の気孔率
を有するPTFE多孔質体を得ることができるが、気孔
率を高めるために延伸倍率を上げると、それにつれて孔
径が大きくなるため、微細な孔を有し、しかも気孔率の
高いPTFE多孔質体を製造するには限度があった。
Conventionally, as a method for producing a PTFE porous body, a method is known in which an unsintered molded body obtained by PTFE paste extrusion is stretched at a temperature below the melting point and then sintered (Japanese Patent Publication No. 42-13560). According to the method for stretching the green compact, it is possible to obtain PTFE porous bodies having various porosities. However, if the stretching ratio is increased to increase the porosity, the pore diameter increases accordingly. There is a limit to the production of a PTFE porous body having fine pores and high porosity.

【0004】PTFE多孔質体を製造する方法として、
焼成されたPTFE成形体を327℃以上に加熱した
後、徐冷して結晶化度が80%以上になるように熱処理
し、次いで、25〜260℃の温度において延伸倍率
1.5〜4倍に一軸延伸する方法が提案されている(特
公昭53−42794号公報)。この方法(以下、徐冷
法という)によれば、微細孔が形成されたPTFE多孔
質体を得ることができる。しかし、この徐冷法では、P
TFE成形体を徐冷する工程において、冷却速度が早過
ぎると結晶化が充分に進まないため、冷却速度を遅くす
る必要があり、そのため、精密な温度制御と大きな設備
を必要とするという問題があった。
As a method for producing a PTFE porous body,
After heating the fired PTFE molded body to 327 ° C. or higher, it is gradually cooled and heat treated so that the crystallinity becomes 80% or higher, and then at a temperature of 25 to 260 ° C., a draw ratio of 1.5 to 4 times. A method of uniaxially stretching is proposed (Japanese Examined Patent Publication No. 53-42794). According to this method (hereinafter referred to as a slow cooling method), it is possible to obtain a PTFE porous body having fine pores formed therein. However, in this slow cooling method, P
In the step of gradually cooling the TFE molded body, if the cooling rate is too fast, crystallization does not proceed sufficiently, so it is necessary to slow down the cooling rate, and therefore, there is a problem that precise temperature control and large equipment are required. there were.

【0005】すなわち、前記徐冷法では、PTFE成形
体の結晶化度を高くするために、通常、約0.5℃/分
より遅い速度で冷却することが好ましいとされており、
該公報記載の実施例では、0.25℃/分、0.1℃/
分、及び0.05℃/分の各冷却速度が採用されてい
る。このような冷却速度の小さな徐冷を実施するには、
極めて精度の高い温度制御が必要となる。しかも、PT
FE多孔質体は、一般に、PTFEファインパウダーの
ペースト押出によりロッド、チューブ、ストリップ、シ
ート等の長尺成形体として作成され、熱処理工程や延伸
工程などを経て多孔質体とされるが、前記の徐冷法をこ
れらの長尺成形体に適用することは困難であり、実際的
ではない。例えば、長尺シート状成形体を長さ3mの炉
を用いて、350℃から290℃まで0.5℃/分の冷
却速度で徐冷するには、2時間かけて炉中を通過させる
必要があり、炉中での通過速度は、線速1.5m/時間
となる。したがって、長尺シートの長さが100mの場
合には、約67時間が必要となる。逆に、100mの長
尺シートを前記冷却条件で20時間で徐冷するには、線
速5m/時間で炉中を通過させる必要があり、そのため
には長さ10mもの大型炉が必要となる。
That is, in the slow cooling method, it is generally preferable to cool at a rate slower than about 0.5 ° C./min in order to increase the crystallinity of the PTFE molded article.
In the examples described in the publication, 0.25 ° C./min, 0.1 ° C./min
Min, and each cooling rate of 0.05 ° C./min is adopted. To carry out such slow cooling with a small cooling rate,
Extremely accurate temperature control is required. Moreover, PT
The FE porous body is generally produced as a long molded body such as a rod, a tube, a strip or a sheet by paste extrusion of PTFE fine powder, and is made into a porous body through a heat treatment step or a stretching step. It is difficult and impractical to apply the slow cooling method to these long molded products. For example, in order to gradually cool a long sheet-shaped molded product from 350 ° C. to 290 ° C. at a cooling rate of 0.5 ° C./min using a furnace having a length of 3 m, it is necessary to pass through the furnace for 2 hours. Therefore, the passing speed in the furnace is a linear velocity of 1.5 m / hour. Therefore, when the length of the long sheet is 100 m, about 67 hours are required. On the other hand, in order to gradually cool a long sheet of 100 m under the above cooling conditions for 20 hours, it is necessary to pass through the furnace at a linear velocity of 5 m / hour, which requires a large furnace with a length of 10 m. .

【0006】このように、PTFEの融点以上の温度か
ら徐冷する方法では、長尺成形体の場合、非常に長い炉
を必要とするか、あるいは非常にゆっくりとした線速で
処理する必要があるため、工業的な実施には限界があ
る。特開昭64−78823号公報には、数平均分子量
100万以下のPTFEファインパウダーをペースト押
出して成形体を作成した後、該成形体を焼結し、次い
で、焼結温度から10℃/時間より遅い速度(実施例で
は1℃/時間)で徐冷して結晶化度を高めた後、少なく
とも一軸方向に延伸を行うPTFE多孔質膜の製造方法
が開示されている。また、本発明の共同発明者の一人
は、PTFE連続成形体を焼結した後、350〜290
℃の温度範囲内において、高温領域から低温領域にかけ
て順次設定した少なくとも2つの異なる実質的に一定の
温度帯域を各0.5〜10分間の時間内で通過させなが
ら冷却することにより、高結晶化度とする方法を提案
し、先に特許出願を行った(特開平6−8344号公
報)。
As described above, in the method of gradually cooling from a temperature equal to or higher than the melting point of PTFE, in the case of a long molded body, it is necessary to use a very long furnace or to process at a very slow linear velocity. Therefore, there are limits to industrial implementation. JP-A 64-78823 discloses that a PTFE fine powder having a number average molecular weight of 1,000,000 or less is paste extruded to form a molded body, the molded body is sintered, and then the sintering temperature is changed to 10 ° C./hour. A method for producing a PTFE porous membrane is disclosed, which comprises slowly cooling at a slower rate (1 ° C./hour in the examples) to increase the crystallinity, and then stretching in at least a uniaxial direction. In addition, one of the co-inventors of the present invention is that after sintering the PTFE continuous molded body,
In the temperature range of ° C, high crystallization is achieved by cooling while passing at least two different substantially constant temperature zones set sequentially from the high temperature region to the low temperature region within a time period of 0.5 to 10 minutes. And applied for a patent (Japanese Patent Laid-Open No. 6-8344).

【0007】これらの方法により結晶化度を高めた成形
体を延伸すると、微細な孔と高い気孔率を有するPTF
E多孔質体を得ることができる。しかしながら、これら
の方法によって結晶化度を高めた成形体は、延伸倍率を
10倍以上に高くすると、延伸時に切れ易く、高延伸倍
率とすることができないため、得られるPTFE多孔質
体の気孔率は、65%程度が上限であった。その理由と
しては、これらの結晶化度を高める方法では、成形体を
PTFEの融点以上の温度で、かなり長時間保持するた
めに、ミクロな熱分解が起こり、伸び率が低下するため
であると推定される。
When a molded product having an increased crystallinity is stretched by these methods, PTF having fine pores and high porosity is obtained.
An E porous body can be obtained. However, a molded product having a higher degree of crystallinity obtained by these methods easily breaks at the time of stretching when the draw ratio is increased to 10 times or more, and a high draw ratio cannot be obtained. Therefore, the porosity of the obtained PTFE porous body is increased. Was about 65% as the upper limit. The reason is that in these methods of increasing the degree of crystallinity, since the molded body is kept at a temperature equal to or higher than the melting point of PTFE for a considerably long time, micro thermal decomposition occurs and the elongation rate decreases. Presumed.

【0008】PTFEフィルターは、耐熱性及び耐薬品
性に優れることから、半導体分野において、主に薬液や
ガスの濾過に使用されている。半導体分野では、高集積
化度に伴い、より微小な孔径のPTFEフィルターに対
する要求が高まっている。高集積化半導体の歩留は、P
TFEフィルターの除粒子性能により影響を受けるた
め、微小な粒子の除去率の高いものが望まれている。す
なわち、最近のPTFEフィルターに対する要求性能か
らみて、粒子径0.109μmの粒子の除去率が90%
以上、好ましくは99%以上、より好ましくは100%
であることが望まれる。しかしながら、市販のPTFE
フィルター(孔径0.1μm及び0.05μm)では、
粒子径0.109μmの粒子の除去率が最大で70%程
度までである。一方、孔径0.02μmのPTFE多孔
質膜が知られているが、インプロピルアルコールにより
測定した流量(IPA流量)が0.0005ml/cm
2/min(差圧0.95kg/cm2で測定)と極端に
小さく、フィルターとして実用性能に欠けるものであ
る。
Since the PTFE filter has excellent heat resistance and chemical resistance, it is mainly used for filtering chemicals and gases in the semiconductor field. In the field of semiconductors, there is an increasing demand for a PTFE filter having a smaller pore size as the degree of integration increases. The yield of highly integrated semiconductors is P
Since it is affected by the particle removal performance of the TFE filter, a filter having a high removal rate of fine particles is desired. In other words, the removal rate of particles having a particle diameter of 0.109 μm is 90% in view of the performance required for the recent PTFE filter.
Or more, preferably 99% or more, more preferably 100%
Is desired. However, commercially available PTFE
In the filter (pore size 0.1 μm and 0.05 μm),
The removal rate of particles having a particle diameter of 0.109 μm is up to about 70%. On the other hand, a PTFE porous membrane having a pore diameter of 0.02 μm is known, but the flow rate (IPA flow rate) measured with inpropyl alcohol is 0.0005 ml / cm.
It is extremely small at 2 / min (measured at a differential pressure of 0.95 kg / cm 2 ), and lacks practical performance as a filter.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、微細
な孔と高い気孔率を併せ持つ四弗化エチレン樹脂多孔質
体、及びその製造方法を提供することにある。本発明者
らは、前記従来技術の有する問題点を克服するために鋭
意研究を行った結果、PTFEファインパウダーのペー
スト押出によって得られた成形体を少なくとも一軸方向
に延伸し、次いで、延伸により得られた多孔質シートを
少なくとも2枚重ねて、圧着して一体化することによ
り、微細な孔と高い気孔率を併せ持つ多孔質PTFE積
層体の得られることを見いだした。
An object of the present invention is to provide a tetrafluoroethylene resin porous body having both fine pores and high porosity, and a method for producing the same. The inventors of the present invention have conducted extensive studies to overcome the above-mentioned problems of the prior art. As a result, a molded body obtained by paste extrusion of PTFE fine powder is stretched in at least one axial direction, and then obtained by stretching. It was found that a porous PTFE laminate having both fine pores and high porosity can be obtained by stacking at least two of the obtained porous sheets and pressing them to integrate them.

【0010】従来の徐冷法では、製造の際に精密な温度
制御と冷却速度の制御を行うために大がかりな設備を必
要とするが、本発明の方法によれば、延伸したシートを
2枚以上重ねて圧着し、一体化するといった非常に簡便
な方法で、微細な孔を有し、気孔率の高いPTFE多孔
質体(積層体)を得ることができる。本発明の多孔質P
TFE積層体は、粒子径が0.109μmの粒子を90
%以上、好ましくは99%以上、より好ましくは100
%の粒子除去率で除去することが可能である。しかも、
本発明の多孔質PTFE積層体は、差圧0.95kg/
cm2で測定したIPA流量が0.6ml/cm2/mi
n以上であり、フィルターとしての実用性能に優れてい
る。本発明は、これらの知見に基づいて完成するに至っ
たものである。
The conventional slow cooling method requires large-scale equipment for precise temperature control and cooling rate control during production. According to the method of the present invention, two or more stretched sheets are stacked. It is possible to obtain a PTFE porous body (laminate) having fine pores and a high porosity by a very simple method such as pressure bonding and integration to integrate. Porous P of the present invention
The TFE laminate has 90 particles with a particle diameter of 0.109 μm.
% Or more, preferably 99% or more, more preferably 100
It is possible to remove with a particle removal rate of%. Moreover,
The porous PTFE laminate of the present invention has a differential pressure of 0.95 kg /
IPA flow rate measured in cm 2 is 0.6 ml / cm 2 / mi
It is n or more, and is excellent in practical performance as a filter. The present invention has been completed based on these findings.

【0011】[0011]

【課題を解決するための手段】かくして、本発明によれ
ば、少なくとも2層の四弗化エチレン樹脂多孔質体から
なる積層体であって、粒子径0.109μmの粒子を9
0%以上の粒子除去率で除去可能で、かつ、差圧0.9
5kg/cm2でイソプロピルアルコールにより測定し
た流量(IPA流量)が0.7ml/cm2/min以
上であることを特徴とする多孔質四弗化エチレン樹脂積
層体が提供される。〔ただし、粒子除去率の測定方法
は、以下の通りである。試料膜を直径φ47mmの円形
に打ち抜いてホルダーにセットし、次いで、粒子径が
0.109μmのポリエチレンラテックス均一粒子を
1.4×1010個/cm3の割合で含有する水溶液32
cm3を、加圧0.42kg/cm2で濾過させ、その際
の粒子除去率を、紫外可視分光光度計を用いて、波長3
10nmで測定する。〕
Thus, according to the present invention, there is provided a laminated body composed of at least two layers of a tetrafluoroethylene resin porous body, and 9 particles having a particle diameter of 0.109 μm are used.
Can be removed with a particle removal rate of 0% or more, and a differential pressure of 0.9
Provided is a porous tetrafluoroethylene resin laminate characterized in that the flow rate (IPA flow rate) measured with isopropyl alcohol at 5 kg / cm 2 is 0.7 ml / cm 2 / min or more. [However, the method of measuring the particle removal rate is as follows. The sample film was punched out into a circle with a diameter of 47 mm and set in a holder, and then an aqueous solution containing polyethylene latex uniform particles having a particle diameter of 0.109 μm at a rate of 1.4 × 10 10 particles / cm 3 32
cm 3 was filtered under a pressure of 0.42 kg / cm 2 , and the particle removal rate at that time was measured with an ultraviolet-visible spectrophotometer at a wavelength of 3
Measure at 10 nm. ]

【0012】また、本発明によれば、(1)四弗化エチ
レン樹脂ファインパウダーのペースト押出によって成形
体を作製した後、(2)該成形体を少なくとも一軸方向
に延伸し、(3)次いで、延伸により得られた多孔質シ
ートを少なくとも2枚重ねて、加圧することにより、多
孔質シート相互間を接着させることを特徴とする多孔質
四弗化エチレン樹脂積層体の製造方法が提供される。前
記工程(3)の後、さらに、(4)四弗化エチレン樹脂
の融点未満の温度で熱処理することが好ましい。
Further, according to the present invention, (1) a molded body is prepared by paste extrusion of tetrafluoroethylene resin fine powder, (2) the molded body is stretched in at least one axial direction, and (3) then A method for producing a porous tetrafluoroethylene resin laminate, characterized in that at least two porous sheets obtained by stretching are stacked and pressed to bond the porous sheets to each other. . After the step (3), it is preferable to further heat-treat (4) at a temperature lower than the melting point of the tetrafluoroethylene resin.

【0013】以下、本発明について詳述する。四弗化エチレン樹脂ファインパウダー 本発明で使用するPTFEは、ファインパウダーであ
る。PTFEの数平均分子量は、数十万から数千万のも
のまであり、特に限定されないが、本発明の製造方法を
適用するには、分子量が比較的高いPTFEファインパ
ウダーを使用することが好ましい。分子量200万以
上、好ましくは400万以上のPTFEファインパウダ
ーを用いることにより、比較的強度が高く、微細な孔と
高い気孔率を有する多孔質PTFE積層体を容易に得る
ことができる。
The present invention will be described in detail below. Polytetrafluoroethylene Resin Fine Powder PTFE used in the present invention is a fine powder. The number average molecular weight of PTFE ranges from hundreds of thousands to tens of millions and is not particularly limited. However, in order to apply the production method of the present invention, it is preferable to use PTFE fine powder having a relatively high molecular weight. By using the PTFE fine powder having a molecular weight of 2,000,000 or more, preferably 4,000,000 or more, it is possible to easily obtain a porous PTFE laminate having relatively high strength, fine pores and high porosity.

【0014】ペースト押出 本発明の方法により多孔質PTFE積層体を製造する第
一の工程は、従来から未焼結シート等の製造法として知
られているペースト押出法による成形体の製造である。
ペースト押出工程では、PTFEファインパウダー10
0重量部に対して、液状潤滑剤を通常15〜40重量
部、好ましくは20〜30重量部の割合で混和して押出
成形を行う。
Paste Extrusion The first step for producing a porous PTFE laminate by the method of the present invention is the production of a molded article by the paste extrusion method which has heretofore been known as a method for producing a green sheet or the like.
In the paste extrusion process, PTFE fine powder 10
The liquid lubricant is usually mixed in an amount of 15 to 40 parts by weight, preferably 20 to 30 parts by weight, and extrusion molding is performed.

【0015】液状潤滑剤としては、従来からペースト押
出法で用いられている各種潤滑剤が使用できる。具体例
としては、ソルベント・ナフサ、ホワイトオイルなどの
石油系溶剤・炭化水素油、トルオール、キシロールなど
の芳香族炭化水素類、アルコール類、ケトン類、エステ
ル類、シリコーンオイル、フルオロカーボンオイル、こ
れらの溶剤にポリイソブチレン、ポリイソプレンなどの
ポリマーを溶かした溶液、これらの2つ以上の混合物、
表面活性剤を含む水または水溶液などが挙げられる。
As the liquid lubricant, various lubricants conventionally used in the paste extrusion method can be used. Specific examples include petroleum-based solvents such as solvent / naphtha and white oil, hydrocarbon oils, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oils, fluorocarbon oils, and these solvents. A solution in which a polymer such as polyisobutylene or polyisoprene is dissolved, a mixture of two or more thereof,
Examples thereof include water or an aqueous solution containing a surface active agent.

【0016】ペースト押出による成形は、PTFEの焼
結温度(327℃)以下、通常は室温付近で行われる。
ペースト押出に先立って、通常、予備成形を行う。一般
的には、PTFEと液状潤滑剤との混合物を、例えば1
〜50kg/cm2程度の圧力下で予備成形してから、
ペースト押出機により押出し、またはカレンダーロール
などにより圧延し、あるいは押出した後に圧延するなど
して所定の形状の成形体を作成する。
Molding by paste extrusion is carried out below the sintering temperature of PTFE (327 ° C.), usually around room temperature.
Prior to paste extrusion, preforming is usually performed. Generally, a mixture of PTFE and a liquid lubricant, for example 1
After preforming under a pressure of about 50 kg / cm 2 ,
A molded product having a predetermined shape is produced by extruding with a paste extruder, rolling with a calender roll, or rolling with extrusion.

【0017】ペースト押出による成形体の形状として
は、ロッド、チューブ、ストリップ、シートなど各種の
ものがあり、さらに、圧延すれば、薄いシートを得るこ
ともできる。本発明の成形体は、焼結後に延伸処理し得
る形状のものであればよい。液状潤滑剤は、ペースト押
出による成形体を焼結する前に加熱、押出または溶解な
どにより成形体から除去する。この場合の加熱温度は、
通常、100〜330℃であるが、シリコーンオイルや
フルオロカーボンなどの比較的沸点が高い液状潤滑剤を
使用する場合には、押出による除去が好ましく用いられ
る。
There are various shapes such as rods, tubes, strips, and sheets as the shape of the paste extruded product, and a thin sheet can be obtained by rolling. The shaped product of the present invention may be of any shape that can be stretched after sintering. The liquid lubricant is removed from the molded body by heating, extrusion or melting before sintering the molded body by paste extrusion. The heating temperature in this case is
Usually, it is 100 to 330 ° C., but when a liquid lubricant having a relatively high boiling point such as silicone oil or fluorocarbon is used, removal by extrusion is preferably used.

【0018】なお、液状潤滑剤の他に目的に応じて他の
物質を含ませることもできる。例えば、着色のための顔
料、耐摩耗性の改良、低温流れの防止や気孔の生成を容
易にする等のためにカーボンブラック、グラフィイト、
シリカ粉、アスベスト粉、ガラス粉、ガラス繊維、ケイ
酸塩類や炭酸塩類などの無機充填剤、金属粉、金属酸化
物粉、金属硫化物粉などを添加することができる。ま
た、多孔質構造の生成を助けるために加熱、抽出、溶解
等により除去または分解され得る物質、例えば、塩化ア
ンモニウム、塩化ナトリウム、他のプラスチック、ゴム
等を粉末または溶液の状態で配合することができる。
In addition to the liquid lubricant, other substances may be contained depending on the purpose. For example, pigments for coloring, carbon black, graffite, for improving abrasion resistance, preventing cold flow and facilitating generation of pores, etc.
Silica powder, asbestos powder, glass powder, glass fiber, inorganic fillers such as silicates and carbonates, metal powder, metal oxide powder, metal sulfide powder and the like can be added. It is also possible to blend a substance that can be removed or decomposed by heating, extraction, dissolution, etc., such as ammonium chloride, sodium chloride, other plastics, rubber, etc., in the form of powder or solution in order to assist the formation of a porous structure. it can.

【0019】延 伸 ペースト押出によって得られた成形体は、少なくとも一
軸方向に延伸する。延伸は、シートやロッド、チューブ
などの形状の成形体を通常の方法で機械的に引き伸ばし
て行うことができる。例えば、シートの場合には、その
相対する2辺をつかんでその間隔を広げるように引き伸
ばしたり、一つの芯棒から他の芯棒に巻き取る際に、巻
き取り速度を送り速度より大きくしたりして延伸させる
ことができる。ロッドやチューブでは、その長さ方向に
引き伸すのが簡単である。また、逐次二軸延伸あるいは
同時二軸延伸などもできる。延伸工程の後の積層工程を
勘案すると、通常、シート状に一軸または二軸延伸する
ことが好ましい。
The molded body obtained by extending Shin paste extrusion is stretched at least uniaxially. Stretching can be performed by mechanically stretching a molded product having a shape such as a sheet, a rod or a tube by a usual method. For example, in the case of a sheet, when the two opposite sides are grabbed and stretched so as to widen the distance, or when winding from one core rod to another core, the winding speed is made higher than the feed speed. Can be stretched. A rod or tube is easy to stretch along its length. Further, sequential biaxial stretching or simultaneous biaxial stretching can be performed. In consideration of the laminating step after the stretching step, it is usually preferable that the sheet is uniaxially or biaxially stretched.

【0020】延伸は、PTFEの融点以下の温度、通
常、0〜280℃の温度で行われる。低い温度での延伸
は、比較的孔径が大きく気孔率の高い多孔質体を生じ易
く、高い温度での延伸は、比較的孔径が小さく緻密な多
孔質体を生じ易い。また、延伸倍率が高くなるほど気孔
率が増大する。そこで、これらの条件を組み合わせるこ
とにより、所望の物性を有する多孔質体を得ることがで
きる。
The stretching is carried out at a temperature below the melting point of PTFE, usually at a temperature of 0 to 280 ° C. Stretching at a low temperature tends to produce a porous body having a relatively large pore size and high porosity, while stretching at a high temperature tends to produce a dense porous body having a relatively small pore size. Further, the higher the draw ratio, the higher the porosity. Therefore, by combining these conditions, a porous body having desired physical properties can be obtained.

【0021】延伸工程において、延伸倍率を高くするほ
ど得られるPTFE多孔質体の気孔率が増大するので、
気孔率が高く透過性の優れた多孔質PTFE積層体を得
るには、延伸倍率を5倍以上(面積比)、好ましくは6
〜30倍程度、より好ましくは9〜30倍程度で延伸を
行うことが望ましい。二軸延伸する場合には、通常、一
方向に2倍(200%)から15倍(1500%)程度
延伸し、縦横の延伸比を1:8〜8:1の範囲とするこ
とが好ましい。延伸した後、通常、PTFEの融点未満
の温度で熱固定する。
In the stretching step, the higher the draw ratio, the higher the porosity of the obtained PTFE porous body.
In order to obtain a porous PTFE laminate with high porosity and excellent permeability, the draw ratio is 5 times or more (area ratio), preferably 6
It is desirable to perform stretching at about 30 to 30 times, more preferably about 9 to 30 times. In the case of biaxial stretching, it is usually preferable to stretch in one direction about 2 times (200%) to 15 times (1500%), and the stretching ratio in the longitudinal and lateral directions is in the range of 1: 8 to 8: 1. After stretching, it is usually heat-set at a temperature lower than the melting point of PTFE.

【0022】積層化 少なくとも一方向の延伸により得られたPTFE多孔質
体を少なくとも2枚重ねて圧着し、一体化した積層体を
製造する。圧着は、延伸により得られた多孔質PTFE
シートを少なくとも2枚重ねて、加圧し、多孔質PTF
Eシート相互間を接着させることにより行う。加圧する
には、通常、カレンダーロールやラミネーターを用いる
が、プレス機を用いてもよい。圧着の際の温度は、室温
でも加熱して行ってもよい。
Lamination At least two PTFE porous bodies obtained by stretching in at least one direction are superposed and pressure-bonded to produce an integrated laminated body. The pressure-bonding is porous PTFE obtained by stretching
At least two sheets are stacked and pressed to obtain porous PTF.
This is done by adhering the E sheets together. A calender roll or a laminator is usually used for pressurization, but a press machine may be used. The temperature at the time of pressure bonding may be room temperature or may be heated.

【0023】加圧の際の圧力(圧着力)は、弱すぎると
接着強度が弱く、積層体の各層が容易に剥離してしま
う。圧着力が強すぎると、PTFE多孔質体の孔をつぶ
してしまい、気孔率を高い状態に保つことができず、流
量が低下してしまう。高流量を確保するためには、気孔
率は約50%以上、好ましくは約60%〜約90%程度
が望ましく、そのために圧着力は、圧着後の膜厚が圧着
前の膜厚の5〜8割程度になるように制御することが好
ましい。このような膜厚の制御には、カレンダーロール
等を用いた圧延を行うことが好ましい。
If the pressure (compression force) at the time of pressurization is too weak, the adhesive strength will be weak and each layer of the laminate will be easily peeled off. If the pressure-bonding force is too strong, the pores of the PTFE porous body will be crushed, the porosity cannot be maintained in a high state, and the flow rate will decrease. In order to secure a high flow rate, it is desirable that the porosity is about 50% or more, preferably about 60% to about 90%. Therefore, the pressure bonding force is such that the film thickness after the pressure bonding is 5 to the film thickness before the pressure bonding. It is preferable to control so as to be about 80%. To control such a film thickness, it is preferable to perform rolling using a calendar roll or the like.

【0024】このようにして得られた多孔質PTFE積
層体は、加熱したり、あるいは長期間固定せずに放置し
ておくと、収縮したり、あるいは多孔質構造にむらが生
じたりするので、圧着工程の後、熱固定することが好ま
しい。しかし、熱固定の温度がPTFEの融点以上であ
ると、延伸によって生成した細かい繊維状のフィブリル
同士が熱融着し、太くなると共に、孔径も大きくなり、
微細な構造が崩れてしまう。そこで、熱固定は、多孔質
PTFE積層体を収縮しないように拘束した状態で、P
TFEの融点の327℃未満の温度で1〜30分間程度
保持することによって行う。
If the porous PTFE laminate thus obtained is heated or left unfixed for a long period of time, it may shrink or the porous structure may become uneven. After the pressure-bonding step, heat fixing is preferable. However, if the heat setting temperature is equal to or higher than the melting point of PTFE, the fine fibrous fibrils produced by stretching are heat-sealed to each other and become thicker, and the pore size also increases,
The fine structure collapses. Therefore, the heat setting is performed in a state where the porous PTFE laminate is constrained so as not to shrink, and
It is carried out by maintaining the temperature below the melting point of TFE at 327 ° C. for about 1 to 30 minutes.

【0025】多孔質PTFE積層体 本発明の多孔質PTFE積層体は、微細な孔と高い気孔
率を併せ持つ点に特徴を有する。具体的には、本発明の
多孔質PTFE積層体は、以下のような特性を有してい
る。 (1)PTFE多孔質体の2層以上の積層構造を有して
いる。 (2)多孔質PTFE積層体の孔径は、PTFE多孔質
体の延伸倍率や積層時の圧着力、積層枚数等を変化させ
ることにより、制御することができる。 (3)本発明の方法では、延伸時のPTFEシートの延
伸倍率を大きくすることができるため、微細な孔を有す
ると共に、気孔率(ASTM−D−792に従って測
定)を50〜90%程度、好ましくは60〜90%程度
と高くすることが可能である。
Porous PTFE Laminated Body The porous PTFE laminated body of the present invention is characterized in that it has both fine pores and high porosity. Specifically, the porous PTFE laminate of the present invention has the following characteristics. (1) It has a laminated structure of two or more layers of a PTFE porous body. (2) The pore size of the porous PTFE laminate can be controlled by changing the stretching ratio of the PTFE porous body, the pressure bonding force during lamination, the number of laminated layers, and the like. (3) In the method of the present invention, since the stretching ratio of the PTFE sheet at the time of stretching can be increased, it has fine pores and has a porosity (measured according to ASTM-D-792) of about 50 to 90%. Preferably, it can be increased to about 60 to 90%.

【0026】(4)多孔質PTFE積層体の厚さについ
ても、延伸倍率や圧着力、積層枚数等を変化させること
により種々なものが作製可能である。 (5)本発明の多孔質PTFE積層体のIPAバブルポ
イント(イソプロピルアルコールを使用し、ASTM−
F−316−76に従って測定)は、通常3〜8kg/
cm2程度である。 (6)本発明の多孔質PTFE積層体のIPA流量(差
圧0.95kg/cm2で、イソプロピルアルコールに
より測定)は、0.7ml/cm2/min以上であ
る。後記の実施例では、0.9〜2.6ml/cm2
minのIPA流量を実現している。
(4) With respect to the thickness of the porous PTFE laminate, various things can be produced by changing the stretching ratio, the pressure bonding force, the number of laminated layers, and the like. (5) IPA bubble point of the porous PTFE laminate of the present invention (using isopropyl alcohol, ASTM-
F-316-76) is usually 3-8 kg /
It is about cm 2 . (6) The IPA flow rate (measured with isopropyl alcohol at a differential pressure of 0.95 kg / cm 2 ) of the porous PTFE laminate of the present invention is 0.7 ml / cm 2 / min or more. In the examples described later, 0.9 to 2.6 ml / cm 2 /
The IPA flow rate of min is realized.

【0027】(7)本発明の多孔質PTFE積層体は、
除粒子性能(粒子除去率)が顕著に優れており、濾過膜
とした場合に、粒子径0.109μmの粒子を90%以
上、好ましくは99%以上、より好ましくは100%の
粒子除去率で除去可能である。これに対して、市販の孔
径0.1μm及び0.05μmのPTFE多孔質体は、
粒子径0.109μmの粒子除去率が、それぞれ10%
及び70%程度である。また、本発明の多孔質PTFE
積層体は、0.073μmの粒子を30%以上、好まし
くは50%以上の粒子除去率で除去することが可能であ
る。
(7) The porous PTFE laminate of the present invention comprises
Particle removal performance (particle removal rate) is remarkably excellent, and when used as a filtration membrane, particles having a particle size of 0.109 μm are 90% or more, preferably 99% or more, and more preferably 100%. It can be removed. On the other hand, commercially available PTFE porous bodies having pore diameters of 0.1 μm and 0.05 μm are
The removal rate of particles with a particle diameter of 0.109 μm is 10% each.
And about 70%. In addition, the porous PTFE of the present invention
The laminate can remove 0.073 μm particles with a particle removal rate of 30% or more, preferably 50% or more.

【0028】本発明の多孔質PTFE積層体は、微細な
孔と高い気孔率を有すると共に、均一度が高く、平滑な
表面を有し、機械的強度に優れ、非粘着性で、低摩擦性
を有し、しかも柔軟性も有している。そして、このよう
な特徴から、本発明の多孔質PTFE積層体は、気体や
液体などの濾過材のみでなく、隔膜、滑動材、非粘着材
等幅広い用途に使用することができる。また、特に微細
な孔と高い気孔率を有することから、本発明の多孔質P
TFE積層体は、半導体、医療、バイオ関連の分野で、
薬液の濾過フィルター、血漿成分の分離膜、人工肺用隔
膜などに利用することができる。
The porous PTFE laminate of the present invention has fine pores and high porosity, has high uniformity, has a smooth surface, is excellent in mechanical strength, is non-adhesive and has low friction. It also has flexibility. Due to such characteristics, the porous PTFE laminate of the present invention can be used not only for filtering materials such as gas and liquid, but also for a wide range of applications such as diaphragms, sliding materials and non-adhesive materials. Further, since it has particularly fine pores and a high porosity, the porous P of the present invention is
TFE laminates are used in semiconductor, medical, and bio related fields,
It can be used as a filter for drug solution, a separation membrane for plasma components, a diaphragm for artificial lungs, and the like.

【0029】[0029]

【実施例】以下に実施例及び比較例を挙げて本発明につ
いて詳述するが、本発明は、これらの実施例のみに限定
されるものではない。なお、以下の実施例及び比較例に
おける物性の測定法は、次の通りである。 (1)IPAバブルポイント(kg/cm2) イソプロピルアルコールを使用し、ASTM−F−31
6−76に従って測定した。 (2)気孔率(%) ASTM−D−792に従って測定した。 (3)IPA流量(kg/cm2/min) 差圧0.95kg/cm2でイソプロピルアルコールに
より測定した。 (4)除粒子性能(%) 試料膜を直径φ47mmの円形に打ち抜いてホルダーに
セットし、次いで、粒子径が0.109μmのポリエチ
レンラテックス均一粒子(ダウ・ケミカル社製)を1.
4×1010個/cm3の割合で含有する水溶液32cm3
を、前記ホルダーにセットした試料膜により、加圧0.
42kg/cm2で濾過させた際の粒子除去率を測定し
た。粒子除去率は、(株)島津製作所製の紫外可視分光
光度計UV−160を用い、波長310nmで測定する
ことにより評価した。評価精度は、1/100であっ
た。また、0.073μm粒子径の場合は、粒子径0.
073μmのポリスチレンラテックス均一粒子を用いた
こと以外は上記と同様にして、粒子除去率を測定した。
The present invention will be described in detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The methods for measuring physical properties in the following examples and comparative examples are as follows. (1) IPA bubble point (kg / cm 2 ) Using isopropyl alcohol, ASTM-F-31
It was measured according to 6-76. (2) Porosity (%) Measured according to ASTM-D-792. (3) was measured with isopropyl alcohol IPA flow rate (kg / cm 2 / min) pressure difference 0.95 kg / cm 2. (4) Particle removal performance (%) A sample film was punched into a circle having a diameter of 47 mm and set in a holder, and then polyethylene latex uniform particles having a particle diameter of 0.109 μm (manufactured by Dow Chemical Co.) were used.
Aqueous solution in a proportion of 4 × 10 10 atoms / cm 3 32cm 3
Is pressed by the sample film set in the holder.
The particle removal rate when filtered at 42 kg / cm 2 was measured. The particle removal rate was evaluated by measuring at a wavelength of 310 nm using an ultraviolet-visible spectrophotometer UV-160 manufactured by Shimadzu Corporation. The evaluation accuracy was 1/100. When the particle size is 0.073 μm, the particle size is 0.
The particle removal rate was measured in the same manner as above except that polystyrene latex uniform particles having a particle size of 073 μm were used.

【0030】[実施例1]四弗化エチレン樹脂ファイン
パウダー(旭硝子社製CD−123:分子量1000
万)100重量部に対して、潤滑剤としてドライゾール
20重量部を配合した混和物を予備成形後、シート状に
押出し、これを更に圧延し、その後、加熱ロールを通し
て潤滑剤を除去して0.3mm厚の乾燥シートを作製し
た。次いで、このシートをシートの押出方向にロール温
度280℃で200%延伸し、次いで、押出方向と垂直
な方向に延伸ゾーン温度70℃、熱固定ゾーン温度30
0℃で1500%延伸した。このようにして得られた延
伸シートを2枚重ねてロール温度室温で、元の膜厚の6
割になるように再圧延し、多孔質PTFE積層体を得
た。得られた多孔質PTFE積層体(積層シート)の特
性を表1に示す。
[Example 1] Tetrafluoride ethylene resin fine powder (CD-123 manufactured by Asahi Glass Co., Ltd .: molecular weight 1000)
100% by weight, a mixture prepared by mixing 20 parts by weight of DRYZOL as a lubricant with 100 parts by weight is preformed, extruded into a sheet, and further rolled, and then the lubricant is removed through a heating roll to remove 0 A dry sheet having a thickness of 0.3 mm was prepared. Next, this sheet is stretched in the sheet extruding direction by 200% at a roll temperature of 280 ° C., and then in a direction perpendicular to the extruding direction, a stretching zone temperature of 70 ° C. and a heat setting zone temperature of 30.
It was stretched 1500% at 0 ° C. Two stretched sheets thus obtained were stacked and the original film thickness of 6 was obtained at a roll temperature of room temperature.
It was re-rolled so as to be divided to obtain a porous PTFE laminate. The properties of the obtained porous PTFE laminate (laminate sheet) are shown in Table 1.

【0031】[実施例2]四弗化エチレン樹脂ファイン
パウダー(ダイキン社製F−104:分子量400万)
100重量部に対して、潤滑剤としてドライゾール20
重量部を配合した混和物を予備成形後、シート状に押出
し、これを更に圧延し、その後、加熱ロールを通して潤
滑剤を除去して0.3mm厚の乾燥シートを作製した。
次いで、このシートをシートの押出方向にロール温度2
80℃で250%延伸し、次いで、押出方向と垂直な方
向に延伸ゾーン温度70℃、熱固定ゾーン温度300℃
で1500%延伸した。このようにして得られた延伸シ
ートを2枚重ねてロール温度室温で、元の膜厚の6割に
なるように再圧延し、多孔質PTFE積層体を得た。得
られた多孔質PTFE積層体の特性を表1に示す。
[Example 2] Tetrafluoride ethylene resin fine powder (F-104 manufactured by Daikin Co., Ltd .: molecular weight 4,000,000)
Dryzol 20 as a lubricant for 100 parts by weight
The mixture containing 1 part by weight was preformed, extruded into a sheet, further rolled, and then the lubricant was removed through a heating roll to prepare a 0.3 mm-thick dry sheet.
Then, the sheet is rolled at a roll temperature of 2 in the sheet extruding direction.
Stretched 250% at 80 ° C, then stretch zone temperature 70 ° C in the direction perpendicular to the extrusion direction, heat setting zone temperature 300 ° C
Was stretched 1500%. Two stretched sheets thus obtained were stacked and rerolled at a roll temperature of room temperature to 60% of the original film thickness to obtain a porous PTFE laminate. Table 1 shows the properties of the obtained porous PTFE laminate.

【0032】[実施例3]実施例1で得られた多孔質P
TFE積層体を更に表面温度325℃の加熱ロールに通
し、熱処理した。得られた多孔質PTFE積層体の特性
を表1に示す。
[Example 3] Porous P obtained in Example 1
The TFE laminate was further passed through a heating roll having a surface temperature of 325 ° C. to be heat treated. Table 1 shows the properties of the obtained porous PTFE laminate.

【0033】[実施例4]実施例1で得られた多孔質P
TFE積層体を表面温度300℃の加熱ロールに通し、
熱処理した。得られた多孔質PTFE積層体の特性を表
1に示す。
[Example 4] Porous P obtained in Example 1
Pass the TFE laminate through a heating roll with a surface temperature of 300 ° C,
Heat treated. Table 1 shows the properties of the obtained porous PTFE laminate.

【0034】[比較例1]実施例1と同様にして作製し
た0.3mm厚の乾燥シートをシートの押出方向にロー
ル温度280℃で200%延伸し、次いで、押出方向と
垂直な方向に延伸ゾーン温度70℃、熱固定ゾーン温度
300℃で1500%延伸した。その時のPTFE多孔
質シートの特性を表1に示す。
Comparative Example 1 A 0.3 mm-thick dry sheet produced in the same manner as in Example 1 was stretched in the sheet extruding direction by 200% at a roll temperature of 280 ° C. and then in the direction perpendicular to the extruding direction. It was stretched 1500% at a zone temperature of 70 ° C and a heat setting zone temperature of 300 ° C. Table 1 shows the characteristics of the PTFE porous sheet at that time.

【0035】[比較例2]実施例1と同様にして作製し
た0.3mm乾燥シートをシートの押出方向にロール温
度を280℃200%延伸し、次いで、押出方向と垂直
な方向に延伸ゾーン温度70℃、熱固定ゾーン温度30
0℃で1500%延伸した。次いで、このシートを1枚
のみで圧延する以外は、実施例1と同様にしてPTFE
多孔質シートを作製した。このようにして得られたPT
FE多孔質シートの特性を表1に示す。
[Comparative Example 2] A 0.3 mm dry sheet produced in the same manner as in Example 1 was stretched in the sheet extrusion direction at a roll temperature of 280 ° C and 200%, and then stretched in a direction perpendicular to the extrusion direction. 70 ℃, heat setting zone temperature 30
It was stretched 1500% at 0 ° C. Then, PTFE was rolled in the same manner as in Example 1 except that only one sheet was rolled.
A porous sheet was prepared. PT thus obtained
The characteristics of the FE porous sheet are shown in Table 1.

【0036】[比較例3]実施例1と同様に作製した多
孔質PTFE積層体を表面温度350℃の加熱ロールに
通し、熱処理した。このとき得られた多孔質PTFE積
層体の特性を表1に示す。
[Comparative Example 3] The porous PTFE laminate produced in the same manner as in Example 1 was passed through a heating roll having a surface temperature of 350 ° C and heat-treated. The properties of the porous PTFE laminate obtained at this time are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明によれば、除粒子性能が顕著に優
れたPTFE多孔質体(多孔質PTFE積層体)を提供
することができる。また、本発明の製造方法によれば、
微細な孔と高い気孔率を有し、優れた透過性を持つ多孔
質PTFE積層体を提供することができる。本発明の多
孔質PTFE積層体は、半導体、医療、バイオ関連分野
の分離膜、人工肺用隔膜など幅広い分野で利用すること
ができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a PTFE porous body (porous PTFE laminated body) having remarkably excellent particle removal performance. Further, according to the manufacturing method of the present invention,
It is possible to provide a porous PTFE laminate having fine pores and high porosity and excellent permeability. INDUSTRIAL APPLICABILITY The porous PTFE laminate of the present invention can be used in a wide variety of fields such as semiconductors, medical and bio-related fields, separation membranes, and diaphragms for artificial lungs.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 昭 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Nishimura 1-3-3 Shimaya, Konohana-ku, Osaka City, Osaka Prefecture Sumitomo Electric Industries, Ltd. Osaka Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2層の四弗化エチレン樹脂多
孔質体からなる積層体であって、粒子径0.109μm
の粒子を90%以上の粒子除去率で除去可能で、かつ、
差圧0.95kg/cm2でイソプロピルアルコールに
より測定した流量(IPA流量)が0.7ml/cm2
/min以上であることを特徴とする多孔質四弗化エチ
レン樹脂積層体。〔ただし、粒子除去率の測定方法は、
以下の通りである。試料膜を直径φ47mmの円形に打
ち抜いてホルダーにセットし、次いで、粒子径が0.1
09μmのポリエチレンラテックス均一粒子を1.4×
1010個/cm3の割合で含有する水溶液32cm3を、
加圧0.42kg/cm2で濾過させ、その際の粒子除
去率を、紫外可視分光光度計を用いて、波長310nm
で測定する。〕
1. A laminate comprising at least two layers of a tetrafluoroethylene resin porous body, having a particle diameter of 0.109 μm.
Particles can be removed with a particle removal rate of 90% or more, and
The flow rate (IPA flow rate) measured with isopropyl alcohol at a differential pressure of 0.95 kg / cm 2 is 0.7 ml / cm 2.
/ Min or more, porous tetrafluoroethylene resin laminate characterized by the above. [However, the method for measuring the particle removal rate is
It is as follows. The sample film was punched into a circle with a diameter of 47 mm and set in a holder.
09μm polyethylene latex uniform particles 1.4 ×
32 cm 3 of aqueous solution containing 10 10 pieces / cm 3
The particles were filtered at a pressure of 0.42 kg / cm 2 , and the particle removal rate at that time was measured with an ultraviolet-visible spectrophotometer at a wavelength of 310 nm.
To measure. ]
【請求項2】 (1)四弗化エチレン樹脂ファインパウ
ダーのペースト押出によって成形体を作製した後、
(2)該成形体を少なくとも一軸方向に延伸し、(3)
次いで、延伸により得られた多孔質シートを少なくとも
2枚重ねて、加圧することにより、多孔質シート相互間
を接着させることを特徴とする多孔質四弗化エチレン樹
脂積層体の製造方法。
2. (1) After forming a molded body by paste extrusion of tetrafluoroethylene resin fine powder,
(2) stretching the molded body in at least one axial direction, (3)
Next, a method for producing a porous tetrafluoroethylene resin laminate, characterized in that at least two porous sheets obtained by stretching are overlapped and pressed to bond the porous sheets to each other.
【請求項3】 前記工程(3)の後、さらに、(4)四
弗化エチレン樹脂の融点未満の温度で熱処理する請求項
2記載の多孔質四弗化エチレン樹脂積層体の製造方法。
3. The method for producing a porous tetrafluoroethylene resin laminate according to claim 2, further comprising (4) heat treating at a temperature lower than the melting point of the tetrafluoroethylene resin after the step (3).
JP33553394A 1994-12-21 1994-12-21 Porous tetrafluoroethylene resin laminate and method for producing the same Expired - Lifetime JP3456284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33553394A JP3456284B2 (en) 1994-12-21 1994-12-21 Porous tetrafluoroethylene resin laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33553394A JP3456284B2 (en) 1994-12-21 1994-12-21 Porous tetrafluoroethylene resin laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08174738A true JPH08174738A (en) 1996-07-09
JP3456284B2 JP3456284B2 (en) 2003-10-14

Family

ID=18289646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33553394A Expired - Lifetime JP3456284B2 (en) 1994-12-21 1994-12-21 Porous tetrafluoroethylene resin laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3456284B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044731A (en) * 2007-07-18 2009-02-26 Nitto Denko Corp Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
WO2009072373A1 (en) * 2007-12-07 2009-06-11 Nitto Denko Corporation Porous polytetrafluoroethylene film, method for production thereof, and water-proof breathable filter
WO2010052976A1 (en) * 2008-11-04 2010-05-14 日東電工株式会社 Polytetrafluoroethylene porous membrane, method for producing same and waterproof air-permeable filter
WO2010092938A1 (en) * 2009-02-16 2010-08-19 住友電工ファインポリマー株式会社 Porous multilayer filter and method for producing same
JP2010241047A (en) * 2009-04-08 2010-10-28 Nitto Denko Corp Waterproof sound-transmitting film, and waterproof sound-transmitting member and electric appliance using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044731A (en) * 2007-07-18 2009-02-26 Nitto Denko Corp Water-proof sound-transmitting membrane, method for production of water-proof sound-transmitting membrane, and electrical appliance using the membrane
WO2009072373A1 (en) * 2007-12-07 2009-06-11 Nitto Denko Corporation Porous polytetrafluoroethylene film, method for production thereof, and water-proof breathable filter
JP2009137181A (en) * 2007-12-07 2009-06-25 Nitto Denko Corp Polytetrafluoroethylene porous film, manufacturing method of the same, and waterproof breathable filter
CN101888928A (en) * 2007-12-07 2010-11-17 日东电工株式会社 Porous polytetrafluoroethylene film, method for production thereof, and water-proof breathable filter
US8419839B2 (en) 2007-12-07 2013-04-16 Nitto Denko Corporation Porous polytetrafluoroethylene membrane, method for producing the same, and water-proof air permeable filter
KR101483327B1 (en) * 2007-12-07 2015-01-15 닛토덴코 가부시키가이샤 Porous polytetrafluoroethylene film, method for production thereof, and water-proof breathable filter
WO2010052976A1 (en) * 2008-11-04 2010-05-14 日東電工株式会社 Polytetrafluoroethylene porous membrane, method for producing same and waterproof air-permeable filter
JP2010110914A (en) * 2008-11-04 2010-05-20 Nitto Denko Corp Polytetrafluoroethylene porous film, method of manufacturing the same and waterproof air-permeable filter
CN102196894A (en) * 2008-11-04 2011-09-21 日东电工株式会社 Polytetrafluoroethylene porous membrane, method for producing same and waterproof air-permeable filter
US8449660B2 (en) 2008-11-04 2013-05-28 Nitto Denko Corporation Polytetrafluoroethylene porous membrane, method for producing same, and waterproof air-permeable filter
WO2010092938A1 (en) * 2009-02-16 2010-08-19 住友電工ファインポリマー株式会社 Porous multilayer filter and method for producing same
JP2010241047A (en) * 2009-04-08 2010-10-28 Nitto Denko Corp Waterproof sound-transmitting film, and waterproof sound-transmitting member and electric appliance using the same

Also Published As

Publication number Publication date
JP3456284B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP0433787B1 (en) Process for producing multilayer polytetrafluoroethylene porous membrane
RU2124391C1 (en) Method of manufacturing multilayer polytetrafluoroethylene porous membrane and half-sintered polytetrafluoroethylene multilayer film
EP2679298B1 (en) Porous multi-layer filter
JP3099416B2 (en) Method for producing polytetrafluoroethylene porous membrane with asymmetric pore size
CN111093948B (en) Method for preparing porous film of fluorine-based resin
JPH05295147A (en) Production of porous high-strength ptfe multilayer article
JP2003138047A (en) Asymmetric porous polytetrafluoroethylene (ptte) film and method for manufacturing the same
EP2767330A2 (en) Composite including PTFE Membrane
WO2005097877A1 (en) Porous stretched polytetrafluoroethylene film having elastic recovery in thickness direction, process for producing the same, and use of the porous film
JP2010018800A (en) Expanded ptfe membrane and method for producing the same
JP2005535447A (en) Fluoropolymer membrane
EP2578302A1 (en) Crystalline-polymer microporous membrane, process for producing same, and filter for filtration
JP2014042869A (en) Porous multi-layer filter
CN103561851B (en) Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
JPH03179039A (en) Production of multilayered porous membrane of polytetrafluoroethylene
KR20200020460A (en) Porous fluorine resin film
JPH07119303B2 (en) Method for producing tetrafluoroethylene resin porous membrane
JP2533229B2 (en) Polytetrafluoroethylene porous body and method for producing the same
JP3456284B2 (en) Porous tetrafluoroethylene resin laminate and method for producing the same
US5911926A (en) Porous material of polytetrafluoroethylene and production process thereof
JPH05214140A (en) Porous film made of polytetrafluoroethylene and its production
EP0418155A2 (en) Porous material of polytetrafluoroethylene and process for producing the same
JP7316893B2 (en) Polytetrafluoroethylene porous membrane with high strength and small pore size
CN111655358B (en) Fluorine-based resin porous membrane and method for preparing same
JP3539441B2 (en) Porous ethylene tetrafluoride resin and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term