JPH08174655A - Corrugated inorganic fiberboard and production thereof - Google Patents

Corrugated inorganic fiberboard and production thereof

Info

Publication number
JPH08174655A
JPH08174655A JP6335845A JP33584594A JPH08174655A JP H08174655 A JPH08174655 A JP H08174655A JP 6335845 A JP6335845 A JP 6335845A JP 33584594 A JP33584594 A JP 33584594A JP H08174655 A JPH08174655 A JP H08174655A
Authority
JP
Japan
Prior art keywords
corrugated
inorganic fiber
inorg
web
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6335845A
Other languages
Japanese (ja)
Inventor
Takeshi Ogiwara
猛 荻原
Hisanobu Hori
寿信 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP6335845A priority Critical patent/JPH08174655A/en
Publication of JPH08174655A publication Critical patent/JPH08174655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To continuously produce a corrugated inorg. fiberboard having flexibility, capable of being applied to a curved surface in a close contact state, reduced in wt., enhanced in compression strength and ply separation strength, made constant in the height of corrugations and the interval between corrugations and improved so as to have the same heat insulating capacity as a heat insulating panel. CONSTITUTION: An inorg. fiber web 4 obtained by orienting and laminating inorg. fibers having a resin bonded thereto in a laminar state is folded zigzag by a corrugating machine 6 consisting of a pair of folding operation members to orient inorg. fibers in a vertical direction and this folded web is molded under heating and pressure to produce a corrugated inorg. fiberboard. The inorg. fiber web 4 corrugated by the corrugating machine 6 is supplied to a heating and molding furnace 8 and pressed by lower and upper perforated belt conveyors 7, 9 so as to have desired corrugation height. By adjusting the speed ratio of the upper and lower perforated belt conveyors 9, 7, the inorg. fiber web 4 is folded so as to provide inclination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば大口径ダクトの断
熱材等に使用される波形無機質繊維板とその製造方法に
関する。更に、詳しくは、樹脂を付着させた無機質繊維
が層状に配向積層された無機質繊維ウエブをジグザグ状
に折畳んで該無機質繊維を垂直方向に配向させるように
した波形無機質繊維板とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrugated inorganic fiber board used as a heat insulating material for large-diameter ducts and a method for manufacturing the same. More specifically, the present invention relates to a corrugated inorganic fiber board in which inorganic fibers having resin adhered thereto are oriented and laminated in a layered manner to fold the inorganic fiber web in a zigzag shape to orient the inorganic fibers in a vertical direction and a method for producing the corrugated inorganic fiber board. .

【0002】[0002]

【従来の技術】この種の波形無機質繊維板は、設置場所
が湾曲している場合に柔軟性があるため湾曲部と隙間な
く密着させて取付けられるので断熱効果に優れ、また嵩
密度が増大しないにもかかわらず、即ち軽量化が図れる
にもかかわらず、圧縮強度が大きく、しかも従来の無機
質繊維マットのような層間剥離が生ずることなく剥離強
度が大きいといった優れた特性を有している。ところ
が、先に提案されたこの種の特公昭63−19338
号、特公平2−6492号、特開昭63−270851
号等に開示されるものでは、ウエブの波高さ及び間隔を
一定にしてかつ繊維方向を平面に対してほぼ垂直方向に
配向するようにして連続的に製造することはできなかっ
た。このため、本出願人は特願平6−74126号にお
いて、波形無機質繊維板の製造方法として、樹脂を付着
させた無機質繊維が層状に配向積層された無機質繊維ウ
エブを一対の折畳み作動部材から成る波付機によってジ
グザグ状に折畳んで該無機質繊維を垂直方向に配向させ
た後、加熱加圧成形するようにした製造方法を提案し
た。
2. Description of the Related Art This type of corrugated inorganic fiber board is flexible when it is installed in a curved place, so that it can be mounted in close contact with a curved portion without any gap, so that it has an excellent heat insulating effect and does not increase the bulk density. Nonetheless, that is, despite the reduction in weight, it has excellent characteristics that it has a large compressive strength and a large peel strength without causing delamination as in the conventional inorganic fiber mat. However, this type of Japanese Patent Publication Sho 63-19338, which was previously proposed.
No. 2, Japanese Patent Publication No. 2-6492, Japanese Patent Laid-Open No. 63-270851.
The method disclosed in U.S. Pat. No. 5,968,961 could not be continuously manufactured with the wave height and spacing of the web being constant and the fiber direction being oriented substantially perpendicular to the plane. Therefore, the applicant of the present application discloses in Japanese Patent Application No. 6-74126 a method for producing a corrugated inorganic fiber board, which comprises a pair of folding actuating members for an inorganic fiber web in which resin-attached inorganic fibers are oriented and laminated in layers. A manufacturing method has been proposed in which the inorganic fibers are folded in a zigzag shape by a corrugating machine to orient the inorganic fibers in a vertical direction, and then heated and pressed.

【0003】[0003]

【発明が解決しようとする課題】ところが、無機質繊維
ウエブはエアフィルタの濾紙等のように薄いものではな
く比較的厚いため、ジグザグ状に折畳まれても図3に示
すように波付機により波付けされた波の内周面には湾曲
が生じ、この波の内周面にそって空隙が発生する。ま
た、波付けされたウエブを所望の波高さに揃えるために
加熱加圧成形する必要があるため、上下からの圧縮力に
より波の上部は下方向へ垂直に押し下げられ、また、波
の下部は上方向へ垂直に押し上げられ、これにより空隙
が横方向に拡げられる作用が働きその空隙空間が増加す
る現象が生じる。尚、図中4’は無機質繊維ウエブを示
し、4a’は波付けされた波の内周面に形成された空隙
を示す。この結果、その空隙空間の大きさにより空気の
対流が起こり、等価熱伝導率が悪くなるという問題があ
った。
However, since the inorganic fiber web is not as thin as the filter paper of an air filter but is relatively thick, even if it is folded in a zigzag shape, as shown in FIG. The inner peripheral surface of the corrugated wave is curved, and a void is generated along the inner peripheral surface of the wave. In addition, since it is necessary to heat and press-mold the corrugated web in order to align it with the desired wave height, the upper part of the wave is pushed vertically downward by the compressive force from above and below, and the lower part of the wave is It is pushed vertically upward, which causes the void to expand in the lateral direction, resulting in an increase in the void space. In the figure, 4'indicates an inorganic fiber web, and 4a 'indicates a void formed on the inner peripheral surface of the corrugated wave. As a result, there is a problem that convection of air occurs due to the size of the void space and the equivalent thermal conductivity deteriorates.

【0004】[0004]

【課題を解決するための手段】本発明の波形無機質繊維
板は、前記従来の問題点を解消するべく、樹脂を付着さ
せた無機質繊維が層状に配向積層された無機質繊維ウエ
ブをジグザグ状に折畳んで該無機質繊維を垂直方向に配
向させるようにした波形無機質繊維板において、該無機
質繊維ウエブを傾斜を付けて折り畳むようにした。ま
た、本発明の無機質繊維板の製造方法は、樹脂を付着さ
せた無機質繊維が層状に配向積層された無機質繊維ウエ
ブを一対の折畳み作動部材から成る波付機によってジグ
ザグ状に折畳んで該無機質繊維を垂直方向に配向させた
後、加熱加圧成形する波形無機質繊維板の製造方法にお
いて、該波付機によって波付けされた無機質繊維ウエブ
を加熱成形炉へ供給し、該加熱成形炉の上側有孔ベルト
コンベアと下側有孔ベルトコンベアで波付けされた無機
質繊維ウエブを所望の波高さに加圧すると共に上側有孔
ベルトコンベアと下側有孔ベルトコンベアとの速度比を
調整することにより、該無機質繊維ウエブを傾斜を付け
て折り畳むようにしたことを特徴とする。
The corrugated inorganic fibrous board of the present invention is, in order to solve the above-mentioned conventional problems, a zigzag-shaped folded inorganic fiber web in which resin-attached inorganic fibers are oriented and laminated in layers. In a corrugated inorganic fiber board in which the inorganic fibers were oriented in the vertical direction by folding, the inorganic fiber web was inclined and folded. In addition, the method for producing an inorganic fiber board of the present invention is a method in which inorganic fiber webs in which resin-attached inorganic fibers are oriented and laminated in layers are zigzag-folded by a corrugating machine composed of a pair of folding actuating members, In the method for producing a corrugated inorganic fiber board in which the fibers are oriented in the vertical direction and then heated and pressed, the inorganic fiber web corrugated by the corrugating machine is supplied to the heating and molding furnace, and the upper side of the heating and molding furnace. By adjusting the speed ratio between the upper perforated belt conveyor and the lower perforated belt conveyor while pressing the inorganic fiber web corrugated with the perforated belt conveyor and the lower perforated belt conveyor to a desired wave height. It is characterized in that the inorganic fiber web is inclined and folded.

【0005】前記無機質繊維ウエブは、遠心法や火炎法
等により紡糸される平均繊維径0.5〜12μm程度の
ガラス繊維、セラミック繊維等の短繊維に、フェノ−ル
樹脂等の熱硬化性樹脂あるいはポリエチレン樹脂、ポリ
プロピレン樹脂等の熱可塑性樹脂を噴霧、含浸、浸漬等
により付着した後、集綿機の有孔ベルトコンベア上に吸
引堆積させて得られるもので、一般には該ウエブの坪量
は100〜1000g/m2 程度である。
The above-mentioned inorganic fiber web is made of glass fibers, ceramic fibers or other short fibers having an average fiber diameter of about 0.5 to 12 μm spun by a centrifugal method or a flame method, and a thermosetting resin such as phenol resin. Alternatively, it is obtained by spraying, impregnating, dipping or the like a thermoplastic resin such as a polyethylene resin or a polypropylene resin and then suction-depositing it on a perforated belt conveyor of a cotton collecting machine. Generally, the basis weight of the web is It is about 100 to 1000 g / m 2 .

【0006】前記波付機としては、一対の反対方向に回
転する歯車から成り、これら歯車の噛合せ部で該無機質
繊維ウエブをジグザグ状に折畳む歯車式や、折畳み作動
をする一対の折畳み作動板から成り、これら折畳み作動
板の折畳み作動によって該無機質繊維ウエブをジグザグ
状に折畳むラボスキー式等が代表的であるが、雄エッジ
と雌エッジを配列させた一対のロールによって襞折りす
るようにしたロータリー式等、機械的に正確に波付けで
きるものであれば特に限定されるものではない。
The corrugating machine is composed of a pair of gears rotating in opposite directions, a gear type in which the inorganic fiber web is folded in a zigzag shape at a meshing portion of these gears, and a pair of folding operations for folding operation. A typical example is the Lavoski type in which the inorganic fiber web is folded in a zigzag shape by the folding operation of these folding operation plates, but it is folded by a pair of rolls in which male edges and female edges are arranged. The rotary type is not particularly limited as long as it can be accurately corrugated mechanically.

【0007】前記波付機による波形の波高さ及び波間隔
は適宜選択されるが、波高さは無機質繊維板の厚みとほ
ぼ同じ程度、波間隔は5〜50mm、好ましくは25〜
35mmが波形無機質繊維板の特性を生かすのに効果的
である。
The wave height and wave interval of the corrugating machine are appropriately selected. The wave height is approximately the same as the thickness of the inorganic fiber board, and the wave interval is 5 to 50 mm, preferably 25 to
The thickness of 35 mm is effective in making the most of the characteristics of the corrugated inorganic fiber board.

【0008】前記無機質繊維ウエブの波付機への供給
は、ベルトコンベアで供給するようにしても、自重落下
によって供給するようにしてもよい。尚、ベルトコンベ
アによるときは、その周速度は加熱成形炉の下側有孔ベ
ルトコンベアの周速度より2〜6倍速くすることが好ま
しい。ただしこの比率は無機質繊維ウエブの坪量と波形
無機質繊維板の波付山数及び密度により決定されるもの
であり、適宜選択されるものである。尚、速度比が2倍
未満の場合は、ジグザグ状の折畳みが充分でなく屈曲で
はなく褶曲程度にしか波付けできないため所望の波高さ
と波間隔が得られない。また6倍を超える場合は山数が
多くなり圧縮されて隙間が充分に確保できず高密度とな
り所望の波高さと波間隔が得られない。
The inorganic fiber web may be supplied to the corrugating machine by a belt conveyor or by dropping by its own weight. When using a belt conveyor, the peripheral speed is preferably 2 to 6 times faster than the peripheral speed of the lower belt conveyor with holes in the heating molding furnace. However, this ratio is determined by the basis weight of the inorganic fiber web, the number of corrugated peaks and the density of the corrugated inorganic fiber plate, and is appropriately selected. If the speed ratio is less than twice, the zigzag-shaped fold is not sufficient, and the desired wave height and wave interval cannot be obtained because the wave can be corrugated only to the extent of folding rather than bending. On the other hand, if it exceeds 6 times, the number of peaks increases and the gaps are compressed so that a sufficient gap cannot be secured and the density becomes high, so that the desired wave height and wave interval cannot be obtained.

【0009】無機質繊維板は後記する加熱加圧成形によ
り、最終的に厚さ25〜100mm、密度10〜120
kg/m3 程度に調整される。また、無機質繊維板は、
必要に応じて表皮材等のシートを適宜積層することがで
きる。波付機へウエブを供給する前にウエブの少なくと
も片面にシートを積層する場合は、そのシートが150
℃以上の耐熱性と通気性のあるガラスペーパー、ガラス
クロス、炭素繊維・ガラス繊維等のフェルト等であれば
ウエブの屈曲面同士の隔離体として働き、繊維成形後に
自由度のあるものが得られる。また、該シートが加熱成
形炉で溶解してバインダー化するホットメルトフィル
ム、ホットメルト不織布等の熱可塑性樹脂フィルム等の
熱溶融性フィルムであれば屈曲面同士をウエブ中に含ま
れる未硬化樹脂の接着とは別に強固に接着できるため、
屈曲面同士の間に隙間ができることによる断熱性能の低
下を防止できる。また、この場合、フィルムの代わりに
熱可塑性樹脂等の合成樹脂粉末を散布することもでき
る。
The inorganic fiber board is finally subjected to the heat and pressure molding described later to have a thickness of 25 to 100 mm and a density of 10 to 120.
It is adjusted to about kg / m 3 . In addition, the inorganic fiber board,
If necessary, sheets such as a skin material can be appropriately laminated. If the sheets are laminated on at least one side of the web before feeding the web to the corrugating machine,
Glass paper, glass cloth, felt such as carbon fiber / glass fiber, etc., which has heat resistance and breathability above ℃, acts as a separator between the curved surfaces of the web, and has a degree of freedom after fiber molding. . If the sheet is a hot-melt film such as a hot-melt film that melts into a binder in a heating molding furnace or a thermoplastic resin film such as a hot-melt non-woven fabric, the uncured resin of which the curved surfaces are contained in the web is Since it can be firmly bonded separately from bonding,
It is possible to prevent deterioration of heat insulation performance due to the formation of a gap between the bent surfaces. Further, in this case, a synthetic resin powder such as a thermoplastic resin may be sprayed instead of the film.

【0010】波付機でウエブが波付けされた後、加熱成
形炉へ供給される間にウエブの少なくとも片面にシート
を積層する場合は、そのシートは150℃以上の耐熱性
と通気性のあるガラスペーパー、ガラスクロス、炭素繊
維・ガラス繊維等のフェルト等であれば、シートとウエ
ブを別途接着剤を用いることなく、ウエブ中の未硬化バ
インダーを使用して接着することができる。
When a sheet is laminated on at least one side of the web while being fed to a heat forming furnace after the web is corrugated by a corrugating machine, the sheet has heat resistance of 150 ° C. or higher and breathability. With glass paper, glass cloth, felt such as carbon fiber / glass fiber, etc., the sheet and the web can be bonded using the uncured binder in the web without using an additional adhesive.

【0011】加熱成形炉で加熱加圧成形された連続する
繊維板の少なくとも片面にシートを接着剤を介して積層
するかあるいは裁断された後別工程で接着剤を介して積
層する場合、各種表皮材が自由に選択される。例えば、
ダクトに使用する場合、被接着面側は施工時等の人体へ
のチクチク防止と繊維の離脱防止のため、寒冷紗、有機
繊維不織布等が使用され、外表面側はALGC(アルミ
ガラスクロス)、ALK(アルミクラフト紙)、AL
(アルミ箔)、ALM(アルミ箔とフィルムのラミネー
ト品)、寒冷紗、有機繊維不織布、ガラスクロス、ガラ
スペーパー、炭素繊維フェルト、耐炎化繊維(旭化成工
業株式会社製 ラスタン等)フェルト、ガラス繊維フェ
ルト等が断熱性、吸音性、外観等の向上のため使用され
る。
When a sheet is laminated with an adhesive on at least one surface of a continuous fiberboard which is heat-press molded in a heat-molding furnace, or when it is cut and then laminated with an adhesive in another step, various skins are used. Materials are freely selected. For example,
When used as a duct, the surface to be adhered is made of syrup, organic fiber non-woven fabric, etc. to prevent scratching of the human body during construction and the separation of fibers, and the outer surface side is made of ALGC (aluminum glass cloth), ALK (Aluminum craft paper), AL
(Aluminum foil), ALM (laminated product of aluminum foil and film), cheesecloth, organic fiber non-woven fabric, glass cloth, glass paper, carbon fiber felt, flame resistant fiber (Rustan etc. made by Asahi Kasei Kogyo Co., Ltd.) felt, glass fiber felt, etc. Is used to improve heat insulation, sound absorption, and appearance.

【0012】加熱成形炉の下側有孔ベルトコンベアと、
上側有孔ベルトコンベアの速度比は1.01倍ないし
1.10倍程度が好ましく、これにより、波形の傾斜角
度θを波形無機質繊維板の底面に対して45゜≦θ<9
0゜の範囲にすることができる。尚、前記両ベルトコン
ベアはいずれの周速度を速めに設定しても構わない。
A lower belt conveyor with a heating molding furnace,
The speed ratio of the upper perforated belt conveyor is preferably 1.01 to 1.10 times, whereby the inclination angle θ of the corrugation is 45 ° ≦ θ <9 with respect to the bottom surface of the corrugated inorganic fiber board.
It can be in the range of 0 °. The peripheral speeds of the both belt conveyors may be set higher.

【0013】[0013]

【作用】前記ベルトコンベアの速度比調整により、例え
ば、下側有孔ベルトコンベアよりも上側有孔ベルトコン
ベアの速度の方が若干速い分だけ、波付けされた無機質
繊維ウエブの上部が斜め方向に押されて波形がそれに対
応して傾斜し、同時に波付けにより生じた波の内周面の
空隙形状もその傾斜とほぼ同じ角度に傾斜し、かつ更に
上下のベルトコンベアによって押しつぶされ空隙空間が
狭くなる。従って、空隙空間内での対流による伝熱がお
さえられ等価熱伝導率を大きくできる。また、従来の波
形無機質繊維板に比し、波形を斜めとすることで伝熱方
向に対して垂直となる繊維配向の比率が増大することで
熱伝導が良好となる。
By adjusting the speed ratio of the belt conveyor, the upper part of the corrugated inorganic fiber web is slanted in an oblique direction, for example, because the speed of the upper perforated belt conveyor is slightly higher than that of the lower perforated belt conveyor. When pressed, the corrugations incline correspondingly, and at the same time, the void shape on the inner peripheral surface of the wave generated by corrugation also inclines to the same angle as the inclination, and is further crushed by the upper and lower belt conveyors to narrow the void space. Become. Therefore, heat transfer due to convection in the void space is suppressed, and the equivalent thermal conductivity can be increased. Further, as compared with the conventional corrugated inorganic fiber board, the slanted corrugation increases the ratio of the fiber orientation perpendicular to the heat transfer direction, thereby improving the heat conduction.

【0014】[0014]

【実施例】本発明の実施例を図面により説明する。図1
は本発明の一実施例の製造工程を示す説明図であり、ま
ず遠心法で紡糸された平均繊維径7μmのガラス繊維1
に噴霧ノズル2より噴霧される熱硬化性フェノール樹脂
を付着させ、集綿機3の有孔ベルトコンベア3a上に繊
維1が層状に配向積層されるように吸引集積し、坪量5
00g/m2 の無機質繊維ウエブ4を得る。次に該ウエ
ブ4を周速度6m/分のベルトコンベア5により波付機
6へ供給し、ジグザグ状に折り畳んでガラス繊維1が垂
直方向に配向されるように形成する。該波付機6は、一
対の反対方向に回転する歯車6a、6aから成り、ベル
トコンベア5より若干速い周速度で回転させることによ
り歯車6a、6aの噛み合わせ部6bでウエブを4をジ
グザグ状に折畳み、波高さ30〜35mm、波間隔25
mm(製品2m当たり80山数)とする。波付けされた
ウエブ4を加熱成形炉8へ供給し、ウエブ4の上下面に
アルミガラスクロス(アルミ箔+ガラスクロス)の表皮
材のシート20、21を供給した後、周速度2m/分の
下側有孔ベルトコンベア7と周速度2.03m/分の上
側有孔ベルトコンベア9で、所望の波高さ25mmに規
定するため加圧する。
Embodiments of the present invention will be described with reference to the drawings. FIG.
FIG. 3 is an explanatory view showing a manufacturing process of one embodiment of the present invention, in which a glass fiber 1 having an average fiber diameter of 7 μm spun by a centrifugal method is first prepared.
The thermosetting phenolic resin sprayed from the spray nozzle 2 is adhered to, and the fibers 1 are suction-collected on the perforated belt conveyor 3a of the cotton collector 3 so as to be oriented and laminated in layers, and the basis weight is 5
A 00 g / m 2 inorganic fiber web 4 is obtained. Next, the web 4 is supplied to the corrugating machine 6 by a belt conveyor 5 having a peripheral speed of 6 m / min, and is folded in a zigzag shape so that the glass fibers 1 are oriented in the vertical direction. The corrugating machine 6 is composed of a pair of gears 6a, 6a that rotate in opposite directions. By rotating the gears 6a, 6a at a slightly higher peripheral speed, the mesh 4b of the gears 6a, 6a makes the web 4 zigzag. Folded in, wave height 30-35mm, wave interval 25
mm (80 peaks per 2 m of product). The corrugated web 4 is supplied to the heat forming furnace 8, and the sheets 20 and 21 of the aluminum glass cloth (aluminum foil + glass cloth) skin material are supplied to the upper and lower surfaces of the web 4, and then the peripheral speed is 2 m / min. Pressure is applied by the lower perforated belt conveyor 7 and the upper perforated belt conveyor 9 at a peripheral speed of 2.03 m / min in order to define a desired wave height of 25 mm.

【0015】次に、加熱成形炉8で250℃の熱風によ
りウエブ4中のフェノール樹脂を硬化させ、繊維1、1
同士、更にウエブ4の屈曲面同士、ウエブ4とシート2
0、21同士を強固に接着した後、裁断機10により所
望の長さに裁断し、ロール状に巻取り、厚み25mm、
波間隔25mm、密度40kg/m3 、長さ2mの、図
2に示す、56゜の傾斜角度θをもつ波形ガラス繊維板
11を得た。
Next, the phenol resin in the web 4 is cured by hot air at 250 ° C. in the heating molding furnace 8 to form fibers 1, 1
Each other, the curved surfaces of the web 4, the web 4 and the sheet 2
After firmly bonding 0 and 21 to each other, they are cut into a desired length by a cutting machine 10 and wound into a roll to obtain a thickness of 25 mm,
A corrugated glass fiber plate 11 having a wave interval of 25 mm, a density of 40 kg / m 3 and a length of 2 m and having an inclination angle θ of 56 ° shown in FIG. 2 was obtained.

【0016】上記実施例ではオンライン式(ウエブ形成
から加熱加圧成形まで連続で行なう)で紡糸から巻取迄
一貫した連続工程としたが、紡糸集綿速度が波付加工速
度よりも差がある場合や、製造装置がやむを得ぬ理由で
一貫した連続工程を組めぬ場合には、波付工程の前で一
度ガラス繊維ウエブ4の状態で巻取り、オフライン式
(ウエブ形成と加熱加圧成形を別々に行なう)で波付工
程以下を行うこともできる。
In the above embodiment, the online continuous process (continuously from web formation to heat and pressure molding) is used as a continuous process from spinning to winding, but the spinning collecting speed is different from the corrugating speed. In the case where the manufacturing equipment cannot avoid a consistent continuous process due to unavoidable reasons, it is wound in the state of the glass fiber web 4 once before the corrugating process, and then the offline type (web formation and heat and pressure molding are separately performed. It is also possible to perform the corrugating step and the following.

【0017】次に、本発明の前記実施例により得られた
波形ガラス繊維板の等価熱伝導率について、比較例と対
比しつつ評価した。尚、比較例1は従来のオンライン式
で製造された実施例と同厚、同密度の波形ガラス繊維板
で図3に示すように波付時に発生した空隙が加熱加圧成
形時に押し拡げられたもの、比較例2は紡糸されたガラ
ス繊維を層状に積層させた実施例と同厚、同密度のいわ
ゆるJIS A9505「グラスウール保温材」に規定
された保温板である。
Next, the equivalent thermal conductivity of the corrugated glass fiber board obtained in the above-mentioned embodiment of the present invention was evaluated in comparison with the comparative example. In Comparative Example 1, a corrugated glass fiber plate having the same thickness and the same density as the conventional online-manufactured Example was used, as shown in FIG. The comparative example 2 is a heat insulating plate defined by so-called JIS A9505 "glass wool heat insulating material" having the same thickness and density as those of the example in which spun glass fibers are laminated in layers.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明かなように、比較例1は比較例
2に比して、空隙空間が大きく空隙内に対流が生じ、ま
た繊維配向も伝熱方向と平行になる比率が多くなり等価
熱伝導率が10%程度低下し断熱性能が悪くなる。これ
に対し、実施例は空隙空間が押しつぶされて狭くなると
共に繊維配向も伝熱方向に対して垂直のものが増加した
ため等価熱伝導率の低下が5%程度にとどまり、比較例
2に比し優れた断熱性が得られた。
As is clear from Table 1, Comparative Example 1 has a larger void space than that of Comparative Example 2 and convection occurs in the voids, and the fiber orientation is also more parallel to the heat transfer direction. The thermal conductivity is reduced by about 10% and the heat insulation performance is deteriorated. On the other hand, in the example, the void space was crushed and narrowed, and the fiber orientation increased in the direction perpendicular to the heat transfer direction, so that the equivalent thermal conductivity decreased only to about 5%, which is more than that of the comparative example 2. Excellent heat insulation was obtained.

【0020】[0020]

【発明の効果】このように、本発明によれば、本出願人
が先に提案の波形無機質繊維板の特徴である、柔軟性を
有し湾曲面に密着して施工できかつ軽量化が図れると共
に圧縮強度、層間剥離強度が大きく波高さ及び波間隔を
一定にして連続的に製造できるという特徴を保ちつつ、
さらに、保温板に比し劣っていた断熱性能を同等に改善
した波形無機質繊維板を提供できる。
As described above, according to the present invention, the characteristic feature of the corrugated inorganic fiber board previously proposed by the present applicant is that it has flexibility and can be adhered closely to a curved surface, and the weight can be reduced. At the same time, while maintaining the feature that the compressive strength and the delamination strength are large and the wave height and the wave interval are constant, continuous production is possible,
Further, it is possible to provide a corrugated inorganic fiber board having the same improved heat insulation performance, which is inferior to the heat insulation board.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明波形無機質繊維板の製造工程を示す説明
FIG. 1 is an explanatory view showing a manufacturing process of a corrugated inorganic fiber board of the present invention.

【図2】図1の要部拡大側面図FIG. 2 is an enlarged side view of an essential part of FIG.

【図3】従来の波形無機質繊維板の拡大側面図FIG. 3 is an enlarged side view of a conventional corrugated inorganic fiber board.

【符号の説明】[Explanation of symbols]

1 ガラス繊維 2 噴霧ノズル 3 集綿機 3a 有孔ベルトコンベア 4 無機質繊維ウエブ 4a 空隙 5 ベルトコンベア 6 波付機 6a 歯車 6b 噛み合わせ部 7 下側有孔ベルトコンベア 8 加熱成形炉 9 上側有孔ベルトコンベア 10 裁断機 11 波形ガラス繊維板 20 表皮材 21 表皮材 1 Glass Fiber 2 Spray Nozzle 3 Cotton Collecting Machine 3a Perforated Belt Conveyor 4 Inorganic Fiber Web 4a Gap 5 Belt Conveyor 6 Corrugator 6a Gear 6b Engagement Part 7 Lower Perforated Belt Conveyor 8 Heating Molding Furnace 9 Upper Perforated Belt Conveyor 10 Cutting machine 11 Corrugated glass fiber board 20 Skin material 21 Skin material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 17/04 Z // B29K 101:00 309:08 B29L 9:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B32B 17/04 Z // B29K 101: 00 309: 08 B29L 9:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 樹脂を付着させた無機質繊維が層状に配
向積層された無機質繊維ウエブをジグザグ状に折畳んで
該無機質繊維を垂直方向に配向させるようにした波形無
機質繊維板において、該無機質繊維ウエブを傾斜を付け
て折り畳むようにしたことを特徴とする波形無機質繊維
板。
1. A corrugated inorganic fiber board in which inorganic fiber webs in which resin-attached inorganic fibers are oriented and laminated in a zigzag shape are oriented in a zigzag manner to orient the inorganic fibers in a vertical direction. A corrugated inorganic fiber board characterized in that a web is inclined and folded.
【請求項2】 樹脂を付着させた無機質繊維が層状に配
向積層された無機質繊維ウエブを一対の折畳み作動部材
から成る波付機によってジグザグ状に折畳んで該無機質
繊維を垂直方向に配向させた後、加熱加圧成形する波形
無機質繊維板の製造方法において、該波付機によって波
付けされた無機質繊維ウエブを加熱成形炉へ供給し、該
加熱成形炉の上側有孔ベルトコンベアと下側有孔ベルト
コンベアで波付けされた無機質繊維ウエブを所望の波高
さに加圧すると共に上側有孔ベルトコンベアと下側有孔
ベルトコンベアとの速度比を調整することにより、該無
機質繊維ウエブを傾斜を付けて折り畳むようにしたこと
を特徴とする波形無機質繊維板の製造方法。
2. An inorganic fiber web in which resin-attached inorganic fibers are oriented and laminated in a zigzag shape by a corrugating machine composed of a pair of folding actuating members to orient the inorganic fibers in a vertical direction. After that, in the method for producing a corrugated inorganic fiber board to be heat-pressed, the inorganic fiber web corrugated by the corrugating machine is supplied to the heating molding furnace, and the upper side belt conveyor and the lower side of the heating molding furnace are provided. By inclining the inorganic fiber web corrugated with the perforated belt conveyor to a desired wave height and adjusting the speed ratio between the upper perforated belt conveyor and the lower perforated belt conveyor, the inorganic fiber web is inclined. A method for producing a corrugated inorganic fiber board, which is characterized in that it is folded.
JP6335845A 1994-12-21 1994-12-21 Corrugated inorganic fiberboard and production thereof Pending JPH08174655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6335845A JPH08174655A (en) 1994-12-21 1994-12-21 Corrugated inorganic fiberboard and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6335845A JPH08174655A (en) 1994-12-21 1994-12-21 Corrugated inorganic fiberboard and production thereof

Publications (1)

Publication Number Publication Date
JPH08174655A true JPH08174655A (en) 1996-07-09

Family

ID=18293043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335845A Pending JPH08174655A (en) 1994-12-21 1994-12-21 Corrugated inorganic fiberboard and production thereof

Country Status (1)

Country Link
JP (1) JPH08174655A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055384A3 (en) * 2000-08-24 2002-10-17 Lockheed Corp Composite structural panel with undulated body
JP2007239297A (en) * 2006-03-08 2007-09-20 Paramount Glass Kogyo Kk Heat insulating mat made of inorganic fiber, and its manufacturing method
JP2007284803A (en) * 2006-04-12 2007-11-01 Mag:Kk Heat insulating material and molding apparatus therefor
KR100826904B1 (en) * 2007-06-20 2008-05-06 유신단열 주식회사 An automatic film sticking device for heat insulting glass wool
JP2008115594A (en) * 2006-11-02 2008-05-22 Mag:Kk Heat insulating material for floor
JP2009132810A (en) * 2007-11-30 2009-06-18 Teijin Ltd Sheet-formed thermoconductive molded article
JP2009215404A (en) * 2008-03-10 2009-09-24 Teijin Ltd Sheet-shaped thermally conductive molded product
KR101395668B1 (en) * 2012-06-29 2014-05-15 주식회사 동원롤 Manufacturing machine of folded type non-woven fabric pad, manufacturing method using said the manufacturing machine and of folded type non-woven fabric pad manufactured by said the method
KR101424801B1 (en) * 2013-02-08 2014-07-28 주식회사 선진인더스트리 Sound-absorbent and manufacturing method using the same
JP2016513278A (en) * 2013-02-11 2016-05-12 フェデラル−モーグル パワートレイン インコーポレイテッドFederal−Mogul Powertrain, Inc. Improved lightweight scrim sound absorber
KR20230068860A (en) * 2021-11-11 2023-05-18 (주)삼원 Manufacturing appartus and method for eco-friendly sound absorption pad

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055384A3 (en) * 2000-08-24 2002-10-17 Lockheed Corp Composite structural panel with undulated body
US6553734B1 (en) 2000-08-24 2003-04-29 Lockheed Martin Corporation Composite structural panel with undulated body
JP2007239297A (en) * 2006-03-08 2007-09-20 Paramount Glass Kogyo Kk Heat insulating mat made of inorganic fiber, and its manufacturing method
JP2007284803A (en) * 2006-04-12 2007-11-01 Mag:Kk Heat insulating material and molding apparatus therefor
JP2008115594A (en) * 2006-11-02 2008-05-22 Mag:Kk Heat insulating material for floor
KR100826904B1 (en) * 2007-06-20 2008-05-06 유신단열 주식회사 An automatic film sticking device for heat insulting glass wool
JP2009132810A (en) * 2007-11-30 2009-06-18 Teijin Ltd Sheet-formed thermoconductive molded article
JP2009215404A (en) * 2008-03-10 2009-09-24 Teijin Ltd Sheet-shaped thermally conductive molded product
KR101395668B1 (en) * 2012-06-29 2014-05-15 주식회사 동원롤 Manufacturing machine of folded type non-woven fabric pad, manufacturing method using said the manufacturing machine and of folded type non-woven fabric pad manufactured by said the method
KR101424801B1 (en) * 2013-02-08 2014-07-28 주식회사 선진인더스트리 Sound-absorbent and manufacturing method using the same
JP2016513278A (en) * 2013-02-11 2016-05-12 フェデラル−モーグル パワートレイン インコーポレイテッドFederal−Mogul Powertrain, Inc. Improved lightweight scrim sound absorber
KR20230068860A (en) * 2021-11-11 2023-05-18 (주)삼원 Manufacturing appartus and method for eco-friendly sound absorption pad

Similar Documents

Publication Publication Date Title
KR100241151B1 (en) Device for manufacturing a filter
EP0688384B2 (en) A method of producing a mineral fiber-insulating web
EP2297412B1 (en) Sound absorption material and method of manufacturing sound absorption material
US5055341A (en) Composite molded articles and process for producing same
US20080274274A1 (en) Thermoformable acoustic sheet
JPH08174655A (en) Corrugated inorganic fiberboard and production thereof
US5180459A (en) Process for producing sealing components from all-carbon composite material
JP4703134B2 (en) Manufacturing method of vacuum insulation core material
EP0931886B1 (en) A mineral fiber-insulated plate
JPH03503868A (en) Reinforced thermoplastic honeycomb structure
JP2006062239A (en) Manufacturing method of fiber board and fiber board
JP3488307B2 (en) Method for producing corrugated inorganic fiberboard
JP3954727B2 (en) Corrugated inorganic fiber board and manufacturing method thereof
HU218566B (en) A method of producing a mineral fiberinsulating web, apparatus for producing a mineral fiber web, and a mineral fiber plate
JP3357194B2 (en) Manufacturing method of composite sheet with skin material
JP2582858B2 (en) Method for producing fiber molded article for thermoforming
JP3121652B2 (en) Automotive ceiling materials
JPH10193515A (en) Manufacture of corrugated inorganic fiberboard
JP2001337681A (en) Sound absorption insulator and its manufacturing method
JPH03279454A (en) Heat-insulating sound-absorbing material
JP2003316366A (en) Acoustic material and method for manufacturing the same
JPS6245900Y2 (en)
JPH0791763B2 (en) Sound absorbing material and method for manufacturing the same
JP4191907B2 (en) Metal honeycomb carrier, metal honeycomb carrier manufacturing method, and metal honeycomb basic structure manufacturing method
JPH0544147A (en) Composite fiber material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215