JPH08173755A - Method for removing fluorine in drainage of flue gas desulfurization - Google Patents

Method for removing fluorine in drainage of flue gas desulfurization

Info

Publication number
JPH08173755A
JPH08173755A JP6322446A JP32244694A JPH08173755A JP H08173755 A JPH08173755 A JP H08173755A JP 6322446 A JP6322446 A JP 6322446A JP 32244694 A JP32244694 A JP 32244694A JP H08173755 A JPH08173755 A JP H08173755A
Authority
JP
Japan
Prior art keywords
flue gas
solid
gas desulfurization
discharged
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322446A
Other languages
Japanese (ja)
Inventor
Tetsuya Ito
哲也 伊藤
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6322446A priority Critical patent/JPH08173755A/en
Publication of JPH08173755A publication Critical patent/JPH08173755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: To remove fluorine in drainage discharged during flue gas desulfurization treatment by a method wherein solid-liq. separation of a solid matter contg. a fluorine complex compd. is performed by adding an alkaline agent in the drainage and the solid matter is reused as an absorbent. CONSTITUTION: Combustion exhaust gas 10a of coal and the like is treated by cooling, dedusting and absorption and removal of sulfur oxides in the cooling and absorbing process of a flue gas desulfurization facility 1 and the treated gas is exhausted as a purified gas 10b. At that time, drainage 13 of the cooling and absorbing process is discharged. This drainage 13 of the cooling and absorbing process is introduced into a pH adjusting tank 3 and the pH is adjusted by adding an alkaline agent. Solid- liq. separation of the reaction liq. 15 in the pH adjusting tank 3 is performed in a solid-liq. separator 4 and the treated water 16 is discharged to the outside of the system. On the other hand, solid matter slurry 17 is returned into the exhaust gas desulfurization facility 1. The slurry 12 of the cooling and absorbing process discharged from the flue gas desulfurization facility 1 is dehydrated by means of a dehydrator 2 and is discharged as a dehydrated cake 12a to the outside of the system and the filtrate 12b after dehydration is used as a part of replenishing water for the flue gas desulfurization facility 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中の酸化硫黄
ガスを石灰−石膏法による湿式排煙脱硫処理するときに
排出される排水を、無害化処理する方法に関し、特に燃
焼排ガスの冷却工程と吸収工程とが一体となったスート
混合型の脱硫装置から排出される排水中のフッ素の除去
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying waste water discharged during a wet flue gas desulfurization process by a lime-gypsum method for sulfur oxide gas in combustion exhaust gas, and particularly to a combustion exhaust gas cooling step. The present invention relates to a method for removing fluorine in wastewater discharged from a soot-mixing type desulfurization device in which an absorption step and an absorption step are integrated.

【0002】[0002]

【従来の技術】石炭などを燃料とする燃焼排ガスは石灰
−石膏法などによる脱硫装置で処理されて、フッ素を含
む排水が排出される。フッ素を含む排水の処理方法とし
て、フッ素イオンに対し2〜3倍当量のカルシウムイオ
ンを添加してフッ化カルシウムとして除去する方法が一
般的である。しかし、この方法では、処理水中のフッ素
濃度が高く、全国一律の規制基準(15mg/リットル
以下)を達成することが困難である。
2. Description of the Related Art Combustion exhaust gas using coal or the like as a fuel is treated by a desulfurization device by the lime-gypsum method or the like, and waste water containing fluorine is discharged. As a method of treating wastewater containing fluorine, a method of adding calcium ions in an amount of 2 to 3 times the amount of fluorine ions to remove it as calcium fluoride is generally used. However, with this method, the concentration of fluorine in the treated water is high, and it is difficult to achieve a nationally uniform regulation standard (15 mg / liter or less).

【0003】この処理方法を改良して、図4に示す2段
凝集沈殿法が一般に知られている。以下、この方法につ
いて説明する。燃焼排ガス10aは排煙脱硫装置1にて
冷却、除塵並びに硫黄酸化物を吸収除去された後、清浄
ガス10bとして放出される。なお図中11は硫黄酸化
物の吸収剤として供給される石灰石スラリである。排煙
脱硫装置1からは燃料成分に起因するフッ素化合物を含
む脱硫排水31と冷却吸収工程スラリ12が排出され
る。この脱硫排水31を溶解槽21に導入し、酸32を
添加してpH4以下にし、排水中の酸溶解成分及び後の
第2沈殿槽から返送される沈殿物42を溶解する(溶解
槽21の作用については後述する)。
As a modification of this processing method, a two-stage coagulating sedimentation method shown in FIG. 4 is generally known. Hereinafter, this method will be described. The combustion exhaust gas 10a is cooled, dust-removed, and sulfur oxides are absorbed and removed by the flue gas desulfurization apparatus 1, and then discharged as clean gas 10b. Reference numeral 11 in the figure is a limestone slurry supplied as a sulfur oxide absorbent. From the flue gas desulfurization device 1, desulfurization wastewater 31 containing a fluorine compound derived from a fuel component and the cooling absorption process slurry 12 are discharged. This desulfurization wastewater 31 is introduced into the dissolution tank 21, an acid 32 is added to adjust the pH to 4 or less, and the acid-dissolved component in the wastewater and the precipitate 42 returned from the second precipitation tank later are dissolved (in the dissolution tank 21). The action will be described later).

【0004】この溶解液33を第1pH調整槽22に導
入し、消石灰34を添加してpH8〜9に調整すること
により、重金属の水酸化物、石膏及びフッ化カルシウム
を含有する沈殿物を生成させる。次いで、この反応液3
5に高分子凝集剤36を添加して、沈殿物を沈降しやす
くしたのち、第1沈殿槽23で重力沈降による固液分離
をする。その上澄液38は第2pH調整槽25に流入さ
せる一方、沈殿物37は脱水機24で脱水する。脱水ろ
液37bは第2pH調整槽25に導入し、脱水ケーキ3
7aは系外へ排出する。
The solution 33 is introduced into the first pH adjusting tank 22 and slaked lime 34 is added to adjust the pH to 8 to 9 to form a precipitate containing heavy metal hydroxide, gypsum and calcium fluoride. Let Then, this reaction liquid 3
Polymer coagulant 36 is added to 5 to facilitate sedimentation of the precipitate, and then solid-liquid separation by gravity sedimentation is performed in the first sedimentation tank 23. The supernatant liquid 38 is caused to flow into the second pH adjusting tank 25, while the precipitate 37 is dehydrated by the dehydrator 24. The dehydrated filtrate 37b was introduced into the second pH adjusting tank 25, and the dehydrated cake 3
7a is discharged out of the system.

【0005】第2pH調整槽25では、第1沈殿槽23
で固液分離した上澄液38を主とする液にアルカリ剤3
9を添加し、pH10以上に調整する。アルカリ剤39
としては水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、炭酸カリウムなどが使用できるが、運転費など
の面から、好ましくは水酸化ナトリウム、炭酸ナトリウ
ムを使用する。 水酸化ナトリウムを添加した場合は水
酸化マグネシウムの沈殿物が生じ、炭酸ナトリウムを添
加した場合は炭酸カルシウムの沈殿物が生じる。第2p
H調整槽の反応液40中の大部分のフッ素イオンは、こ
れらの沈殿物と錯塩を形成している。なおマグネシウム
化合物は前記排ガス成分に由来するもので、通常マグネ
シウムイオンとして500〜1,000mg/リットル
程度含有する場合が多い。
In the second pH adjusting tank 25, the first precipitation tank 23
Alkaline agent 3 is added to the liquid mainly containing the supernatant liquid 38 solid-liquid separated by
9 is added and pH is adjusted to 10 or more. Alkaline agent 39
Although sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like can be used, sodium hydroxide and sodium carbonate are preferably used from the viewpoint of operating cost. A precipitate of magnesium hydroxide is formed when sodium hydroxide is added, and a precipitate of calcium carbonate is formed when sodium carbonate is added. 2nd p
Most of the fluorine ions in the reaction solution 40 in the H adjustment tank form a complex salt with these precipitates. The magnesium compound is derived from the exhaust gas component and usually contains magnesium ions in an amount of about 500 to 1,000 mg / liter in many cases.

【0006】第2PH調整槽25の反応液40には高分
子凝集剤36を添加して、沈殿物を沈降しやすくしたの
ち、第2沈殿槽26で重力沈降による固液分離をし、処
理水41は必要に応じて酸により中和処理をした後、系
外へ排出する。沈殿物42は前記溶解槽21に返送し、
新たな脱硫排水31と共に溶解槽21に入る。
A polymer flocculant 36 is added to the reaction liquid 40 in the second pH adjusting tank 25 to facilitate sedimentation of the precipitate, and then solid-liquid separation by gravity sedimentation is carried out in the second sedimentation tank 26 to obtain treated water. If necessary, 41 is neutralized with an acid and then discharged out of the system. The precipitate 42 is returned to the dissolution tank 21,
It enters the dissolution tank 21 together with new desulfurization wastewater 31.

【0007】溶解槽21では、沈殿物42及び新たな脱
硫排水31に酸32を添加し、再びpH4以下にして酸
可溶成分、例えば水酸化マグネシウム、炭酸カルシウム
などを溶解させる。このとき、これらの沈殿物と錯塩を
形成していたフッ素イオンは、沈殿物の溶解に伴い液中
に再溶解する。さらに、この溶解液33は第1pH調整
槽22に流入させ、消石灰34を添加してpH8〜9に
調整することにより、再溶解した液中のフッ素化合物が
溶離したカルシウムイオンと反応してフッ化カルシウム
の沈殿となり、第1沈殿槽23で固液分離して排出す
る。以下第2pH調整槽25以降の工程は、前記と同様
である。なお、冷却吸収工程スラリ12は脱水機2で脱
水されて脱水ケーキ12aとして系外へ排出され、脱水
ろ液12bは別途処理するか排煙脱硫装置1の補給水の
1部などに利用される。
In the dissolution tank 21, the acid 32 is added to the precipitate 42 and the new desulfurization wastewater 31, and the pH is adjusted to 4 or less again to dissolve acid-soluble components such as magnesium hydroxide and calcium carbonate. At this time, the fluoride ions forming a complex salt with these precipitates are redissolved in the liquid as the precipitates are dissolved. Further, the solution 33 is caused to flow into the first pH adjusting tank 22 and slaked lime 34 is added to adjust the pH to 8 to 9, whereby the fluorine compound in the re-dissolved solution reacts with the eluted calcium ions and fluorinated. Calcium precipitates, which is solid-liquid separated in the first precipitation tank 23 and discharged. The steps after the second pH adjusting tank 25 are the same as described above. The cooling and absorption process slurry 12 is dehydrated by the dehydrator 2 and discharged as a dehydrated cake 12a to the outside of the system, and the dehydrated filtrate 12b is treated separately or used as a part of makeup water for the flue gas desulfurization apparatus 1. .

【0008】[0008]

【発明が解決しようとする課題】しかし前記の従来の処
理方法には次のような問題点かあった。 (1)排煙脱硫装置で発生する脱硫石膏(図4の12
a)以外に、前記の凝集沈殿による汚泥が大量に発生す
る。脱硫石膏は高純度であるため、回収石膏としてセメ
ントや石膏ボードなどの工業原料として利用できるが、
凝集沈殿汚泥(図4の37a)は石膏以外に水酸化マグ
ネシウム,フッ化カルシウム及びその他の重金属水酸化
物などの不純物を多く含むため、通常廃棄物として扱わ
れている。したがって凝集沈殿汚泥をできるだけ減らす
ことによって、脱硫石膏の回収率が向上するが、前記従
来法ではそれを実現することはできない
However, the conventional processing method described above has the following problems. (1) Desulfurization gypsum generated in the flue gas desulfurization device (12 in FIG. 4)
In addition to a), a large amount of sludge is generated due to the coagulation and sedimentation. Since desulfurized gypsum has a high purity, it can be used as an industrial raw material such as cement and gypsum board as recovered gypsum.
Coagulated sediment sludge (37a in FIG. 4) contains a large amount of impurities such as magnesium hydroxide, calcium fluoride and other heavy metal hydroxides in addition to gypsum, and is therefore usually treated as waste. Therefore, the recovery rate of desulfurized gypsum is improved by reducing the coagulation sedimentation sludge as much as possible, but it cannot be realized by the conventional method.

【0009】(2)排煙脱硫装置で発生する脱硫石膏
(図4の12a)の脱水処理装置以外に、凝集沈殿汚泥
(図4の37a)のための脱水処理装置が必要であり、
設備費と運転費が高くなるだけでなく、運転管理に要す
る負担がさらに増大する。 (3)フッ素を除去するために多数の処理工程が必要
で、設備費と薬品などの運転費が高くなるうえ運転管理
が複雑となる。 (4)多量の消石灰を使用するため、装置のスケーリン
グの問題が常につきまとう。
(2) In addition to the dehydration treatment device for desulfurization gypsum (12a in FIG. 4) generated in the flue gas desulfurization device, a dehydration treatment device for coagulating sedimentation sludge (37a in FIG. 4) is required,
Not only will the equipment and operating costs increase, but the operational management burden will increase further. (3) A large number of processing steps are required to remove fluorine, which increases equipment costs, operating costs for chemicals, and complicates operation management. (4) Since a large amount of slaked lime is used, there is always the problem of device scaling.

【0010】[0010]

【課題を解決するための手段】本発明は前記従来法にお
ける問題点を解消するために完成されたものである。す
なわち、石灰石あるいは消石灰スラリ等のアルカリ吸収
液を用いた燃焼排ガスの湿式排煙脱硫処理装置から排出
する排水中のフッ素の処理方法において、該排水にアル
カリ剤を添加してフッ素錯化合物を含有する固形物を析
出させたのち固液分離し、分離した水は系外へ排出し、
該固形物は前記脱硫装置に返送して吸収剤として再利用
することを特徴とする排煙脱硫排水中のフッ素の除去方
法である。本発明の好ましい態様として、前記固液分離
の方法が中空糸膜またはセラミック膜によりろ過する方
法である前記排煙脱硫排水中のフッ素の除去方法があ
る。
The present invention has been completed to solve the problems in the conventional method. That is, in a method of treating fluorine in wastewater discharged from a wet flue gas desulfurization treatment apparatus for combustion exhaust gas using an alkaline absorbent such as limestone or slaked lime slurry, an alkaline agent is added to the wastewater to contain a fluorine complex compound. After solid matter is precipitated, solid-liquid separation is performed, and the separated water is discharged out of the system,
The method for removing fluorine in flue gas desulfurization wastewater is characterized in that the solid matter is returned to the desulfurization apparatus and reused as an absorbent. As a preferred embodiment of the present invention, there is a method of removing fluorine in the flue gas desulfurization wastewater, wherein the solid-liquid separation method is a method of filtering with a hollow fiber membrane or a ceramic membrane.

【0011】本発明の一実施例であるスート混合方式脱
硫排水の処理方法を図1に示し、以下にさらに詳述す
る。石炭などの燃焼排ガス10aは排煙脱硫装置1の冷
却吸収工程(図示せず)で冷却、除塵並びに硫黄酸化物
等を吸収、除去した後、清浄ガス10bとして放出され
る。なお図中11は吸収剤として供給される石灰石スラ
リである。その際、排煙脱硫装置1から燃料成分に起因
するばい塵、重金属、硫黄酸化物のカルシウム塩等のほ
かに、フッ素化合物を含有する中性付近の冷却吸収工程
排水13が放出される。この冷却吸収工程排水13をp
H調整槽3に導入し、アルカリ剤14を添加してpH9
以上、好ましくはpH10.5〜12に調整する。アル
カリ剤14としては水酸化ナトリウム、炭酸ナトリウ
ム、水酸化カリウム、炭酸カリウムなどが適用できる
が、コストなどから水酸化ナトリウムあるいは炭酸ナト
リウムが好ましい。
A method for treating soot-mixing type desulfurization effluent which is an embodiment of the present invention is shown in FIG. 1 and will be described in more detail below. The combustion exhaust gas 10a such as coal is cooled and absorbed in a cooling and absorption process (not shown) of the flue gas desulfurization apparatus 1 and after absorbing and removing sulfur oxides and the like, it is released as a clean gas 10b. In the figure, 11 is a limestone slurry supplied as an absorbent. At that time, in addition to dust, heavy metals, calcium salts of sulfur oxides, and the like due to the fuel components, the flue gas desulfurization device 1 discharges the near neutral neutral cooling absorption process wastewater 13. This cooling absorption process wastewater 13
It is introduced into the H adjusting tank 3 and the alkaline agent 14 is added to adjust the pH to 9
As described above, the pH is preferably adjusted to 10.5 to 12. As the alkali agent 14, sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate or the like can be applied, but sodium hydroxide or sodium carbonate is preferable from the viewpoint of cost.

【0012】該pH領域において、冷却吸収工程排水1
3中の共存成分から不溶物質が析出するが、その物質の
主成分は次式に示すようにアルカリ剤14の種類によっ
て異なる。
In the pH range, the cooling absorption process wastewater 1
An insoluble substance is precipitated from the coexisting components in 3, but the main component of the substance differs depending on the type of the alkaline agent 14 as shown in the following formula.

【化1】・水酸化ナトリウムを使用した場合: 2 Mg2++ 2 F- + 2 NaOH → Mg(OH)2 *- MgF2+ 2 Na + (1)## STR1 ## when using sodium hydroxide: 2 Mg 2+ + 2 F - + 2 NaOH → Mg (OH) 2 * - MgF 2 + 2 Na + (1)

【化2】・炭酸ナトリウムを使用した場合: 2 Ca2++ 2 F- + Na2CO3 → CaCO3 * - CaF2+ 2 Na + (2)Embedded image when using sodium carbonate: 2 Ca 2+ + 2 F - + Na 2 CO 3 → CaCO 3 * - CaF 2 + 2 Na + (2)

【0013】上記反応式において、析出した水酸化マグ
ネシウム〔Mg(OH)2 * 〕または炭酸カルシウム
〔CaCO3 * 〕の表面は何れも活性化しており、液中
のフッ化カルシウム〔CaF2 〕は、それぞれの表面で
フッ素錯化合物〔Mg(OH) 2 * −MgF2 ↓、Ca
CO3 * −CaF2 ↓〕を形成して不溶化し、その結果
液中の濃度が減少する。なお、予め析出させた水酸化マ
グネシウムまたは炭酸カルシウムの固形粉末を添加して
も前記(1)〜(2)式のようなフッ素錯化合物はほと
んど生成されないか、されても極めて少ない。pH調整
槽3の反応液15は次に固液分離装置4で固液分離し、
処理水16は必要に応じて酸を加え、中和処理をした後
系外へ排出する(図示せず)。一方、固形物スラリ17
は排煙脱硫装置1に返送する。この固液分離装置4の方
法として、反応液15の固形物濃度が高く(約10重量
%以上)アルカリ性沈殿物を脱硫装置で再利用するため
には、中空糸膜またはセラミック膜による固液分離が適
している。
In the above reaction formula, the deposited hydroxide hydroxide
Nesium [Mg (OH)2 *] Or calcium carbonate
[CaCO3 *], All surfaces are activated, and
Calcium fluoride [CaF2] On each surface
Fluorine complex compound [Mg (OH) 2 *-MgF2↓, Ca
CO3 *-CaF2↓] is formed and insolubilized, and as a result
The concentration in the liquid decreases. In addition, pre-precipitated hydroxide
Add solid powder of gnesium or calcium carbonate
Also, the fluorine complex compound represented by the above formulas (1) to (2) is
It is not generated or very little is generated. pH adjustment
The reaction liquid 15 in the tank 3 is then solid-liquid separated by the solid-liquid separation device 4,
Treated water 16 is added with an acid as necessary and neutralized.
Discharge to the outside of the system (not shown). On the other hand, solid slurry 17
Is returned to the flue gas desulfurization apparatus 1. This solid-liquid separator 4
As a method, the solid concentration of the reaction liquid 15 is high (about 10 wt.
% Or more) To reuse alkaline precipitate in desulfurization equipment
For this, solid-liquid separation using a hollow fiber membrane or ceramic membrane is suitable.
are doing.

【0014】中空糸膜の材料としては、例えばポリエチ
レン、ポリスルフォン、ポリアクリルなどがあり、ま
た、セラミック膜の材料の例としてはムライト、シリコ
ンカーバイト、ケイ酸塩類、無灰純粋炭素などがあげら
れる。
Examples of the material of the hollow fiber membrane include polyethylene, polysulfone, polyacrylic and the like, and examples of the material of the ceramic membrane include mullite, silicon carbide, silicates and ashless pure carbon. To be

【0015】中空糸膜による固液分離装置4aの概略構
造の一例を図2に示し、さらに詳述する。図2において
反応液15が固液分離装置4aに供給される。固液分離
装置4aには中空糸膜6が配備され、ろ過ポンプ5で中
空糸膜6を吸引して透過液16a(処理水16)とな
る。中空糸膜6は直径300μmのポリエチレン製の繊
維状の中空糸(細孔径0.1μm)を束ねたもので、高
い固形物濃度の排水に直接浸漬して吸引(減圧)ろ過
し、その透過液の固形物濃度を0.2mg/リットル以
下にすることができる。中空糸膜6の下部には散気装置
7を設けて、常時空気18などの気体を噴出させること
により中空糸膜6を振動させるとともに、反応液15の
混合を行う。これによって中空糸膜6の固形物の付着蓄
積が防止できる。空気18の流量は固形物濃度によって
変わるが、固液分離装置4aの横断面積1m2 に対して
0.02m3 /min以上であればよい。この中空糸膜
6によってろ過が阻止された析出物は固液分離装置4a
内で濃縮され、固形物スラリ17として排煙脱硫装置1
に返送される。なお、この中空糸膜6は、ろ過を継続し
ても、ろ過差圧の上昇は比較的少なく、長時間逆洗は不
要である。逆洗を行う場合は、処理水16でろ過と逆方
向に加圧水を供給して、中空糸膜6の細孔を閉塞させた
粒子を除去すればよい。
An example of the schematic structure of the solid-liquid separation device 4a using a hollow fiber membrane is shown in FIG. 2 and will be described in more detail. In FIG. 2, the reaction liquid 15 is supplied to the solid-liquid separation device 4a. A hollow fiber membrane 6 is provided in the solid-liquid separation device 4a, and the hollow fiber membrane 6 is sucked by a filtration pump 5 to form a permeate 16a (treated water 16). The hollow fiber membrane 6 is a bundle of polyethylene fibrous hollow fibers (pore diameter: 0.1 μm) with a diameter of 300 μm, and is directly immersed in wastewater having a high solid concentration and suction (pressure reduction) filtered to obtain a permeated liquid. The solid concentration of can be 0.2 mg / liter or less. An air diffuser 7 is provided below the hollow fiber membrane 6 to vibrate the hollow fiber membrane 6 by constantly ejecting a gas such as air 18 and mix the reaction liquid 15. This can prevent the solid matter from adhering and accumulating on the hollow fiber membrane 6. The flow rate of the air 18 varies depending on the solid concentration, but may be 0.02 m 3 / min or more per 1 m 2 of the cross-sectional area of the solid-liquid separation device 4a. The precipitate whose filtration is blocked by the hollow fiber membrane 6 is a solid-liquid separator 4a.
Flue gas desulfurization equipment 1 which is concentrated inside and is converted into solid slurry 17
Will be returned to. It should be noted that the hollow fiber membrane 6 does not require backwashing for a long period of time even if the filtration is continued, because the increase in the filtration differential pressure is relatively small. When backwashing is performed, pressurized water is supplied in the direction opposite to the filtration with the treated water 16 to remove particles that have clogged the pores of the hollow fiber membrane 6.

【0016】またセラミック膜による固液分離装置4b
の概略構造の一例を図3に詳述する。図3において反応
液15がろ過ポンプ5で固液分離装置4bに定流量で供
給される。固液分離装置4bには複数のセラミック膜8
が配備されており、反応液15はろ過ポンプ5によって
加圧され、セラミック膜8でろ過され、透過液16aを
得て処理水16となる。一方、固形物が濃縮された液は
固形物スラリ17として排煙脱硫装置1に戻される。セ
ラミック膜8は外径30mmの円筒形セラミック(細孔
径は0.2μm)で、高い固形物濃度の排水を直接加圧
ろ過することができ、その透過液の固形物濃度を0.4
mg/リットル以下にすることができる。排水のろ過を
継続すると、セラミック膜8のろ過差圧が上昇する。そ
のため圧縮空気18aで、ろ過と逆方向に短時間加圧し
てろ過液を逆流させ、その際生じた逆洗スラリ17aは
固形物スラリ17とともに排煙脱硫装置1に戻される。
この逆洗操作は間欠的に行えばよい。
Further, a solid-liquid separation device 4b using a ceramic membrane
An example of the schematic structure of is detailed in FIG. In FIG. 3, the reaction liquid 15 is supplied to the solid-liquid separation device 4b by the filtration pump 5 at a constant flow rate. The solid-liquid separator 4b has a plurality of ceramic membranes 8
The reaction liquid 15 is pressurized by the filtration pump 5 and filtered by the ceramic membrane 8 to obtain the permeated liquid 16a and become the treated water 16. On the other hand, the liquid in which the solid matter is concentrated is returned to the flue gas desulfurization apparatus 1 as the solid matter slurry 17. The ceramic membrane 8 is a cylindrical ceramic having an outer diameter of 30 mm (pore diameter is 0.2 μm), and wastewater having a high solid content concentration can be directly pressure-filtered, and the solid content concentration of the permeated liquid is 0.4.
It can be less than or equal to mg / liter. When the filtration of the waste water is continued, the filtration differential pressure of the ceramic membrane 8 increases. Therefore, the compressed air 18a is pressurized for a short time in the direction opposite to the filtration to reversely flow the filtrate, and the backwash slurry 17a generated at that time is returned to the flue gas desulfurization apparatus 1 together with the solid matter slurry 17.
This backwashing operation may be performed intermittently.

【0017】排煙脱硫装置1に返送された固形物スラリ
17は同装置内の冷却・吸収工程(図示せず)液と混合
される。排煙脱硫装置1の冷却・吸収工程(図示せず)
では、次式のように排ガス10a中の酸化硫黄ガスの吸
収・酸化反応が進行し、石膏が生成される。その際冷却
・吸収工程(図示せず)の液は中性付近に保たれてい
る。
The solid matter slurry 17 returned to the flue gas desulfurization apparatus 1 is mixed with a cooling / absorption process (not shown) liquid in the apparatus. Cooling / absorption process of flue gas desulfurization device 1 (not shown)
Then, as shown in the following equation, the absorption / oxidation reaction of the sulfur oxide gas in the exhaust gas 10a proceeds, and gypsum is generated. At that time, the liquid in the cooling / absorption process (not shown) is kept near neutral.

【化3】 SO2 + H2O → H+ + HSO3 - (3) H ++ HSO3 - + 1/2 O2 → H2SO4 (4) H2SO4 + CaCO 3 + H2O → CaSO4・2H2O↓+ CO2↑ (5) Embedded image SO 2 + H 2 O → H + + HSO 3 - (3) H + + HSO 3 - + 1/2 O 2 → H 2 SO 4 (4) H 2 SO 4 + CaCO 3 + H 2 O → CaSO 4・ 2H 2 O ↓ + CO 2 ↑ (5)

【0018】固形物スラリ17中のフッ素の錯化合物が
水酸化マグネシウム・フッ素錯化合物の場合、これらの
反応に並行して、水酸化マグネシウムが溶解し、過剰に
存在するカルシウムイオンとフッ素イオンが次式のよう
に反応して、フッ化カルシウムが生成される。
When the complex compound of fluorine in the solid slurry 17 is magnesium hydroxide / fluorine complex compound, in parallel with these reactions, magnesium hydroxide is dissolved and the excess calcium ion and fluorine ion are Calcium fluoride is produced by reacting according to the formula.

【化4】 Mg(OH)2 * −MgF2+ Ca2+ + 2H + → 2Mg2++ CaF2 ↓+ 2H2O (6)[Chemical 4] Mg (OH) 2 * -MgF 2 + Ca 2+ + 2H + → 2Mg 2+ + CaF 2 ↓ + 2H 2 O (6)

【0019】また固形物スラリ17中のフッ素の錯化合
物が炭酸カルシウム・フッ素錯化合物の場合、前記
(3)〜(5)式の反応と並行して、次式によりフッ化
カルシウムが生成される。
When the fluorine complex compound in the solid slurry 17 is calcium carbonate / fluorine complex compound, calcium fluoride is produced by the following equation in parallel with the reactions of the equations (3) to (5). .

【化5】 CaCO3 * −CaF2+H2SO 4+H2O → CaSO 4・2H2O↓+CaF2↓+ CO2↑ (5) [Chemical formula 5] CaCO 3 * -CaF 2 + H 2 SO 4 + H 2 O → CaSO 4・ 2H 2 O ↓ + CaF 2 ↓ + CO 2 ↑ (5)

【0020】こうして排煙脱硫装置1から排出された冷
却吸収工程スラリ12は脱水機2で脱水されて、脱水ケ
ーキ12aとして系外へ排出するとともに、脱水ろ液1
2bは排煙脱硫装置1の補給水(図示せず)の一部とし
て利用する。以下、冷却吸収工程排水13はpH調整槽
3へ導入し、前記と同様に処理し排ガス成分に起因する
マグネシウム化合物を循環利用し、残存するフッ素化合
物を再び捕捉して排煙脱硫装置1に戻し、フッ化カルシ
ウムに変換して除去する。
The cooling and absorption process slurry 12 thus discharged from the flue gas desulfurization apparatus 1 is dehydrated by the dehydrator 2 and discharged as a dehydrated cake 12a to the outside of the system, and the dehydrated filtrate 1
2b is used as a part of makeup water (not shown) of the flue gas desulfurization apparatus 1. In the following, the cooling / absorption process wastewater 13 is introduced into the pH adjusting tank 3, treated in the same manner as described above, and the magnesium compound originating from the exhaust gas component is circulated and used, and the remaining fluorine compound is captured again and returned to the flue gas desulfurization apparatus 1. , Converted to calcium fluoride and removed.

【0021】[0021]

【作用】[Action]

(1)活性化した水酸化マグネシウムまたは炭酸カルシ
ウムを形成させることにより、それらとのフッ素錯化合
物が生成され、フッ化カルシウムのみを生成させた場合
に比べて、溶解性のフッ素イオンが大幅に低下する。 (2)アルカリ剤14として水酸化ナトリウムを使用し
た場合は水酸化マグネシウムを、炭酸ナトリウムを使用
した場合は炭酸カルシウムを含む固形物スラリ17が得
られるがこのスラリは、pHが何れも9以上のアルカリ
性であり、排煙脱硫装置1の冷却・吸収工程において、
吸収剤として再使用することができる。
(1) By forming activated magnesium hydroxide or calcium carbonate, a fluorine complex compound with them is generated, and the soluble fluorine ion is significantly reduced as compared with the case where only calcium fluoride is generated. To do. (2) When sodium hydroxide is used as the alkaline agent 14, magnesium hydroxide is used, and when sodium carbonate is used, a solid slurry 17 containing calcium carbonate is obtained. This slurry has a pH of 9 or more. Alkaline, in the cooling and absorption process of the flue gas desulfurization device 1,
It can be reused as an absorbent.

【0022】[0022]

【実施例】以下に実施例及び比較例を挙げて、本発明を
さらに具体的に説明する。 (実施例1)石炭を燃料とするボイラからの排ガスを、
図1及び図2に示すプロセスによって処理し、本発明の
排煙脱硫方法の試験を行った。このときの排ガス及び排
煙脱硫排水の水質を表1に示す。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples. (Example 1) Exhaust gas from a boiler using coal as a fuel,
The flue gas desulfurization method of the present invention was tested by treatment by the process shown in FIGS. 1 and 2. Table 1 shows the water quality of the exhaust gas and the flue gas desulfurization wastewater at this time.

【0023】[0023]

【表1】 [Table 1]

【0024】前記排煙脱硫排水に、アルカリ剤として水
酸化ナトリウムを添加し、pHを9、10、11、12
の四段階に調整した液を、ポリエチレン中空糸膜(三菱
レーヨン製、細孔径0.1μm)でろ過速度30リット
ル/m2 ・hの連続吸引ろ過をした。その間の散気用の
空気量は、装置断面積1m2 に対して0.02m3 /m
inを供給した。何れのpHにおいても、ろ過差圧は、
ろ過開始14日後でも当初の8kPaと変わらなかっ
た。この透過液(処理水)の水質を表2に示す。また何
れのpHのときも、清浄ガスSO2 濃度は30ppm、
脱硫率は91%であった。また脱水ケーキ(副生石膏)
の固形物量は、約5t/h(乾物ベース)であり、その
組成は大略2水石膏(CaSO4 ・2H2 O)が96.
5%、フッ化カルシウム(CaF2 )が1%、その他
2.5%であった。
Sodium hydroxide as an alkaline agent was added to the flue gas desulfurization wastewater to adjust the pH to 9, 10, 11, 12
The liquid prepared in four stages was subjected to continuous suction filtration with a polyethylene hollow fiber membrane (manufactured by Mitsubishi Rayon, pore size 0.1 μm) at a filtration rate of 30 liter / m 2 · h. The amount of air for aeration during that time is 0.02 m 3 / m for 1 m 2 of the device cross-sectional area.
supplied in. At any pH, the filtration pressure difference is
Even after 14 days from the start of filtration, the initial value was 8 kPa. The water quality of this permeate (treated water) is shown in Table 2. Also, at any pH, the clean gas SO 2 concentration is 30 ppm,
The desulfurization rate was 91%. Also dehydrated cake (by-product gypsum)
Has a solid content of about 5 t / h (on a dry matter basis) and its composition is approximately 96 g of dihydrate gypsum (CaSO 4 .2H 2 O).
5%, calcium fluoride (CaF 2 ) 1%, and other 2.5%.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例2)実施例1に示す表1の排煙脱
硫排水に、アルカリ剤として炭酸ナトリウム500、1
000、1500mg/リットルとなるように添加し
て、実施例1と同様の条件で、中空糸膜による連続吸引
ろ過をした。何れの炭酸ナトリウム注入濃度において
も、ろ過差圧は、ろ過開始20日後で当初の8kPaと
変わらなかった。この透過液(処理水)の水質を表3に
示す。何れのpHのときも、清浄ガスSO2 濃度は30
ppm、脱硫率は91%で、脱水ケーキ(副生石膏)の
固形物量は、約5t/h(乾物ベース)であり、その組
成は大略2水石膏(CaSO4 ・2H2 O)が96.5
%、フッ化カルシウム(CaF2 )が1%、その他2.
5%であった。
(Example 2) In the flue gas desulfurization waste water of Table 1 shown in Example 1, sodium carbonate 500, 1 as an alkali agent
000 and 1500 mg / liter were added, and continuous suction filtration with a hollow fiber membrane was performed under the same conditions as in Example 1. The filtration pressure difference did not change from the initial value of 8 kPa 20 days after the start of filtration at any sodium carbonate injection concentration. Table 3 shows the water quality of the permeated liquid (treated water). At any pH, the clean gas SO 2 concentration is 30
ppm, desulfurization rate is 91%, the solid content of the dehydrated cake (by-product gypsum) is about 5 t / h (dry matter base), and its composition is approximately 96.5 gypsum dihydrate (CaSO 4 .2H 2 O).
%, Calcium fluoride (CaF 2 ) 1%, other 2.
5%.

【0027】[0027]

【表3】 [Table 3]

【0028】(実施例3)実施例1と同様に、アルカリ
剤として水酸化ナトリウムを添加し、pHを9、10、
11、12の4段階に調整した液を、図3に示すチュー
ブラ型セラミック膜(日本碍子製、細孔径0.1μm)
を用いて、ろ過速度0.5m3 /m2 ・hの定流量加圧
ろ過をした。ろ過差圧が一定となるように、5分毎に一
回、1秒間逆洗を行った。逆洗圧力は2kg/cm2
した。その結果、ろ過差圧は、ろ過開始20日後でも当
初の0.4kg/cm2 と変わらなかった。このときの
透過液(処理水)水質は表2と同じ結果が得られ、排煙
脱硫装置の脱硫率は実施例1と同じ結果が得られた。ま
た脱水ケーキ(副生石膏)の固形物量も実施例1とまっ
たく同じ結果が得られた。
(Example 3) As in Example 1, sodium hydroxide was added as an alkaline agent to adjust the pH to 9, 10,
The liquid prepared in four stages of 11 and 12 was used as a tubular ceramic membrane shown in FIG. 3 (manufactured by Nippon Insulators, pore diameter 0.1 μm).
Was used for constant flow rate pressure filtration at a filtration rate of 0.5 m 3 / m 2 · h. Backwashing was performed once every 5 minutes for 1 second so that the filtration pressure difference became constant. The backwash pressure was 2 kg / cm 2 . As a result, the filtration pressure difference did not change from the initial 0.4 kg / cm 2 even after 20 days from the start of filtration. The permeated liquid (treated water) water quality obtained at this time was the same as in Table 2, and the desulfurization rate of the flue gas desulfurization apparatus was the same as in Example 1. Further, the same amount of solid matter as in the dehydrated cake (by-product gypsum) was obtained as in Example 1.

【0029】(実施例4)実施例2と同様に、アルカリ
剤として炭酸ナトリウム500、1000、1500m
g/リットルとなるように添加して、実施例3と同じ運
転条件で、セラミック膜を用いた定流量加圧ろ過をし
た。ろ過速度、逆洗頻度及び逆洗圧力も実施例3と同様
にした。このときの透過液(処理水)の水質は表3と同
じ結果が得られ、排煙脱硫装置の脱硫率はともに実施例
2と同じ結果が得られた。また脱水ケーキ(副生石膏)
の生成量も実施例2と同じ結果が得られた。
(Example 4) As in Example 2, sodium carbonate 500, 1000, 1500 m was used as an alkaline agent.
It was added so as to be g / liter and subjected to constant flow rate pressure filtration using a ceramic membrane under the same operating conditions as in Example 3. The filtration rate, backwash frequency and backwash pressure were also the same as in Example 3. The water quality of the permeated liquid (treated water) at this time was the same as that in Table 3, and the desulfurization rate of the flue gas desulfurization device was the same as that in Example 2. Also dehydrated cake (by-product gypsum)
The same results as in Example 2 were obtained with respect to the production amount of.

【0030】(比較例1)実施例1と同じ石炭を燃料と
するボイラからの排ガスを、図4に示す従来方法によっ
て脱硫試験を行った。このときのボイラ排ガス及び排煙
脱硫排水の水質は、表1と同じであった。この排水を、
酸32として塩酸を添加して、溶解槽21のpHを3、
第1pH調整槽のpHを消石灰34で9とし、アルカリ
剤39として水酸化ナトリウムを添加して、第2pH調
整槽のpHを11に設定して処理した。このときの処理
水水質はpH11.0、SS20mg/リットル、溶解
性F10mg/リットルであった。また清浄ガスSO2
濃度は30ppm、脱硫率は91%で、脱硫装置石膏と
凝集沈殿汚泥の脱水ケーキ37aの合計量は約5t/h
(乾物ベース)であった。
Comparative Example 1 Exhaust gas from a boiler using the same coal as in Example 1 as a fuel was subjected to a desulfurization test by the conventional method shown in FIG. At this time, the water quality of the boiler exhaust gas and the flue gas desulfurization wastewater was the same as in Table 1. This drainage,
Hydrochloric acid is added as the acid 32 to adjust the pH of the dissolution tank 21 to 3,
The pH of the first pH adjusting tank was adjusted to 9 with slaked lime 34, sodium hydroxide was added as an alkaline agent 39, and the pH of the second pH adjusting tank was set to 11, and the treatment was performed. At this time, the treated water quality was pH 11.0, SS 20 mg / liter, and solubility F 10 mg / liter. Also clean gas SO 2
The concentration is 30 ppm, the desulfurization rate is 91%, and the total amount of the desulfurization unit gypsum and the dehydrated cake 37a of the coagulation sludge is about 5 t / h.
(Dry matter base).

【0031】(比較例2)アルカリ剤39として炭酸ナ
トリウムを1500mg/リットル添加して、比較例1
と同様に処理試験を行った。このときの処理水水質はp
H10.0、SS20mg/リットル、溶解性F10m
g/リットルであった。また清浄ガスSO2 濃度は30
ppm、脱硫率は91%で、脱硫装置石膏と凝集沈殿汚
泥の脱水ケーキ37aの合計量は、約5t/h(乾物ベ
ース)であった。
(Comparative Example 2) 1500 mg / liter of sodium carbonate was added as an alkali agent 39, and Comparative Example 1
A treatment test was conducted in the same manner as in. The treated water quality at this time is p
H10.0, SS20mg / l, Solubility F10m
g / liter. The clean gas SO 2 concentration is 30
ppm, the desulfurization rate was 91%, and the total amount of the desulfurization unit gypsum and the dehydrated cake 37a of the coagulation sedimentation sludge was about 5 t / h (on a dry matter basis).

【0032】[0032]

【発明の効果】【The invention's effect】

(1)排水処理工程では、生成するフッ化カルシウム、
水酸化マグネシウム及び炭酸カルシウムの凝集沈殿汚泥
を沈降しやすくするために、高分子凝集剤を添加しなけ
ればならない。高分子凝集剤は、排煙脱硫装置での吸収
剤の脱硫性能を悪化させる恐れがあるため、従来方法で
は、それを含む沈殿物またはその上澄水を、脱硫装置で
の吸収剤と混合することを避けなければならなかった。
本発明によれば、中空糸やセラミック膜を用いた固液分
離装置によりろ過するため、固形物を粗大化する必要性
が小さいので前記汚泥を沈殿させるための、高分子凝集
剤を添加する必要がないため、排煙脱硫装置の脱硫率を
低下させずに、前記析出物またはその上澄水を脱硫装置
での吸収剤と混合することが始めて可能となった。
(1) Calcium fluoride produced in the wastewater treatment step,
Aggregation of Magnesium Hydroxide and Calcium Carbonate A polymeric flocculant must be added to facilitate sludge settling. Since the polymer flocculant may deteriorate the desulfurization performance of the absorbent in the flue gas desulfurization equipment, the conventional method is to mix the precipitate containing it or the supernatant water with the absorbent in the desulfurization equipment. Had to avoid.
According to the present invention, since filtration is performed by a solid-liquid separation device using a hollow fiber or a ceramic membrane, it is less necessary to coarsen the solid matter, and therefore it is necessary to add a polymer flocculant for precipitating the sludge. Therefore, it became possible for the first time to mix the precipitate or its supernatant water with the absorbent in the desulfurization device without lowering the desulfurization rate of the flue gas desulfurization device.

【0033】(2)排水処理工程において発生する汚泥
を、排煙脱硫装置へ返送することが可能となることによ
って、排ガスの吸収剤として再利用することができるよ
うになる。そのため排水処理工程の汚泥処理が不要とな
り、設備費及び薬品費を節減することができる。また排
水処理工程が簡素となり、運転管理が極めて容易とな
る。(3)本発明では、排煙脱硫装置の排水のフッ素及
び重金属等の濃度は、従来方法と同じまたはそれ以下の
水質レベルが得られるため、必要ならばpH調整をして
直接放流することが可能となる。
(2) The sludge generated in the wastewater treatment process can be returned to the flue gas desulfurization device, and can be reused as an exhaust gas absorbent. Therefore, sludge treatment in the wastewater treatment process is not required, and equipment costs and chemical costs can be saved. In addition, the wastewater treatment process is simplified, and operation management becomes extremely easy. (3) In the present invention, the concentration of fluorine, heavy metals, etc. in the wastewater of the flue gas desulfurization device can be the same as or lower than that of the conventional method, so that the pH can be adjusted and discharged directly if necessary. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排煙脱硫排水処理の工程説明図。FIG. 1 is a process explanatory view of a flue gas desulfurization wastewater treatment according to the present invention.

【図2】本発明の実施例1及び実施例2に係わる中空糸
膜による固液分離装置。
FIG. 2 is a solid-liquid separation device using hollow fiber membranes according to Examples 1 and 2 of the present invention.

【図3】本発明の実施例3及び実施例4に係わるセラミ
ック膜による固液分離装置。
FIG. 3 is a solid-liquid separation device using a ceramic membrane according to Examples 3 and 4 of the present invention.

【図4】従来の技術に係る排煙脱硫排水処理の工程説明
図を示す。
FIG. 4 is a process explanatory view of a flue gas desulfurization wastewater treatment according to a conventional technique.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/58 CDG ZAB M B01D 53/34 125 R Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C02F 1/58 CDG ZAB M B01D 53/34 125 R

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガス中の酸化硫黄をアルカリ吸収
液により吸収、分離する湿式排煙脱硫処理装置から排出
される排水中のフッ素処理方法において、該排水にアル
カリ剤を添加してフッ素錯化合物を含有する固形物を析
出させたのち固液分離し、分離した水は系外へ排出し、
該固形物は前記脱硫装置に返送して吸収剤として再利用
することを特徴とする排煙脱硫排水中のフッ素の除去方
法。
1. A method for treating fluorine in wastewater discharged from a wet flue gas desulfurization treatment apparatus in which sulfur oxide in combustion exhaust gas is absorbed and separated by an alkali absorption liquid, and a fluorine complex compound is added to the wastewater by adding an alkali agent. After solid matter containing is precipitated, solid-liquid separation is performed, and the separated water is discharged out of the system,
A method for removing fluorine in flue gas desulfurization wastewater, wherein the solid matter is returned to the desulfurization apparatus and reused as an absorbent.
【請求項2】 固液分離が中空糸膜でろ過する方法であ
る請求項1に記載の排煙脱硫排水中のフッ素の除去方
法。
2. The method for removing fluorine in flue gas desulfurization wastewater according to claim 1, wherein the solid-liquid separation is a method of filtering with a hollow fiber membrane.
【請求項3】 固液分離がセラミック膜でろ過する方法
である請求項1に記載の排煙脱硫排水中のフッ素の除去
方法。
3. The method for removing fluorine in flue gas desulfurization wastewater according to claim 1, wherein the solid-liquid separation is a method of filtering with a ceramic membrane.
JP6322446A 1994-12-26 1994-12-26 Method for removing fluorine in drainage of flue gas desulfurization Pending JPH08173755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6322446A JPH08173755A (en) 1994-12-26 1994-12-26 Method for removing fluorine in drainage of flue gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322446A JPH08173755A (en) 1994-12-26 1994-12-26 Method for removing fluorine in drainage of flue gas desulfurization

Publications (1)

Publication Number Publication Date
JPH08173755A true JPH08173755A (en) 1996-07-09

Family

ID=18143763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322446A Pending JPH08173755A (en) 1994-12-26 1994-12-26 Method for removing fluorine in drainage of flue gas desulfurization

Country Status (1)

Country Link
JP (1) JPH08173755A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073690A (en) * 2007-10-24 2008-04-03 Matsushita Environment Airconditioning Eng Co Ltd Treatment method and apparatus of fluorine-containing waste water
CN108726772A (en) * 2017-04-24 2018-11-02 中国石油化工股份有限公司 A kind of advanced treatment and reclamation method of sodium alkali desulfurization liquid
CN108726769A (en) * 2017-04-24 2018-11-02 中国石油化工股份有限公司 A kind of advanced treatment and reclamation method of flue gas desulfurization liquid
JP2021505386A (en) * 2017-12-06 2021-02-18 オビボ インコーポレイテッド Treatment of fluoride-containing wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073690A (en) * 2007-10-24 2008-04-03 Matsushita Environment Airconditioning Eng Co Ltd Treatment method and apparatus of fluorine-containing waste water
JP4485562B2 (en) * 2007-10-24 2010-06-23 パナソニック環境エンジニアリング株式会社 Method and apparatus for treating fluorine-containing wastewater
CN108726772A (en) * 2017-04-24 2018-11-02 中国石油化工股份有限公司 A kind of advanced treatment and reclamation method of sodium alkali desulfurization liquid
CN108726769A (en) * 2017-04-24 2018-11-02 中国石油化工股份有限公司 A kind of advanced treatment and reclamation method of flue gas desulfurization liquid
JP2021505386A (en) * 2017-12-06 2021-02-18 オビボ インコーポレイテッド Treatment of fluoride-containing wastewater

Similar Documents

Publication Publication Date Title
EP1106237B1 (en) Method of treating waste waters from a flue gas desulphuriser
JPH10137540A (en) Treatment of waste water from stack gas desulfurizer
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
JP3066403B2 (en) Method for removing sulfur dioxide from flue gas
JPH09192675A (en) Treatment of waste water
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JPH08173755A (en) Method for removing fluorine in drainage of flue gas desulfurization
JP4972827B2 (en) Treatment method of flue gas desulfurization waste water
JP2004299962A (en) Method for removing fluorine in gypsum
JP2942563B2 (en) How to remove phosphorus from wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP2923112B2 (en) Wastewater treatment method and apparatus for flue gas desulfurization equipment
JPS61129090A (en) Removal of fluorine from waste water of waste gas desulfurization apparatus
JP3697800B2 (en) Wastewater treatment method
JP4347097B2 (en) Waste water treatment system and exhaust gas treatment system using the same
JP7108392B2 (en) Silica-containing water treatment apparatus and treatment method
CZ181595A3 (en) Process of purifying gases containing sulfur dioxide and apparatus for making the same
JP4672154B2 (en) Waste water treatment method and waste water treatment equipment
JPS5811094A (en) Treatment waste water of stack gas desulfurization
JPH11165179A (en) Method for treating fluorine-containing water
EP4317085A1 (en) Waste water volume reduction process
JPH0910548A (en) Treatment of drain containing fluorine
WO2019054062A1 (en) Apparatus and method for treating silica-containing water
EP4317084A1 (en) High-performance pretreatment system for desulfurized wastewater for reverse osmosis membrane

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011030