JPH08172277A - Board for multilayer flexible printed wiring - Google Patents

Board for multilayer flexible printed wiring

Info

Publication number
JPH08172277A
JPH08172277A JP31346494A JP31346494A JPH08172277A JP H08172277 A JPH08172277 A JP H08172277A JP 31346494 A JP31346494 A JP 31346494A JP 31346494 A JP31346494 A JP 31346494A JP H08172277 A JPH08172277 A JP H08172277A
Authority
JP
Japan
Prior art keywords
flexible printed
printed wiring
polyimide film
wiring board
thermosetting adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31346494A
Other languages
Japanese (ja)
Inventor
Hitoshi Arai
均 新井
Kichiji Eikuchi
吉次 栄口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31346494A priority Critical patent/JPH08172277A/en
Publication of JPH08172277A publication Critical patent/JPH08172277A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a board whose degradation and reforming are prevented during the circuit formation process of a face to be treated by a method wherein a low- temperature plasma treatment is executed to an outer surface in which a polyimide film, a thermosetting adhesive layer and a metal foil have been formed in this order and a semihardened thermosetting adhesive layer and a mold releasing agent are formed on a treated surface. CONSTITUTION: A polyimide 4 is coated with an epoxy-based adhesive, and the adhesive is heated so as to be semihardened. In addition, a rolled copper foil is heated and compression-bonded, a one-sided flexible printed-circuit board 9 is formed, and a low- temperature plasma treatment or a corona discharge treatment is executed to the face of the polyimide film 4. In the low-temperature plasma treatment, a surface treatment is executed in such a way that the one-sided flexible printed-circuit board 9 is put into a plasma treatment apparatus whose pressure can be decreased and that a low-temperature plasma is generated by a glow discharge. The corona discharge treatment is executed in the same process. Then, the face of the polyimide film 4 is coated with the solution of a thermosetting adhesive, a thermosetting adhesive layer 6 in a semihardened state is formed, a rnold releasing agent 7 is overlapped, and a board 10 for multilayer flexible printed wiring is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフレキシブル印刷配線用
基板を多層化する際に用いる多層化用フレキシブル印刷
配線用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible printed wiring board for multilayering, which is used when the flexible printed wiring board is multilayered.

【0002】[0002]

【従来の技術】近年エレクトロニクス分野の発展が目覚
ましく、特に通信用、民生用などの電子機器の小型化、
軽量化、高密度化が進み、これらの性能に対する要求が
ますます高度なものとなってきている。フレキシブル印
刷配線用基板は、可撓性を有し、くり返し屈曲に耐える
ため、狭い空間に立体的高密度の実装が可能であり、電
子機器の配線用、ケーブル用あるいはコネクター機能を
有する複合部品用としてその用途が拡大しつつある。
2. Description of the Related Art In recent years, the development of the electronics field has been remarkable, and in particular, miniaturization of electronic devices for communication, consumer use, etc.
As the weight and density have been increased, the requirements for these performances are becoming more and more sophisticated. The flexible printed wiring board is flexible and can withstand repeated bending, so it can be mounted in three-dimensionally high density in a narrow space. For wiring of electronic devices, for cables, or for composite parts with connector function. As its use is expanding.

【0003】最近このフレキシブル印刷配線用基板の多
層化が進んでおり、フレキシブル印刷配線用基板を多層
化したものや、フレキシブル印刷配線用基板とリジット
印刷配線用基板とを多層化したものが開発され、コンピ
ューター関連機器、通信機器、医療機器等で既に実用化
され始めている。従来の多層フレキシブル印刷配線板は
図1に示すようにポリイミドフィルム−接着剤層−金属
箔からなる片面フレキシブル印刷配線用基板9を用いて
回路を形成したものと片面もしくは両面フレキシブル印
刷配線板8とをフィルム状接着剤からなるボンディング
シート5を介して積層一体化したものである。この多層
フレキシブル印刷配線板11の製造方法は非常に複雑であ
り、特に積層(多層化)工程ではフレキシブル印刷配線
板8とボンディングシート5との位置合わせが難しく、
時間と手間がかかるため、このような工程での作業性の
向上が望まれていた。他方多層化用フレキシブル印刷配
線用基板の物性面においては、寸法安定性、接着性、半
田耐熱性等の諸特性が要求されているが、なかでも接着
性に対する要求は強く、特に多層化用フレキシブル印刷
配線用基板のポリイミドフィルム面とフィルム状の熱硬
化性接着剤層との接着性の向上が望まれている。前者に
ついては、作業性を向上させるために工程変更等の種々
の検討が行われているが、未だ十分な効果が得られてい
ない。後者の接着性を向上させるためには、ポリイミド
フィルム面に表面処理等が施されていたが、表面処理等
が施されたフレキシブル印刷配線用基板はその後の回路
形成工程中に、エッチング液や現像液等の薬液により処
理面が改質され、表面処理等による効果が十分に得られ
ていなかった。
Recently, the flexible printed wiring board has been multi-layered, and a multi-layered flexible printed wiring board and a multi-layered flexible printed wiring board and rigid printed wiring board have been developed. , Computer related equipment, communication equipment, medical equipment, etc. have already begun to be put to practical use. As shown in FIG. 1, a conventional multilayer flexible printed wiring board has a circuit formed by using a single-sided flexible printed wiring board 9 composed of a polyimide film-adhesive layer-metal foil, and a single-sided or double-sided flexible printed wiring board 8. Are laminated and integrated through a bonding sheet 5 made of a film adhesive. The manufacturing method of this multilayer flexible printed wiring board 11 is very complicated, and it is difficult to align the flexible printed wiring board 8 and the bonding sheet 5 especially in the stacking (multilayering) step.
Since it takes time and labor, improvement of workability in such a process has been desired. On the other hand, in the physical properties of flexible printed wiring boards for multi-layering, various characteristics such as dimensional stability, adhesiveness, and solder heat resistance are required. It is desired to improve the adhesiveness between the polyimide film surface of the printed wiring board and the film-shaped thermosetting adhesive layer. Regarding the former, various studies such as process changes have been conducted to improve workability, but sufficient effects have not been obtained yet. In order to improve the adhesiveness of the latter, the polyimide film surface had been subjected to a surface treatment, etc., but the flexible printed wiring board subjected to the surface treatment etc. may be subjected to etching solution or development during the subsequent circuit forming process. The treated surface was modified by a chemical solution such as a solution, and the effect of the surface treatment was not sufficiently obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決しようとするもので回路形成時や多層化時な
どに優れた接着性、作業性を与え、且つ気泡混入の少な
い多層化用フレキシブル印刷配線用基板を提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems of the prior art, and provides excellent adhesion and workability when forming a circuit or at the time of forming a multi-layer structure, and has a multi-layer structure with less air bubbles The present invention provides a flexible printed wiring board.

【0005】[0005]

【課題を解決するための手段】すなわち本発明はポリイ
ミドフィルム、熱硬化性接着剤層、金属箔の順に形成さ
れた片面フレキシブル印刷配線用基板のポリイミドフィ
ルム外表面に低温プラズマ処理またはコロナ放電処理を
施し、次いで該処理表面に半硬化状態の熱硬化性接着剤
層、離型材をこの順に形成してなる多層化用フレキシブ
ル印刷配線用基板である。
That is, the present invention provides a low temperature plasma treatment or a corona discharge treatment on the outer surface of a polyimide film of a substrate for a single-sided flexible printed wiring in which a polyimide film, a thermosetting adhesive layer and a metal foil are formed in this order. A flexible printed wiring board for multilayering, which is formed by applying a thermosetting adhesive layer in a semi-cured state and a release material in this order on the treated surface.

【0006】以下本発明を詳細に説明する。本発明の多
層化用フレキシブル印刷配線用基板の材料であるポリイ
ミドフィルム、熱硬化性接着剤及び金属箔については従
来より使用され、あるいはその使用が提案されているも
のから任意に選ぶことができその出所は問わない。具体
的にはポリイミドフィルムは芳香族ジアミンと酸無水物
から合成されるものであればよく、カプトン(デュポン
社製商品名)、アピカル(鐘淵化学社製商品名)、ユー
ピレックス(宇部興産社製商品名)等が挙げられる。熱
硬化性接着剤については、ナイロン−エポキシ系、NB
R−フェノール系、カルボキシル基含有NBR−エポキ
シ系、ポリエステル−エポキシ系、アクリル−エポキシ
系等が挙げられる。金属箔については、銅箔(圧延銅
箔、電解銅箔)、ニッケル箔、タングステン箔、鉄箔、
ステンレス箔等が挙げられるが、そのうち銅箔、特に圧
延銅箔を用いることが好ましい。片面フレキシブル印刷
配線用基板は、ポリイミドフィルム面に熱硬化性接着剤
をロールコーター等により塗布し、80〜120 ℃で加熱し
半硬化状態とした後、前記金属箔を積層して製造するこ
とができる。その後金属箔をエッチング加工して金属回
路を形成させる。本発明の多層化用フレキシブル印刷配
線用基板の厚さは一般にポリイミドフィルム12.5〜25μ
m 、熱硬化性接着剤層(乾燥時)8〜18μm 、金属箔18
〜35μmであるが、可撓性、信頼性の面から可能な限り
薄くすることが好ましい。
Hereinafter, the present invention will be described in detail. The polyimide film, the thermosetting adhesive and the metal foil, which are the materials for the multilayer flexible printed wiring board of the present invention, have been conventionally used, or can be arbitrarily selected from those proposed for use thereof. The source does not matter. Specifically, the polyimide film may be one that is synthesized from an aromatic diamine and an acid anhydride, such as Kapton (trade name manufactured by DuPont), Apical (trade name manufactured by Kaneka Kagaku), and Upilex (manufactured by Ube Industries). Product name) and the like. For thermosetting adhesives, nylon-epoxy type, NB
R-phenol type, carboxyl group-containing NBR-epoxy type, polyester-epoxy type, acryl-epoxy type and the like can be mentioned. Regarding metal foil, copper foil (rolled copper foil, electrolytic copper foil), nickel foil, tungsten foil, iron foil,
Examples of the foil include stainless steel foil and the like, and of these, it is preferable to use a copper foil, particularly a rolled copper foil. The single-sided flexible printed wiring board may be produced by applying a thermosetting adhesive to the polyimide film surface with a roll coater or the like, heating it at 80 to 120 ° C. to a semi-cured state, and then laminating the metal foils. it can. After that, the metal foil is etched to form a metal circuit. The thickness of the flexible printed wiring board for multilayering of the present invention is generally a polyimide film 12.5 to 25μ.
m, thermosetting adhesive layer (dry) 8-18 μm, metal foil 18
The thickness is about 35 μm, but it is preferable that the thickness is as thin as possible in terms of flexibility and reliability.

【0007】本発明ではまず片面フレキシブル印刷配線
用基板のポリイミドフィルム外表面に処理を施すが、
低温プラズマ処理の方法としては減圧可能なプラズマ処
理装置内にポリイミドフィルムもしくは片面フレキシブ
ル印刷配線用基板を入れ、装置内を無機ガスの雰囲気と
して圧力を0.001 〜10Torr. 好ましくは0.01〜1Torr.に
保持した状態で電極間に0.1 〜10KVの直流あるいは交流
を印加して、グロー放電させることにより無機ガスの低
温プラズマを発生させ、前記フィルムを順次移動させな
がら、表面を連続的にプラズマ処理する。プラズマ処理
時間は0.1 〜100 秒が良い。無機ガスとしては、ヘリウ
ム、アルゴン、ネオン等の不活性ガス及び酸素、窒素、
一酸化炭素、二酸化炭素、アンモニア、空気が使用され
るが、これらは二種以上を混合使用してもよい。 コロナ放電処理の方法としては、ポリイミドフィルム
または片面フレキシブル印刷配線用基板を支えるローラ
ーとこれに対向して設置した電極との間に高電圧を加え
て、コロナ放電を起こさせ、その間に前記フィルムまた
は片面フレキシブル印刷配線用基板を移動させながら、
順次フィルム表面の処理を行うもので、処理条件として
は、周波数1 〜150 KHz 、出力0.5 〜40KW、 処理時間は
0.001〜1秒とするのが好ましい。
In the present invention, first, the outer surface of the polyimide film of the single-sided flexible printed wiring board is treated.
As a method of low-temperature plasma treatment, a polyimide film or a single-sided flexible printed wiring substrate was placed in a plasma treatment apparatus capable of reducing pressure, and the pressure was maintained at 0.001 to 10 Torr., Preferably 0.01 to 1 Torr., As an atmosphere of inorganic gas in the apparatus. In this state, a direct current or an alternating current of 0.1 to 10 KV is applied between the electrodes to cause glow discharge to generate low-temperature plasma of an inorganic gas, and the surface is continuously plasma-treated while sequentially moving the film. The plasma processing time should be 0.1 to 100 seconds. As the inorganic gas, an inert gas such as helium, argon, neon and oxygen, nitrogen,
Carbon monoxide, carbon dioxide, ammonia and air are used, but these may be used as a mixture of two or more kinds. As a method of corona discharge treatment, a high voltage is applied between a roller supporting a polyimide film or a substrate for single-sided flexible printed wiring and an electrode placed opposite to the roller to cause corona discharge, and the film or While moving the single-sided flexible printed wiring board,
The film surface is processed in sequence. The processing conditions are frequency 1 to 150 KHz, output 0.5 to 40 KW, and processing time.
It is preferably 0.001 to 1 second.

【0008】本発明で用いられる表面処理されたポリイ
ミドフィルム面に塗布する熱硬化性接着剤としては、ナ
イロン−エポキシ系、NBR−フェノール系、カルボキ
シル基含有NBR−エポキシ系、ポリエステル−エポキ
シ系等が挙げられ、印刷配線板の使用環境条件を十分考
慮して選択される。接着剤に用いられる溶剤としては、
メチルエチルケトン、トルエン等の有機溶剤が好適であ
るが特に限定されない。その他無機フィラー(シリカ、
アルミナ)、難燃剤等を加えることも可能である。接着
剤層の厚さは乾燥状態で20〜50μm の範囲がよいが、必
要に応じて適宜の厚さにすることができる。また離型材
としてはポリエチレンフィルム、ポリプロピレンフィル
ム、TPXフィルム、シリコーン離型剤付ポリエステル
フィルム、ポリエチレン、ポリプロピレン等のポリオレ
フィンのフィルムコート紙、塩化ビニリデンフィルムコ
ート紙等の離型紙あるいは離型性フィルム等が挙げられ
る。離型材の厚さは25〜200 μm の範囲が適当であるが
必要に応じて適宜の厚さにすることができる。
The thermosetting adhesive applied to the surface-treated polyimide film surface used in the present invention includes nylon-epoxy type, NBR-phenol type, carboxyl group-containing NBR-epoxy type, polyester-epoxy type and the like. The printed wiring board is selected in consideration of the usage environment conditions. As the solvent used for the adhesive,
Organic solvents such as methyl ethyl ketone and toluene are suitable, but are not particularly limited. Other inorganic fillers (silica,
Alumina), a flame retardant, etc. can be added. The thickness of the adhesive layer is preferably in the range of 20 to 50 μm in the dry state, but can be set to an appropriate thickness if necessary. Examples of the release agent include polyethylene film, polypropylene film, TPX film, polyester film with silicone release agent, film coated paper of polyolefin such as polyethylene and polypropylene, release paper such as vinylidene chloride film coated paper or release film. To be The thickness of the release material is appropriately in the range of 25 to 200 μm, but it can be set to an appropriate thickness if necessary.

【0009】次に本発明の多層化用フレキシブル印刷配
線用基板の製造方法について図2により説明する。予め
表面処理が施された片面フレキシブル印刷配線用基板9
のポリイミドフィルム4の面に、熱硬化性接着剤の溶液
をリバースロールコーター、コンマコーター等を用いて
塗布し、インラインドライヤー等により60〜160 ℃で加
熱乾燥して溶剤を蒸発させ、接着剤を半硬化状態として
熱硬化性接着剤層6とする。この熱硬化性接着剤層6の
面に離型材7を重ね合わせ、ロールラミネーターによ
り、温度40〜120 ℃、線圧1〜50kg/cm の圧着条件で加
熱圧着して多層化用フレキシブル印刷配線用基板10を得
る。得られた多層化用フレキシブル印刷配線用基板10は
離型材7を剥し、他のフレキシブル印刷配線板8を所望
の枚数積み重ね多層化して、多層フレキシブル印刷配線
板11を製造することができる。
Next, a method of manufacturing a flexible printed wiring board for multilayering according to the present invention will be described with reference to FIG. Single-sided flexible printed wiring board 9 that has been surface treated in advance
The polyimide film 4 surface is coated with a thermosetting adhesive solution using a reverse roll coater, comma coater, etc., and heated and dried at 60 to 160 ° C. with an in-line dryer to evaporate the solvent to form an adhesive. The thermosetting adhesive layer 6 is set in a semi-cured state. The release material 7 is superposed on the surface of the thermosetting adhesive layer 6 and is heated and pressed by a roll laminator at a temperature of 40 to 120 ° C. and a linear pressure of 1 to 50 kg / cm to form a multilayered flexible printed wiring. Obtain the substrate 10. The multi-layer flexible printed wiring board 11 can be manufactured by removing the release material 7 and stacking another flexible printed wiring board 8 in a desired number of layers to obtain a multilayer flexible printed wiring board 11.

【0010】図1の従来の多層フレキシブル印刷配線板
11の製造方法と図2の本発明の多層化用フレキシブル印
刷配線用基板10を使用した多層フレキシブル印刷配線板
11の製造方法との比較から、本発明の多層化用フレキシ
ブル印刷配線用基板10を使用した多層フレキシブル印刷
配線板11の製造工程が簡略化されており、作業性が良好
なことが理解される。
The conventional multilayer flexible printed wiring board of FIG.
11 and a multilayer flexible printed wiring board using the multilayer flexible printed wiring substrate 10 of the present invention of FIG.
From the comparison with the manufacturing method of 11, it is understood that the manufacturing process of the multilayer flexible printed wiring board 11 using the multilayer flexible printed wiring board 10 of the present invention is simplified, and the workability is good. .

【0011】[0011]

【実施例】以下本発明の具体的な実施態様を実施例によ
り説明するが本発明はこれにより限定されるものではな
い。 (実施例1)ポリイミドフィルム・カプトン100H(デユ
ポン社製商品名)(厚さ25μm )にエポキシ系接着剤を
乾燥後の厚さが18μm になるように塗布し、加熱して半
硬化状態とした。その上に厚さ35μm の圧延銅箔を加熱
圧着して製造した片面フレキシブル印刷配線用基板・GA
S 33S42 (信越化学工業社製商品名)のポリイミドフィ
ルムの面に、連続プラズマ処理装置によりプラズマ処理
を施した。処理条件は、真空度0.1 Torr. 酸素流量1.0L
/minで供給し、印加電圧2KV、 周波数110KHzで30KWの電
力を入力した。プラズマ発生装置は、電極4本を円筒状
に配置し、電極の外側40mmの距離で、フィルムを電極の
外周に沿って50m/min の速度で移動させ約5秒間処理し
た。次にこのポリイミドフィルムの処理済表面にMEK
に溶解させたエポキシ系接着剤を乾燥後の厚さが30μm
になるようにロールコーターで塗布し、インラインドラ
イヤーを通して120 ℃で溶剤を除去し接着剤を半硬化状
態にした後、ポリエチレンコート紙(100 μm )と積層
一体化させ(温度60℃、 線圧5kg /cm)、多層化用フレ
キシブル印刷配線用基板を得た。この基板を30cm×30cm
の大きさにカットし、離型材を取り除き、半硬化状態の
エポキシ系接着剤面と面積30cm×30cm、厚さ35μm の電
解銅箔・JTC(ジャパンエナジー社製商品名)のマッ
ト面とを重ね合わせ、プレス機により加熱圧着して評価
用サンプルを得た。なおクッション材(40cm×40cm)の
構成は図3のようにし、加熱圧着条件は160 ℃、50kg/cm
2、30分で行った。評価結果を表1に示す。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Polyimide film Kapton 100H
Epoxy adhesive was applied to Pon's brand name (thickness 25 μm) so that the thickness after drying would be 18 μm, and heated to a semi-cured state. A single-sided flexible printed circuit board / GA manufactured by heat-pressing a rolled copper foil with a thickness of 35 μm on top of it
The surface of the polyimide film of S33S42 (trade name of Shin-Etsu Chemical Co., Ltd.) was subjected to plasma treatment by a continuous plasma treatment apparatus. The processing conditions are vacuum degree 0.1 Torr. Oxygen flow rate 1.0L.
The power was supplied at a rate of / min, and the applied voltage was 2 KV and the power of 30 KW was input at a frequency of 110 KHz. In the plasma generator, four electrodes were arranged in a cylindrical shape, and the film was moved along the outer circumference of the electrode at a distance of 40 mm at a speed of 50 m / min for about 5 seconds. Then, add MEK to the treated surface of this polyimide film.
The thickness of the epoxy adhesive dissolved in is 30 μm after drying.
To remove the solvent at 120 ℃ through an in-line dryer to semi-cure the adhesive, and then laminate and integrate with polyethylene-coated paper (100 μm) (temperature 60 ℃, linear pressure 5 kg). / Cm), and a flexible printed wiring board for multilayering was obtained. This board is 30 cm x 30 cm
After removing the release material, the semi-cured epoxy adhesive surface and the matte surface of electrolytic copper foil with a surface area of 30cm x 30cm and thickness of 35μm JTC (product name of Japan Energy Co., Ltd.) are overlaid. The samples were combined and heat-pressed with a press machine to obtain a sample for evaluation. The structure of the cushion material (40 cm x 40 cm) is as shown in Fig. 3, and the thermocompression bonding conditions are 160 ° C and 50 kg / cm.
It took 2 to 30 minutes. Table 1 shows the evaluation results.

【0012】(実施例2)実施例1において、低温プラ
ズマ処理をコロナ放電処理に変えたこと以外は同一条件
で評価用サンプルを得た。コロナ放電処理の条件は周波
数110KHz、出力4KW、ラインスピード10m/min で約0.01
秒間処理した。結果を表1に示した。 (実施例3)実施例1において、低温プラズマ処理の無
機ガスを酸素ガスから窒素ガスに変えたこと以外は同一
条件で評価用サンプルを得た。結果を表1に示す。
Example 2 An evaluation sample was obtained under the same conditions as in Example 1, except that the low temperature plasma treatment was changed to a corona discharge treatment. Corona discharge condition is frequency 0.01KHz, output 4KW, line speed 10m / min, about 0.01
Treated for seconds. The results are shown in Table 1. (Example 3) A sample for evaluation was obtained under the same conditions as in Example 1, except that the inorganic gas for the low temperature plasma treatment was changed from oxygen gas to nitrogen gas. The results are shown in Table 1.

【0013】(比較例1)実施例1において、低温プラ
ズマ処理を省いたこと以外は同一条件で評価用サンプル
を得た。結果を表1に示す。 (比較例2)実施例1と同様にして製造した片面フレキ
シブル印刷配線用基板(前出)を30cm×30cmの大きさに
カットし、このポリイミドフィルム面に通常回路形成時
に施されるのと同等の薬液処理を施した。薬液処理の方
法は、20% 塩化第二鉄水溶液(pH2)に40℃で5分間浸
漬し、次いで5%水酸化ナトリウム水溶液に20℃で5分
間浸漬し、次いでこれを十分に水洗した後乾燥した。こ
の片面フレキシブル印刷配線用基板のポリイミドフィル
ム面と面積30cm×30cm、厚さ35μm の電解銅箔・JTC
(前出)のマット面とを、実施例1と同組成の接着剤を
ポリエチレンコート紙に塗工し、同一条件で作成したフ
ィルム状のエポキシ系熱硬化性接着剤(30cm×30cm、厚
さ30μm ) を介して加熱圧着した。加熱条件は実施例1
と同様とした。これを評価サンプルとし、結果を表1に
示す。 (比較例3)比較例2において薬液処理を省いたこと以
外は同一条件で評価サンプルを得た。結果を表1に示
す。
Comparative Example 1 An evaluation sample was obtained under the same conditions as in Example 1 except that the low temperature plasma treatment was omitted. The results are shown in Table 1. (Comparative Example 2) A single-sided flexible printed wiring board (described above) produced in the same manner as in Example 1 was cut into a size of 30 cm x 30 cm, and this polyimide film surface was equivalent to the one applied during normal circuit formation. The chemical treatment was performed. The chemical treatment method is as follows: dip in 20% ferric chloride aqueous solution (pH 2) at 40 ° C for 5 minutes, then soak in 5% sodium hydroxide aqueous solution at 20 ° C for 5 minutes, then wash thoroughly with water and dry. did. This single-sided flexible printed wiring board has a polyimide film surface and an area of 30 cm x 30 cm and a thickness of 35 μm electrolytic copper foil / JTC.
The matte surface (described above) was applied to polyethylene-coated paper with an adhesive having the same composition as in Example 1, and a film-like epoxy thermosetting adhesive (30 cm × 30 cm, thickness) was prepared under the same conditions. (30 μm) and thermocompression bonded. The heating conditions are those in Example 1.
Same as. This is used as an evaluation sample, and the results are shown in Table 1. Comparative Example 3 An evaluation sample was obtained under the same conditions as in Comparative Example 2 except that the chemical treatment was omitted. The results are shown in Table 1.

【0014】[サンプルの評価方法] (引き剥し強度)JIS C6481 に準拠。サンプルを10mm幅
にカットし、この電解銅箔を90°方向に50cm/minの速度
でフレキシブル印刷配線用基板から引き剥すことのでき
る強度を測定した。 (半田耐熱性)JIS C6481 に準拠。サンプルを25mm角に
カットし、これをフロー半田上に浮かべ、ふくれ、剥れ
等を目視で観察した。評価は、異常なし・・・〇、ふく
れ、剥れ等の発生あり・・・×、とした。 (剥離状態)引き剥し強度測定後のサンプルについて剥
離面の状態を目視で観察した。 FG:フィルム側に近い凝集剥離を示した場合。 FK:フィルム側に近い界面剥離を示した場合。 (作業性)多層フレキシブル印刷配線板を製造する際、
省略もしくは簡略化することが可能となる工程を示し
た。評価は、省略可能・・・〇、簡略化可能・・・△、
不可能・・・×、とした。 (気泡混入)大きさ30cm×30cmの本発明の多層化用フレ
キシブル印刷配線用基板のサンプルの銅箔を常法により
エッチング除去し、ポリイミドフィルムと熱硬化性接着
剤層の間に混入した気泡の数を拡大鏡で観察し数えた。
[Sample evaluation method] (Peeling strength) In accordance with JIS C6481. The sample was cut into a width of 10 mm, and the strength at which this electrolytic copper foil could be peeled off from the flexible printed wiring board at a speed of 50 cm / min in the 90 ° direction was measured. (Solder heat resistance) Conforms to JIS C6481. The sample was cut into a 25 mm square, which was floated on the flow solder and visually observed for blistering, peeling, and the like. The evaluation was that there were no abnormalities: ◯, swelling, peeling, etc. occurred: ×. (Peeling state) The state of the peeled surface of the sample after the peeling strength measurement was visually observed. FG: In the case of showing cohesive peeling close to the film side. FK: When interfacial peeling close to the film side was shown. (Workability) When manufacturing a multilayer flexible printed wiring board,
The steps that can be omitted or simplified have been shown. Evaluation can be omitted ... ○, Simplified ... △,
Impossible ... x. (Bubbling of air bubbles) The copper foil of the sample of the flexible printed wiring board for multilayering of the present invention having a size of 30 cm × 30 cm was removed by etching by a conventional method, and bubbles of air mixed between the polyimide film and the thermosetting adhesive layer were removed. The numbers were observed with a magnifying glass and counted.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明の多層化用フレキシブル印刷配線
用基板は、そのポリイミドフィルムの被処理面が回路形
成工程中に劣化、改質されることがないので、これを使
用して回路形成や多層化を行って多層フレキシブル印刷
配線板を製造する際に優れた接着性、作業性を示し且つ
その際、ポリイミドフィルムと熱硬化性接着剤層との間
に気泡が混入しないため半田耐熱性、スルーホール加工
時の信頼性が向上している。
EFFECT OF THE INVENTION In the multilayer flexible printed wiring board of the present invention, the surface of the polyimide film to be processed is not deteriorated or modified during the circuit forming process. When producing a multilayer flexible printed wiring board by performing multi-layering, it exhibits excellent adhesiveness and workability, and at that time, solder heat resistance because air bubbles do not enter between the polyimide film and the thermosetting adhesive layer, Improves reliability when processing through holes.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の多層フレキシブル印刷配線板の製造方法
の概略説明図。
FIG. 1 is a schematic explanatory view of a conventional method for manufacturing a multilayer flexible printed wiring board.

【図2】本発明の多層化用フレキシブル印刷配線用基板
を使用した多層フレキシブル印刷配線板の製造方法の概
略説明図。
FIG. 2 is a schematic explanatory view of a method for manufacturing a multilayer flexible printed wiring board using the multilayer flexible printed wiring board of the present invention.

【図3】クッション材の構成を示す説明図。FIG. 3 is an explanatory view showing a structure of a cushion material.

【符号の説明】 1 金属箔、 2 金属回路、 3 熱硬化性接着剤層、 4 ポリイミドフィルム(耐熱性プラスチックフィル
ム)、 5 ボンディングシート、 6 半硬化状態の熱硬化性接着剤層、 7 離型材、 8 フレキシブル印刷配線板、 9 片面フレキシブル印刷配線用基板、 10 多層化用フレキシブル印刷配線用基板、 11 多層フレキシブル印刷配線板、 a ステンレス板(3mm厚)、 b 厚紙(2mm厚)、 c ステンレス板(3mm厚)、 d TPXフィルム(0.2mm 厚)、 e 基板。
[Explanation of symbols] 1 metal foil, 2 metal circuit, 3 thermosetting adhesive layer, 4 polyimide film (heat resistant plastic film), 5 bonding sheet, 6 thermosetting adhesive layer in semi-cured state, 7 release material , 8 flexible printed wiring board, 9 single-sided flexible printed wiring board, 10 multilayer flexible printed wiring board, 11 multilayer flexible printed wiring board, a stainless steel plate (3 mm thick), b thick paper (2 mm thick), c stainless steel plate (3 mm thickness), d TPX film (0.2 mm thickness), e substrate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミドフィルム、熱硬化性接着剤
層、金属箔の順に形成された片面フレキシブル印刷配線
用基板のポリイミドフィルム外表面に低温プラズマ処理
またはコロナ放電処理を施し、次いで該処理表面に半硬
化状態の熱硬化性接着剤層、離型材をこの順に形成して
なる多層化用フレキシブル印刷配線用基板。
1. A low temperature plasma treatment or a corona discharge treatment is applied to the outer surface of a polyimide film of a substrate for a single-sided flexible printed wiring formed in the order of a polyimide film, a thermosetting adhesive layer, and a metal foil, and then the treated surface is semi-finished. A multilayer printed circuit board for flexible printing and wiring comprising a thermosetting adhesive layer in a cured state and a release material formed in this order.
JP31346494A 1994-12-16 1994-12-16 Board for multilayer flexible printed wiring Pending JPH08172277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31346494A JPH08172277A (en) 1994-12-16 1994-12-16 Board for multilayer flexible printed wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31346494A JPH08172277A (en) 1994-12-16 1994-12-16 Board for multilayer flexible printed wiring

Publications (1)

Publication Number Publication Date
JPH08172277A true JPH08172277A (en) 1996-07-02

Family

ID=18041624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31346494A Pending JPH08172277A (en) 1994-12-16 1994-12-16 Board for multilayer flexible printed wiring

Country Status (1)

Country Link
JP (1) JPH08172277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293792C (en) * 2000-09-07 2007-01-03 奥克-三井有限公司 Manufacturing fire retardant circuit boards without the use of fire retardant resin additives
JP2007012961A (en) * 2005-07-01 2007-01-18 Ngk Spark Plug Co Ltd Wiring board
KR101257789B1 (en) * 2011-11-18 2013-04-24 배영수 High heat conductive pcb, heat emission module using the high heat conductive pcb, led lighting module using the heat emission module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293792C (en) * 2000-09-07 2007-01-03 奥克-三井有限公司 Manufacturing fire retardant circuit boards without the use of fire retardant resin additives
JP2007012961A (en) * 2005-07-01 2007-01-18 Ngk Spark Plug Co Ltd Wiring board
KR101257789B1 (en) * 2011-11-18 2013-04-24 배영수 High heat conductive pcb, heat emission module using the high heat conductive pcb, led lighting module using the heat emission module

Similar Documents

Publication Publication Date Title
JP6455693B2 (en) Method of manufacturing ultra-thin metal layer printed circuit board
TWI450817B (en) Metal foil laminated polyimide resin substrate
KR102032624B1 (en) Preparation method of polyamide glue free flexible printed circuit board
KR20010051189A (en) Method for the preparation of multilayered printed wiring board using adhesive film
WO2007111268A1 (en) Process for producing copper wiring polyimide film, and copper wiring polyimide film
JPH06232553A (en) Single-sided flexible copper plated board for lamination
JPH08172277A (en) Board for multilayer flexible printed wiring
JPH05102630A (en) Manufacture of copper foil with carrier and copper laminated plate using same
JPH1129852A (en) Production of composite film of polyimide film-metal film
KR100584956B1 (en) Method for preparing rigid-flexible multi-layer printed circuit board
JPH11204942A (en) Manufacture of multilayer wiring board
JPS61224492A (en) Flexible printed circuit board
JP2010129802A (en) Method of manufacturing flexible wiring circuit board
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JPS61236882A (en) Cover-lay film
JP2003154537A (en) Method for folding and manufacturing copper foil-clad base and intermediate member for folding copper foil- clad base used therefor
JP3776259B2 (en) Method for producing coverlay film with excellent dimensional stability
WO2002085621A1 (en) Laminated plate and part using the laminated plate
JP3943735B2 (en) Manufacturing method of build-up type multilayer printed wiring board
JP3280604B2 (en) Method of manufacturing metal-clad laminate, method of manufacturing printed wiring board, and method of manufacturing multilayer board
JPH04206111A (en) Bonding sheet
JPH04367296A (en) Manufacture of board for flexible printed wiring
JP2000248239A (en) Production of double-sided cover lay film
JPH05259635A (en) Circuit board
JP2002316362A (en) Method for manufacturing laminate